Articles | Volume 20, issue 5
https://doi.org/10.5194/bg-20-1027-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1027-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties
Luisa Schmidt
CORRESPONDING AUTHOR
Institute of
Photogrammetry and Remote Sensing, Technische Universität Dresden, 01069 Dresden, Germany
Matthias Forkel
Institute of
Photogrammetry and Remote Sensing, Technische Universität Dresden, 01069 Dresden, Germany
Ruxandra-Maria Zotta
Department of Geodesy and
Geoinformation, Technische Universität Wien, Vienna, Austria
Samuel Scherrer
Department of Geodesy and
Geoinformation, Technische Universität Wien, Vienna, Austria
Wouter A. Dorigo
Department of Geodesy and
Geoinformation, Technische Universität Wien, Vienna, Austria
Alexander Kuhn-Régnier
Leverhulme Centre for Wildfires, Environment and Society, London, SW7
2AZ, UK
Department of Physics, Imperial College London, London, SW7 2AZ, UK
Robin van der Schalie
Planet, Wilhelminastraat 43A, 2011 VK Haarlem, the Netherlands
Marta Yebra
Fenner School of Environment & Society, Australian National
University, Canberra, ACT 2601, Australia
School of Engineering, Australian National University, Canberra, ACT 2601,
Australia
Related authors
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Wolfgang Preimesberger, Pietro Stradiotti, and Wouter Dorigo
Earth Syst. Sci. Data, 17, 4305–4329, https://doi.org/10.5194/essd-17-4305-2025, https://doi.org/10.5194/essd-17-4305-2025, 2025
Short summary
Short summary
We introduce the official ESA CCI Soil Moisture GAPFILLED climate data record. A univariate interpolation algorithm is applied to predict missing data points without relying on ancillary variables. The dataset includes gap-free uncertainty estimates for all predictions and was validated with independent in situ reference measurements. Our data record is recommended for applications which require global long-term gap-free satellite soil moisture data.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Bethan L. Harris, Christopher M. Taylor, Wouter Dorigo, Ruxandra-Maria Zotta, Darren Ghent, and Iván Noguera
EGUsphere, https://doi.org/10.5194/egusphere-2025-1489, https://doi.org/10.5194/egusphere-2025-1489, 2025
Short summary
Short summary
An improved understanding of land-atmosphere coupling processes during flash (rapid-onset) droughts is needed to aid the development of forecasts for these events. We use satellite observations to investigate the surface energy budget during flash droughts globally. The most intense events show a perturbed surface energy budget months before onset. In some regions, vegetation observations 1–2 months before onset provide information on the likelihood of heat extremes during an event.
Martin Hirschi, Pietro Stradiotti, Bas Crezee, Wouter Dorigo, and Sonia I. Seneviratne
Hydrol. Earth Syst. Sci., 29, 397–425, https://doi.org/10.5194/hess-29-397-2025, https://doi.org/10.5194/hess-29-397-2025, 2025
Short summary
Short summary
We investigate the potential of long-term satellite and reanalysis products for characterising soil drying by analysing their 2000–2022 soil moisture trends and their representation of agroecological drought events of this period. Soil moisture trends are globally diverse and partly contradictory between products. This also affects the products' drought-detection capacity. Based on the best-estimate products, consistent soil drying is observed over more than 40 % of the land area covered.
Ruxandra-Maria Zotta, Leander Moesinger, Robin van der Schalie, Mariette Vreugdenhil, Wolfgang Preimesberger, Thomas Frederikse, Richard de Jeu, and Wouter Dorigo
Earth Syst. Sci. Data, 16, 4573–4617, https://doi.org/10.5194/essd-16-4573-2024, https://doi.org/10.5194/essd-16-4573-2024, 2024
Short summary
Short summary
VODCA v2 is a dataset providing vegetation indicators for long-term ecosystem monitoring. VODCA v2 comprises two products: VODCA CXKu, spanning 34 years of observations (1987–2021), suitable for monitoring upper canopy dynamics, and VODCA L (2010–2021), for above-ground biomass monitoring. VODCA v2 has lower noise levels than the previous product version and provides valuable insights into plant water dynamics and biomass changes, even in areas where optical data are limited.
Adrianus de Laat, Vincent Huijnen, Niels Andela, and Matthias Forkel
EGUsphere, https://doi.org/10.5194/egusphere-2024-732, https://doi.org/10.5194/egusphere-2024-732, 2024
Preprint archived
Short summary
Short summary
This study assesses state-of-the art and more advanced and innovative satellite-observation-based (bottom-up) wildfire emission estimates. They are evaluated by comparison with satellite observation of single fire emission plumes. Results indicate that more advanced fire emission estimates – more information – are more realistic but that especially for a limited number of very large fires certain differences remain – for unknown reasons.
Samuel Scherrer, Gabriëlle De Lannoy, Zdenko Heyvaert, Michel Bechtold, Clement Albergel, Tarek S. El-Madany, and Wouter Dorigo
Hydrol. Earth Syst. Sci., 27, 4087–4114, https://doi.org/10.5194/hess-27-4087-2023, https://doi.org/10.5194/hess-27-4087-2023, 2023
Short summary
Short summary
We explored different options for data assimilation (DA) of the remotely sensed leaf area index (LAI). We found strong biases between LAI predicted by Noah-MP and observations. LAI DA that does not take these biases into account can induce unphysical patterns in the resulting LAI and flux estimates and leads to large changes in the climatology of root zone soil moisture. We tested two bias-correction approaches and explored alternative solutions to treating bias in LAI DA.
Adam Pasik, Alexander Gruber, Wolfgang Preimesberger, Domenico De Santis, and Wouter Dorigo
Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, https://doi.org/10.5194/gmd-16-4957-2023, 2023
Short summary
Short summary
We apply the exponential filter (EF) method to satellite soil moisture retrievals to estimate the water content in the unobserved root zone globally from 2002–2020. Quality assessment against an independent dataset shows satisfactory results. Error characterization is carried out using the standard uncertainty propagation law and empirically estimated values of EF model structural uncertainty and parameter uncertainty. This is followed by analysis of temporal uncertainty variations.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Taylor Smith, Ruxandra-Maria Zotta, Chris A. Boulton, Timothy M. Lenton, Wouter Dorigo, and Niklas Boers
Earth Syst. Dynam., 14, 173–183, https://doi.org/10.5194/esd-14-173-2023, https://doi.org/10.5194/esd-14-173-2023, 2023
Short summary
Short summary
Multi-instrument records with varying signal-to-noise ratios are becoming increasingly common as legacy sensors are upgraded, and data sets are modernized. Induced changes in higher-order statistics such as the autocorrelation and variance are not always well captured by cross-calibration schemes. Here we investigate using synthetic examples how strong resulting biases can be and how they can be avoided in order to make reliable statements about changes in the resilience of a system.
Matthias Forkel, Luisa Schmidt, Ruxandra-Maria Zotta, Wouter Dorigo, and Marta Yebra
Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, https://doi.org/10.5194/hess-27-39-2023, 2023
Short summary
Short summary
The live fuel moisture content (LFMC) of vegetation canopies is a driver of wildfires. We investigate the relation between LFMC and passive microwave satellite observations of vegetation optical depth (VOD) and develop a method to estimate LFMC from VOD globally. Our global VOD-based estimates of LFMC can be used to investigate drought effects on vegetation and fire risks.
Leander Moesinger, Ruxandra-Maria Zotta, Robin van der Schalie, Tracy Scanlon, Richard de Jeu, and Wouter Dorigo
Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, https://doi.org/10.5194/bg-19-5107-2022, 2022
Short summary
Short summary
The standardized vegetation optical depth index (SVODI) can be used to monitor the vegetation condition, such as whether the vegetation is unusually dry or wet. SVODI has global coverage, spans the past 3 decades and is derived from multiple spaceborne passive microwave sensors of that period. SVODI is based on a new probabilistic merging method that allows the merging of normally distributed data even if the data are not gap-free.
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Short summary
Gross primary production (GPP) describes the conversion of CO2 to carbohydrates and can be seen as a filter for our atmosphere of the primary greenhouse gas CO2. We developed VODCA2GPP, a GPP dataset that is based on vegetation optical depth from microwave remote sensing and temperature. Thus, it is mostly independent from existing GPP datasets and also available in regions with frequent cloud coverage. Analysis showed that VODCA2GPP is able to complement existing state-of-the-art GPP datasets.
Stefan Schlaffer, Marco Chini, Wouter Dorigo, and Simon Plank
Hydrol. Earth Syst. Sci., 26, 841–860, https://doi.org/10.5194/hess-26-841-2022, https://doi.org/10.5194/hess-26-841-2022, 2022
Short summary
Short summary
Prairie wetlands are important for biodiversity and water availability. Knowledge about their variability and spatial distribution is of great use in conservation and water resources management. In this study, we propose a novel approach for the classification of small water bodies from satellite radar images and apply it to our study area over 6 years. The retrieved dynamics show the different responses of small and large wetlands to dry and wet periods.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Markus Drüke, Werner von Bloh, Stefan Petri, Boris Sakschewski, Sibyll Schaphoff, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Geosci. Model Dev., 14, 4117–4141, https://doi.org/10.5194/gmd-14-4117-2021, https://doi.org/10.5194/gmd-14-4117-2021, 2021
Short summary
Short summary
In this study, we couple the well-established and comprehensively validated state-of-the-art dynamic LPJmL5 global vegetation model to the CM2Mc coupled climate model (CM2Mc-LPJmL v.1.0). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. The new climate model is able to capture important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the the impacts of managed land (crop growth and irrigation).
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Irene E. Teubner, Matthias Forkel, Benjamin Wild, Leander Mösinger, and Wouter Dorigo
Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, https://doi.org/10.5194/bg-18-3285-2021, 2021
Short summary
Short summary
Vegetation optical depth (VOD), which contains information on vegetation water content and biomass, has been previously shown to be related to gross primary production (GPP). In this study, we analyzed the impact of adding temperature as model input and investigated if this can reduce the previously observed overestimation of VOD-derived GPP. In addition, we could show that the relationship between VOD and GPP largely holds true along a gradient of dry or wet conditions.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Cited articles
Al Bitar, A., Mialon, A., Kerr, Y. H., Cabot, F., Richaume, P., Jacquette, E., Quesney, A., Mahmoodi, A., Tarot, S., Parrens, M., Al-Yaari, A., Pellarin, T., Rodriguez-Fernandez, N., and Wigneron, J.-P.: The global SMOS Level 3 daily soil moisture and brightness temperature maps, Earth Syst. Sci. Data, 9, 293–315, https://doi.org/10.5194/essd-9-293-2017, 2017.
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M., and McVicar, T. R.: Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data, Biogeosciences, 10, 6657–6676, https://doi.org/10.5194/bg-10-6657-2013, 2013.
Apley, D. W. and Zhu, J.: Visualizing the effects of predictor variables in
black box supervised learning models, J. R. Stat. Soc. B, 82, 1059–1086, https://doi.org/10.1111/RSSB.12377, 2020.
Baur, M. J., Jagdhuber, T., Feldman, A. F., Akbar, R., and Entekhabi, D.:
Estimation of relative canopy absorption and scattering at L-, C- and
X-bands, Remote Sens. Environ., 233, 111384,
https://doi.org/10.1016/j.rse.2019.111384, 2019.
Bousquet, E., Mialon, A., Rodriguez-Fernandez, N., Prigent, C., Wagner, F.
H., and Kerr, Y. H.: Influence of surface water variations on VOD and
biomass estimates from passive microwave sensors, Remote Sens. Environ.,
257, 112345, https://doi.org/10.1016/j.rse.2021.112345, 2021.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Chaparro, D., Piles, M., Vall-llossera, M., Camps, A., Konings, A. G., and
Entekhabi, D.: L-band vegetation optical depth seasonal metrics for crop
yield assessment, Remote Sens. Environ., 212, 249–259,
https://doi.org/10.1016/j.rse.2018.04.049, 2018.
Dorigo, W., Moesinger, L., van der Schalie, R., Zotta, R.-M., Scanlon, T.,
and Jeu, R. A. M.: Long-term monitoring of vegetation state through passive
microwave satellites, in: State of the Climate in 2020, 102,
B. Am. Meteorol. Soc., 102, S11–S142,
https://doi.org/10.1175/BAMS-D-21-0098.1, 2021.
Du, J., Kimball, J. S., Jones, L. A., Kim, Y., Glassy, J., and Watts, J. D.:
A global satellite environmental data record derived from AMSR-E and AMSR2
microwave Earth observations, Earth Syst. Sci. Data, 9, 791–808,
https://doi.org/10.5194/essd-9-791-2017, 2017.
Ebrahimi, M., Alavipanah, S. K., Hamzeh, S., Amiraslani, F., Neysani Samany,
N., and Wigneron, J. P.: Exploiting the synergy between SMAP and SMOS to
improve brightness temperature simulations and soil moisture retrievals in
arid regions, J. Hydrol., 557, 740–752,
https://doi.org/10.1016/j.jhydrol.2017.12.051, 2018.
Eller, C. B., Rowland, L., Mencuccini, M., Rosas, T., Williams, K., Harper,
A., Medlyn, B. E., Wagner, Y., Klein, T., Teodoro, G. S., Oliveira, R. S.,
Matos, I. S., Rosado, B. H. P., Fuchs, K., Wohlfahrt, G., Montagnani, L.,
Meir, P., Sitch, S., and Cox, P. M.: Stomatal optimization based on xylem
hydraulics (SOX) improves land surface model simulation of vegetation
responses to climate, New Phytol., 226, 1622–1637,
https://doi.org/10.1111/NPH.16419, 2020.
ESA: Land Cover CCI Product User Guide Version 2, Tech. Rep., ESA [data set], http://maps.elie.ucl.ac.be/CCI/viewer/download.php (last access: 3 March 2023), 2017.
Fan, L., Wigneron, J. P., Xiao, Q., Al-Yaari, A., Wen, J., Martin-StPaul,
N., Dupuy, J. L., Pimont, F., Al Bitar, A., Fernandez-Moran, R., and Kerr,
Y. H.: Evaluation of microwave remote sensing for monitoring live fuel
moisture content in the Mediterranean region, Remote Sens. Environ., 205,
210–223, https://doi.org/10.1016/J.RSE.2017.11.020, 2018.
Feldman, A., Chaparro, D., and Entekhabi, D.: Error Propagation in Microwave
Soil Moisture and Vegetation Optical Depth Retrievals, IEEE J. Sel. Top.
Appl., 14, 11311–11323,
https://doi.org/10.1109/JSTARS.2021.3124857, 2021.
Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D., and
Entekhabi, D.: Land-Atmosphere Drivers of Landscape-Scale Plant Water
Content Loss, Geophys. Res. Lett., 47, e2020GL090331, https://doi.org/10.1029/2020GL090331,
2020.
Fernandez-Moran, R., Al-Yaari, A., Mialon, A., Mahmoodi, A., Al Bitar, A.,
De Lannoy, G., Rodriguez-Fernandez, N., Lopez-Baeza, E., Kerr, Y., and
Wigneron, J. P.: SMOS-IC: An alternative SMOS soil moisture and vegetation
optical depth product, Remote Sens., 9, 1–21,
https://doi.org/10.3390/rs9050457, 2017.
Forkel, M., Schmidt, L., Zotta, R.-M., Dorigo, W., and Yebra, M.: Estimating leaf moisture content at global scale from passive microwave satellite observations of vegetation optical depth, Hydrol. Earth Syst. Sci., 27, 39–68, https://doi.org/10.5194/hess-27-39-2023, 2023.
Frappart, F., Wigneron, J. P., Li, X., Liu, X., Al-Yaari, A., Fan, L., Wang,
M., Moisy, C., Le Masson, E., Lafkih, Z. A., Vallé, C., Ygorra, B., and
Baghdadi, N.: Global Monitoring of the Vegetation Dynamics from the
Vegetation Optical Depth (VOD): A Review, Remote Sens., 12,
2915, https://doi.org/10.3390/RS12182915, 2020.
Friedman, J. H.: Greedy function approximation: A gradient boosting
machine, Ann. Stat., 29, 1189–1232, https://doi.org/10.1214/AOS/1013203451, 2001.
Hastie, T. and Tibshirani, R.: Generalized additive models: Some
applications, J. Am. Stat. Assoc., 82, 371–386,
https://doi.org/10.1080/01621459.1987.10478440, 1987.
Hastie, T., Tibshirani, R., and Friedman, J.: The Elements of Statistical Learning, 2, Springer New York, NY, https://doi.org/10.1007/978-0-387-84858-7, 2009.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., and Cochard, H.:
Iso/Anisohydry: A Plant–Environment Interaction Rather Than a Simple
Hydraulic Trait, Trends Plant Sci., 23, 112–120,
https://doi.org/10.1016/j.tplants.2017.11.002, 2018.
Hutengs, C. and Vohland, M.: Downscaling land surface temperatures at
regional scales with random forest regression, Remote Sens. Environ., 178,
127–141, https://doi.org/10.1016/j.rse.2016.03.006, 2016.
Jackson, T. J. and Schmugge, T. J.: Vegetation effects on the microwave
emission of soils, Remote Sens. Environ., 36, 203–212,
https://doi.org/10.1016/0034-4257(91)90057-D, 1991.
Jackson, T. J., Schmugge, T. J., and Wang, J. R.: Passive microwave sensing
of soil moisture under vegetation canopies, Water Resour. Res., 18,
1137–1142, https://doi.org/10.1029/WR018I004P01137, 1982.
Jones, M. O., Jones, L. A., Kimball, J. S., and McDonald, K. C.: Satellite
passive microwave remote sensing for monitoring global land surface
phenology, Remote Sens. Environ., 115, 1102–1114,
https://doi.org/10.1016/j.rse.2010.12.015, 2011.
Jones, M. O., Kimball, J. S., Small, E. E., and Larson, K. M.: Comparing
land surface phenology derived from satellite and GPS network microwave
remote sensing, Int. J. Biometeorol., 58, 1305–1315,
https://doi.org/10.1007/s00484-013-0726-z, 2014.
Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola
da Costa, A. C., and Gentine, P.: Implementing Plant Hydraulics in the
Community Land Model, Version 5, J. Adv. Model. Earth Sy., 11, 485–513,
https://doi.org/10.1029/2018MS001500, 2019.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Glob. Change Biol., 23, 891–905,
https://doi.org/10.1111/GCB.13389, 2017.
Konings, A. G., Piles, M., Das, N., and Entekhabi, D.: L-band vegetation
optical depth and effective scattering albedo estimation from SMAP, Remote
Sens. Environ., 198, 460–470, https://doi.org/10.1016/j.rse.2017.06.037,
2017.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, https://doi.org/10.1111/NPH.15808, 2019a.
Konings, A. G., Rao, K., and Steele-Dunne, S. C.: Macro to micro: microwave
remote sensing of plant water content for physiology and ecology, New
Phytol., 223, 1166–1172, https://doi.org/10.1111/nph.15808, 2019b.
Konings, A. G., Holtzman, N., Rao, K., Xu, L., and Saatchi, S. S.:
Interannual Variations of Vegetation Optical Depth Are Due to Both Water
Stress and Biomass Changes, Geophys. Res. Lett., 48, 1–9,
https://doi.org/10.1029/2021gl095267, 2021.
Kuhn-Régnier, A., Voulgarakis, A., Nowack, P., Forkel, M., Prentice, I. C., and Harrison, S. P.: The importance of antecedent vegetation and drought conditions as global drivers of burnt area, Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, 2021.
Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020.
Li, L., Yang, Z. L., Matheny, A. M., Zheng, H., Swenson, S. C., Lawrence, D.
M., Barlage, M., Yan, B., McDowell, N. G., and Leung, L. R.: Representation
of Plant Hydraulics in the Noah-MP Land Surface Model: Model Development and
Multiscale Evaluation, J. Adv. Model. Earth Sy., 13, e2020MS002214,
https://doi.org/10.1029/2020MS002214, 2021.
Li, X., Wigneron, J.-P., Frappart, F., Fan, L., Ciais, P., Fensholt, R.,
Entekhabi, D., Brandt, M., Konings, A. G., Liu, X., Wang, M., Al-Yaari, A.,
and Moisy, C.: Global-scale assessment and inter-comparison of recently
developed/reprocessed microwave satellite vegetation optical depth products,
Remote Sens. Environ., 253, 112208,
https://doi.org/10.1016/j.rse.2020.112208, 2021.
Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., and Yang, M.:
Estimation of leaf nitrogen content in wheat using new hyperspectral indices
and a random forest regression algorithm, Remote Sens., 10, 1940,
https://doi.org/10.3390/rs10121940, 2018.
Liu, R., Wen, J., Wang, X., Wang, Z., Li, Z., Xie, Y., Zhu, L., and Li, D.:
Derivation of Vegetation Optical Depth and Water Content in the Source
Region of the Yellow River using the FY-3B Microwave Data, Remote Sens., 11,
1536, https://doi.org/10.3390/rs11131536, 2019.
Liu, Y., Holtzman, N. M., and Konings, A. G.: Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion, Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, 2021.
Liu, Y. Y., De Jeu, R. A. M., McCabe, M. F., Evans, J. P., and Van Dijk, A.
I. J. M.: Global long-term passive microwave satellite-based retrievals of
vegetation optical depth, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL048684, 2011.
Liu, Y. Y., Van Dijk, A. I. J. M., De Jeu, R. A. M., Canadell, J. G.,
McCabe, M. F., Evans, J. P., and Wang, G.: Recent reversal in loss of global
terrestrial biomass, Nat. Clim. Change, 5, 470–474,
https://doi.org/10.1038/nclimate2581, 2015.
Mialon, A., Rodríguez-Fernández, N. J., Santoro, M., Saatchi, S.,
Mermoz, S., Bousquet, E., and Kerr, Y. H.: Evaluation of the sensitivity of
SMOS L-VOD to forest above-ground biomass at global scale, Remote Sens., 12,
1–10, https://doi.org/10.3390/RS12091450, 2020.
Moesinger, L., Dorigo, W., De Jeu, R., Van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, Zenodo [data set], https://doi.org/10.5281/zenodo.2575599, 2019.
Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA), Earth Syst. Sci. Data, 12, 177–196, https://doi.org/10.5194/essd-12-177-2020, 2020.
Moesinger, L., Zotta, R.-M., van der Schalie, R., Scanlon, T., de Jeu, R., and Dorigo, W.: Monitoring vegetation condition using microwave remote sensing: the standardized vegetation optical depth index (SVODI), Biogeosciences, 19, 5107–5123, https://doi.org/10.5194/bg-19-5107-2022, 2022.
Momen, M., Wood, J. D., Novick, K. A., Pangle, R., Pockman, W. T., McDowell,
N. G., and Konings, A. G.: Interacting Effects of Leaf Water Potential and
Biomass on Vegetation Optical Depth, J. Geophys. Res.-Biogeo., 122,
3031–3046, https://doi.org/10.1002/2017JG004145, 2017.
Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A2H MODIS Leaf Area Index/FPAR
8-Day L4 Global 500m SIN Grid V006, NASA EOSDIS L. Process. DAAC [data set],
https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015.
Nelder, J. A. and Wedderburn, R. W. M.: Generalized Linear Models Why
Generalized Linear Models?, J. R. Stat. Soc., 135, 370–384,
https://doi.org/10.2307/2344614, 1972.
Niu, G. Y., Fang, Y. H., Chang, L. L., Jin, J., Yuan, H., and Zeng, X.:
Enhancing the Noah-MP Ecosystem Response to Droughts With an Explicit
Representation of Plant Water Storage Supplied by Dynamic Root Water Uptake,
J. Adv. Model. Earth Sy., 12, e2020MS002062,
https://doi.org/10.1029/2020MS002062, 2020.
Njoku, E. G. and Entekhabi, D.: Passive microwave remote sensing of soil
moisture, J. Hydrol., 184, 101–129,
https://doi.org/10.1016/0022-1694(95)02970-2, 1996.
Owe, M., de Jeu, R., and Holmes, T.: Multisensor historical climatology of
satellite-derived global land surface moisture, J. Geophys. Res.-Earth, 113, 1–17, https://doi.org/10.1029/2007JF000769, 2008.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12,
2825–2830, https://doi.org/10.48550/arXiv.1201.0490, 2011.
Poulter, B., MacBean, N., Hartley, A., Khlystova, I., Arino, O., Betts, R., Bontemps, S., Boettcher, M., Brockmann, C., Defourny, P., Hagemann, S., Herold, M., Kirches, G., Lamarche, C., Lederer, D., Ottlé, C., Peters, M., and Peylin, P.: Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative, Geosci. Model Dev., 8, 2315–2328, https://doi.org/10.5194/gmd-8-2315-2015, 2015.
Rodríguez-Fernández, N. J., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, A., Al-Yaari, A., Brandt, M., Kaminski, T., Le Toan, T., Kerr, Y. H., and Wigneron, J.-P.: An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa, Biogeosciences, 15, 4627–4645, https://doi.org/10.5194/bg-15-4627-2018, 2018.
Saleh, K., Wigneron, J. P., De Rosnay, P., Calvet, J. C., Escorihuela, M.
J., Kerr, Y., and Waldteufel, P.: Impact of rain interception by vegetation
and mulch on the L-band emission of natural grass, Remote Sens. Environ.,
101, 127–139, https://doi.org/10.1016/j.rse.2005.12.004, 2006.
Santoro, M. and Cartus, O.: ESA Biomass Climate Change Initiative
(Biomass_cci): Global datasets of forest above-ground biomass
for the year 2017, v1, Cent. Environ. Data Anal. [data set],
https://doi.org/10.5285/bedc59f37c9545c981a839eb552e4084, 2019.
Sawada, Y., Tsutsui, H., Koike, T., Rasmy, M., Seto, R., and Fujii, H.: A
field verification of an algorithm for retrieving vegetation water content
from passive microwave observations, IEEE T. Geosci. Remote Sens., 54,
2082–2095, https://doi.org/10.1109/TGRS.2015.2495365, 2016.
Scholze, M., Kaminski, T., Knorr, W., Voßbeck, M., Wu, M., Ferrazzoli,
P., Kerr, Y., Mialon, A., Richaume, P., Rodríguez-Fernández, N.,
Vittucci, C., Wigneron, J. P., Mecklenburg, S., and Drusch, M.: Mean
European Carbon Sink Over 2010–2015 Estimated by Simultaneous Assimilation
of Atmospheric CO2, Soil Moisture, and Vegetation Optical Depth, Geophys.
Res. Lett., 46, 13796–13803, https://doi.org/10.1029/2019GL085725, 2019.
Servén, D., Brummitt, C., Abedi, H., and hlink: dswah/pyGAM: v0.8.0, Zenodo [code],
https://doi.org/10.5281/ZENODO.1476122, 2018.
Teubner, I. E., Forkel, M., Jung, M., Liu, Y. Y., Miralles, D. G.,
Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C. R.,
Tramontana, G., Camps-Valls, G., and Dorigo, W. A.: Assessing the
relationship between microwave vegetation optical depth and gross primary
production, Int. J. Appl. Earth Obs., 65, 79–91,
https://doi.org/10.1016/j.jag.2017.10.006, 2018.
Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D. G.,
Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., and
Dorigo, W. A.: A carbon sink-driven approach to estimate gross primary
production from microwave satellite observations, Remote Sens. Environ.,
229, 100–113, https://doi.org/10.1016/j.rse.2019.04.022, 2019.
Teubner, I. E., Forkel, M., Wild, B., Mösinger, L., and Dorigo, W.: Impact of temperature and water availability on microwave-derived gross primary production, Biogeosciences, 18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, 2021.
Tian, F., Wigneron, J. P., Ciais, P., Chave, J., Ogée, J., Peñuelas,
J., Ræbild, A., Domec, J. C., Tong, X., Brandt, M., Mialon, A.,
Rodriguez-Fernandez, N., Tagesson, T., Al-Yaari, A., Kerr, Y., Chen, C.,
Myneni, R. B., Zhang, W., Ardö, J., and Fensholt, R.: Coupling of
ecosystem-scale plant water storage and leaf phenology observed by
satellite, Nat. Ecol. Evol., 2, 1428–1435,
https://doi.org/10.1038/s41559-018-0630-3, 2018.
Togliatti, K., Lewis-Beck, C., Walker, V. A., Hartman, T., Vanloocke, A.,
Cosh, M. H., and Hornbuckle, B. K.: Quantitative Assessment of Satellite
L-Band Vegetation Optical Depth in the U.S. Corn Belt, IEEE Geosci. Remote
Sens., 19, 1–5, https://doi.org/10.1109/LGRS.2020.3034174, 2022.
Vaglio Laurin, G., Vittucci, C., Tramontana, G., Ferrazzoli, P., Guerriero,
L., and Papale, D.: Monitoring tropical forests under a functional
perspective with satellite-based vegetation optical depth, Glob. Change
Biol., 26, 3402–3416, https://doi.org/10.1111/gcb.15072, 2020.
van der Schalie, R., Kerr, Y. H. H., Wigneron, J. P. P.,
Rodríguez-Fernández, N. J. J., Al-yaari, A., and Jeu, R. A. M. D.:
Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval
Model, Int. J. Appl. Earth Obs., 45, 125–134,
https://doi.org/10.1016/j.jag.2015.08.005, 2016.
van der Schalie, R., de Jeu, R. A. M., Kerr, Y. H., Wigneron, J. P.,
Rodríguez-Fernández, N. J., Al-Yaari, A., Parinussa, R. M.,
Mecklenburg, S., and Drusch, M.: The merging of radiative transfer based
surface soil moisture data from SMOS and AMSR-E, Remote Sens. Environ., 189,
180–193, https://doi.org/10.1016/j.rse.2016.11.026, 2017.
Vittucci, C., Ferrazzoli, P., Kerr, Y., Richaume, P., Guerriero, L.,
Rahmoune, R., and Laurin, G. V.: SMOS retrieval over forests: Exploitation
of optical depth and tests of soil moisture estimates, Remote Sens.
Environ., 180, 115–127, https://doi.org/10.1016/j.rse.2016.03.004, 2016.
Wang, J. R.: Effect of vegetation on soil moisture sensing observed from
orbiting microwave radiometers, Remote Sens. Environ., 17, 141–151,
https://doi.org/10.1016/0034-4257(85)90070-7, 1985.
Wang, M., Wigneron, J.-P., Sun, R., Fan, L., Frappart, F., Tao, S., Chai,
L., Li, X., Liu, X., Ma, H., Moisy, C., and Ciais, P.: A consistent record
of vegetation optical depth retrieved from the AMSR-E and AMSR2 X-band
observations, Int. J. Appl. Earth Obs., 105, 102609,
https://doi.org/10.1016/J.JAG.2021.102609, 2021.
Wigneron, J. P., Calvet, J. C., Kerr, Y., Chanzy, A., and Lopes, A.:
Microwave Emission of Vegetation: Sensitivity to Leaf Characteristics, IEEE
T. Geosci. Remote Sens., 31, 716–726,
https://doi.org/10.1109/36.225537, 1993.
Wigneron, J. P., Calvet, J. C., and Kerr, Y.: Monitoring water interception
by crop fields from passive microwave observations, Agr. Forest Meteorol.,
80, 177–194, https://doi.org/10.1016/0168-1923(95)02296-1, 1996.
Wigneron, J. P., Mialon, A., De Lannoy, G., Fernandez-Moran, R., Al-Yaari,
A., Ebrahimi, M., Rodriguez-Fernandez, N., Kerr, Y., Quets, J., Pellarin,
T., Fan, L., Tian, F., Fensholt, R., and Brandt, M.: SMOS-IC: Current status
and overview of soil moisture and VOD applications, Int. Geosci. Remote
Se., 2018-July, 1451–1454,
https://doi.org/10.1109/IGARSS.2018.8519382, 2018.
Wigneron, J. P., Li, X., Frappart, F., Fan, L., Al-Yaari, A., De Lannoy, G.,
Liu, X., Wang, M., Le Masson, E., and Moisy, C.: SMOS-IC data record of soil
moisture and L-VOD: Historical development, applications and perspectives,
Remote Sens. Environ., 254, 112238,
https://doi.org/10.1016/J.RSE.2020.112238, 2021.
Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and Dorigo, W.: VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing, Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, 2022.
Xu, L., Saatchi, S. S., Yang, Y., Yu, Y., Pongratz, J., Anthony Bloom, A.,
Bowman, K., Worden, J., Liu, J., Yin, Y., Domke, G., McRoberts, R. E.,
Woodall, C., Nabuurs, G. J., De-Miguel, S., Keller, M., Harris, N., Maxwell,
S., and Schimel, D.: Changes in global terrestrial live biomass over the
21st century, Sci. Adv., 7, 6,
https://doi.org/10.1126/sciadv.abe9829, 2021.
Yebra, M., Quan, X., Riaño, D., Rozas Larraondo, P., van Dijk, A. I. J.
M., and Cary, G. J.: A fuel moisture content and flammability monitoring
methodology for continental Australia based on optical remote sensing,
Remote Sens. Environ., 212, 260–272,
https://doi.org/10.1016/j.rse.2018.04.053, 2018.
Yee, T. W. and Mitchell, N. D.: Generalized additive models in plant
ecology, J. Veg. Sci., 2, 587–602, https://doi.org/10.2307/3236170, 1991.
Zhang, Y., Zhou, S., Gentine, P., and Xiao, X.: Can vegetation optical depth
reflect changes in leaf water potential during soil moisture dry-down
events?, Remote Sens. Environ., 234, 111451,
https://doi.org/10.1016/J.RSE.2019.111451, 2019.
Zwieback, S., Bosch, D. D., Cosh, M. H., Starks, P. J., and Berg, A.:
Vegetation–soil moisture coupling metrics from dual-polarization microwave
radiometry using regularization, Remote Sens. Environ., 231, 111257,
https://doi.org/10.1016/j.rse.2019.111257, 2019.
Short summary
Vegetation attenuates natural microwave emissions from the land surface. The strength of this attenuation is quantified as the vegetation optical depth (VOD) parameter and is influenced by the vegetation mass, structure, water content, and observation wavelength. Here we model the VOD signal as a multi-variate function of several descriptive vegetation variables. The results help in understanding the effects of ecosystem properties on VOD.
Vegetation attenuates natural microwave emissions from the land surface. The strength of this...
Altmetrics
Final-revised paper
Preprint