Articles | Volume 20, issue 6
https://doi.org/10.5194/bg-20-1075-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1075-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Department of Oceanography, University of Hawai`i at Mānoa, 1000
Pope Road, Honolulu, Hawaii 96822, USA
David T. Ho
Department of Oceanography, University of Hawai`i at Mānoa, 1000
Pope Road, Honolulu, Hawaii 96822, USA
Related authors
No articles found.
Elizabeth Yankovsky, Mengyang Zhou, Michael Tyka, Scott Bachman, David T. Ho, Alicia Karspeck, and Matthew C. Long
Biogeosciences, 22, 5723–5739, https://doi.org/10.5194/bg-22-5723-2025, https://doi.org/10.5194/bg-22-5723-2025, 2025
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is a promising strategy for ocean-based carbon dioxide removal, as it attempts to accelerate a natural process operating on Earth and may have climatically significant scalability. However, our best strategy for assessing OAE effects involves running computationally expensive climate models. We develop a powerful statistical technique that is able to encapsulate the climatic response to OAE interventions, thus simplifying the OAE carbon accounting problem.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Cited articles
Amorocho, J. and DeVries, J. J.: A new evaluation of the wind stress
coefficient over water surfaces, J. Geophys. Res.-Oceans, 85, 433–442, 1980.
Atmane, M. A., Asher, W. E., and Jessup, A. T.: On the use of the active
infrared technique to infer heat and gas transfer velocities at the
air-water free surface, J. Geophys. Res.-Oceans, 109, C08S14, https://doi.org/10.1029/2003JC001805,
2004.
De Bruyn, W. J. and Saltzman, E. S.: Diffusivity of methyl bromide in
water, Mar. Chem., 57, 55–59, https://doi.org/10.1016/S0304-4203(96)00092-8, 1997.
Dobashi, R.: Tracer_release_experiment_Florida_bay, Zenodo [data set], https://doi.org/10.5281/zenodo.7087773, 2022.
DOE: Handbook of Methods for the Analysis of the Various Parameters of the
Carbon Dioxide System in Sea Water, Version 2, edited by:
Dickson, A. G. and Goyet, C., ORNL/CDIAC-74, 1994.
Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8, https://doi.org/10.5194/bg-2-1-2005, 2005.
Fish and Wildlife Research Institute: Florida Geographic Data Library, https://www.fgdl.org/metadataexplorer/explorer.jsp, last access: 16 December
2022.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., KrauseJensen, D., McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally
significant carbon stock, Nat. Geosci., 5, 505–509, https://doi.org/10.1038/ngeo1477,
2012.
Ho, D. T. and Wanninkhof, R.: Air-sea gas exchange in the North Atlantic:
experiment during GasEx-98, Tellus B, 68, 30198,
https://doi.org/10.3402/tellusb.v68.30198, 2016.
Ho, D. T., Bliven, L. F., Wanninkhof, R. I. K., and Schlosser, P.: The
effect of rain on air-water gas exchange, Tellus B, 49, 149–158, 1997a.
Ho, D. T., Wanninkhof, R., Masters, J., Feely, R. A., and Cosca, C. E.: Measurements of underway fCO2 in the eastern equatorial Pacific on NOAA ships Malcolm Baldridge and Discoverer from February to September, 1994, Rep. ERL AOML-30, 52 pp., NTIS, Springfield, Va, 1997b.
Ho, D. T., Asher, W. E., Bliven, L. F., Schlosser, P., and Gordan, E. L.: On
mechanisms of rain-induced air-water gas exchange, J. Geophys.
Res.-Oceans., 105, 24045–24057, 2000.
Ho, D. T., Schlosser, P., and Caplow, T.: Determination of longitudinal
dispersion coefficient and net advection in the tidal Hudson River with a
large-scale, high resolution SF6 tracer release
experiment, Environ. Sci. Technol., 36, 3234–3241,
https://doi.org/10.1021/es015814+, 2002.
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill,
P.: Measurements of air–sea gas exchange at high wind speeds in the Southern
Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33,
L16611, https://doi.org/10.1029/2006GL026817, 2006.
Ho, D. T., Coffineau, N., Hickman, B., Chow, N., Koffman, T., and Schlosser,
P.: Influence of current velocity and wind speed on air-water gas exchange
in a mangrove estuary, Geophys. Res. Lett., 43, 3813–3821, https://doi.org/10.1002/2016GL068727, 2016.
Ho, D. T., De Carlo, E. H., and Schlosser, P.: Air-sea gas exchange and
CO2 fluxes in a tropical coral reef lagoon, J. Geophys. Res.-Oceans., 123, 8701–8713, https://doi.org/10.1029/2018JC014423, 2018a.
Ho, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., and Harvey,
J. W.: On factors influencing air-water gas exchange in emergent
wetlands, J. Geophys. Res.-Biogeo., 123, 178–192, https://doi.org/10.1002/2017JG004299,
2018b.
Howard, J. L., Creed, J. C., Aguiar, M. V. P., and Fourqurean, J. W.:
CO2 released by carbonate sediment production in some coastal areas may
offset the benefits of seagrass “Blue Carbon” storage, Limnol.
Oceanogr., 63, 160–172, https://doi.org/10.1002/lno.10621, 2017.
Hayduk, W. and Laudie, H.: Prediction of diffusion coefficients for
nonelectrolytes in dilute aqueous solutions, AIChE J., 20,
611–615, https://doi.org/10.1002/aic.690200329, 1974.
Jähne, B., Munnich, K. O., Bosinger, R., Dutzi, A., Huber, W.,
and Libner, P.: On the parameters influencing air-water gas
exchange, J. Geophys.
Res., 92, 1937–1949, https://doi.org/10.1029/JC092iC02p01937, 1987.
King, D. B. and Saltzman, E. S.: Measurement of the diffusion coefficient
of sulfur hexafluoride in water, J. Geophys.
Res., 100, 7083–7088, https://doi.org/10.1029/94jc03313, 1995.
Lavrentyev, P. J., Bootsma, H. A., Johengen, T. H., Cavaletto, J. F., and
Gardner, W. S.: Microbial plankton response to resource limitation: insights
from the community structure and seston stoichiometry in Florida Bay, USA,
Mar. Ecol.-Prog. Ser., 165, 45–57, 1998.
Ludin, A., Weppernig, R., Bönisch, G., and Schlosser, P.: Mass
spectrometric Measurementmeasurement of helium isotopes and tritium in water
samples, Technical Report Rep. 98-6, 42 pp., Lamont-Doherty Earth
Observatory, Palisades, NY, 1998.
McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct
covariance air–sea CO2 fluxes, J. Geophys. Res.-Oceans, 106, 16729–16745, 2001.
Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C.
M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved
understanding of the role of vegetated coastal habitats in sequestering
CO2, Front. Ecol. Environ., 9, 552–560, 2011.
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air–sea gas exchange parameterizations using novel conservative and
volatile tracers, Global Biogeochem. Cy., 14, 373–387,
https://doi.org/10.1029/1999GB900091, 2000.
NOAA National Data Buoy Center: Station BOBF1 – Bob Allen, FL, https://www.ndbc.noaa.gov/station_page.php?station=bobf1,
last access: 16 December 2022.
NOAA Office for Coastal Management: 2017 NAIP 4-Band 8 Bit Imagery: Coastal Florida,
https://chs.coast.noaa.gov/htdata/raster2/imagery/FL_NAIP_2017_8754/, last access: 16 December
2022.
NOAA Pacific Marine Environmental Laboratory: Cheeca Rocks,
https://www.pmel.noaa.gov/co2/story/Cheeca+Rocks, last access: 16 December
2022.
Philips, E. J. and Badylak, S.: Spatial variability in phytoplankton
standing crop and composition in a shallow inner-shelf lagoon, Florida Bay,
Florida, B. Mar. Sci., 58, 203–216, 1996.
Phlips, E. J., Badylak, S., and Lynch, T. C.: Blooms of picoplanktonic
cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf
lagoon, Limnol. Oceanogr., 44, 1166–1175, 1999.
Pierrot, D., Neill, C., Sullivan, K., Castle, R., Wanninkhof, R., Lüger,
H., Johannessen, T., Olsen, A., Feely, R. A., and Cosca, C. E.: Recommendations for autonomous underway pCO2
measuring systems and data-reduction routines, Deep-Sea Res. Pt. II, 56, 512–522, 2009.
Prager, E. J. and
Halley, R. B.: The influence of seagrass on shell layers and Florida Bay
mudbanks, J. Coastal Res., 15, 1151–1162, 1999.
Raymond, P. A. and Cole, J. J.: Gas exchange in rivers and estuaries:
choosing a gas transfer velocity, Estuaries, 24, 269–274,
https://doi.org/10.2307/1352954, 2001.
Saltzman, E. S., King, D. B., Holmen, K., and Leck, C.: Experimental
determination of the diffusion coefficient of dimethylsulfide in water, J.
Geophys. Res., 98, 16481–16486, https://doi.org/10.1029/93JC01858, 1993.
Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M.,
Lavik, G., Kuypers, M. M. M., Graf, J. S., and Milucka, J.: Diverse methylotrophic methanogenic archaea cause high
methane emissions from seagrass meadows, P. Natl. Acad.
Sci. USA, 119, e2106628119, https://doi.org/10.1073/pnas.2106628119, 2022.
Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M.: Thermophysical
properties of seawater: a review of existing correlations and
data, Desalin. Water Treat., 16, 354–380, 2010.
Sogard, S. M., Powell, G. V. N., and Holmquist, J. G.: Spatial Distribution and
Trends in Abundance Of Fishes Residing in Seagrass Meadows on Florida Bay
Mudbanks, B. Mar. Sci., 44, 179–199, 1989.
Stauffer, R. E.: Windpower time series above a temperate lake, Limnol.
Oceanogr., 25, 513–528, 1980.
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., and Sutherland,
S. C.: Seasonal variation of CO2 and nutrients in the high-latitude
surface oceans: A comparative study, Global Biogeochem. Cy., 7,
843–878, 1993.
Van Dam, B. R., Lopes, C. C., Polsenaere, P., Price, R. M., Rutgersson, A.,
and Fourqurean, J. W.: Water temperature control on CO2 flux and
evaporation over a subtropical seagrass meadow revealed by atmospheric eddy
covariance, Limnol.
Oceanogr., 66, 1–18, https://doi.org/10.1002/lno.11620, 2020.
Van Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E.,
Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., and Thomas,
H.: Calcification-driven CO2 emissions exceed “Blue Carbon”
sequestration in a carbonate seagrass meadow, Res. Square. [preprint],
https://doi.org/10.21203/rs.3.rs-120551/v1, 2021.
Wang, J. D.: Subtidal flow patterns in western Florida Bay, Estuar.
Coastal Shelf S., 46, 901–915, 1998.
Wang, J. D., van deKreeke, J., Krishnan, N., and Smith, D.: Wind and tide
response in Florida Bay, B. Mar. Sci., 54, 579–601, 1994.
Wanninkhof, R.: Relationship between gas exchange and wind speed over the
ocean, J. Geophys. Res., 97, 7373–7381, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Wanninkhof, R. and Thoning, K.: Measurement of fugacity of CO2 in surface
water using continuous and discrete sampling methods, Mar. Chem., 44,
189–205, 1993.
Wanninkhof, R., Ledwell, J. R., Broecker, W. S., and Hamilton, M.: Gas
exchange on Mono Lake and Crowley Lake, California, J. Geophys.
Res., 92, 14567–14580, https://doi.org/10.1029/JC092iC13p14567, 1987.
Wanninkhof, R., Asher, W., Weppernig, R., Chen, H., Schlosser, P., Langdon,
C., and Sambrotto, R.: Gas transfer experiment on Georges Bank using two
volatile deliberate tracers, J. Geophys. Res., 98, 20237–20248, 1993.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W.
R.: Advances in quantifying air–sea gas exchange and environmental
forcing, Annu. Rev. Mar. Sci., 1, 213–244,
https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
Weiss, R. F.: Carbon dioxide in water and seawater: The solubility of a
nonideal gas, Mar. Chem., 2, 203–215, 1974.
Wilke, C. R. and Chang, P.: Correlation of diffusion coefficients in dilute
solutions, AIChE J., 1, 264–270,
https://doi.org/10.1002/aic.690010222, 1955.
Zhang, J.-Z. and Fischer, C. J.: Carbon dynamics of Florida Bay:
Spatiotemporal patterns and biological control, Environ. Sci.
Technol., 48, 9161–9169, https://doi.org/10.1021/es500510z, 2014.
Zheng, M., De Bruyn, W. J., and Saltzman, E. S.: Measurements of the
diffusion coefficients of CFC-11 and CFC12 in pure water and seawater, J.
Geophys. Res., 103, 1375–1379, https://doi.org/10.1029/97JC02761, 1998.
Zieman, J. C., Fourqurean, J. W., and Iverson, R. L.: Distribution,
abundance and productivity of seagrasses and macroalgae in Florida
Bay, B. Mar. Sci., 44, 292–311, 1989.
Zieman, J. C., Fourqurean, J. W., and Frankovich, T. A.: Seagrass die-off in
Florida Bay: long-term trends in abundance and growth of turtle grass,
Thalassia testudinum, Estuaries, 22, 460–470, 1999.
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the...
Altmetrics
Final-revised paper
Preprint