Articles | Volume 20, issue 8
https://doi.org/10.5194/bg-20-1559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-1559-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Mercedes Román Dobarco
CORRESPONDING AUTHOR
Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, 2015, NSW, Australia
Alexandre M. J-C. Wadoux
Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, 2015, NSW, Australia
Brendan Malone
CSIRO Agriculture and Food, Black Mountain, ACT, Australia
Budiman Minasny
Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, 2015, NSW, Australia
Alex B. McBratney
Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, 2015, NSW, Australia
Ross Searle
CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, Australia
Related authors
No articles found.
Yin-Chung Huang, José Padarian, Budiman Minasny, and Alex B. McBratney
SOIL, 11, 553–563, https://doi.org/10.5194/soil-11-553-2025, https://doi.org/10.5194/soil-11-553-2025, 2025
Short summary
Short summary
Uncertainty quantification plays a crucial role in reporting machine learning models in soil spectroscopy. This study introduces Monte Carlo conformal prediction (MC-CP), a novel method for uncertainty quantification in deep-learning soil spectral models. MC-CP outperformed two established methods, providing the most reliable results. Its efficiency and robustness make it a practical choice for implementing soil spectral models in decision making.
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data, 17, 2605–2623, https://doi.org/10.5194/essd-17-2605-2025, https://doi.org/10.5194/essd-17-2605-2025, 2025
Short summary
Short summary
Current understandings of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate new spatially explicit global maps of topsoil and subsoil τ, with quantified uncertainties for better user applications. The new insights from the resulting maps will facilitate efforts to model the carbon cycle and will support effective carbon management.
Marliana Tri Widyastuti, José Padarian, Budiman Minasny, Mathew Webb, Muh Taufik, and Darren Kidd
SOIL, 11, 287–307, https://doi.org/10.5194/soil-11-287-2025, https://doi.org/10.5194/soil-11-287-2025, 2025
Short summary
Short summary
This work aims to predict soil water content at a fine spatiotemporal resolution (80 m grids, daily) to support agricultural management in Tasmania. It proves that transfer learning can improve the accuracy of deep learning models to predict multilevel soil moisture. We address the challenge of mapping soil moisture at field-scale resolution and integrate the model into a near-real-time monitoring system.
Neal Hughes, Donald Gaydon, Mihir Gupta, Andrew Schepen, Peter Tan, Geoffrey Brent, Andrew Turner, Sean Bellew, Wei Ying Soh, Christopher Sharman, Peter Taylor, John Carter, Dorine Bruget, Zvi Hochman, Ross Searle, Yong Song, Heidi Horan, Patrick Mitchell, Yacob Beletse, Dean Holzworth, Laura Guillory, Connor Brodie, Jonathon McComb, and Ramneek Singh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3731, https://doi.org/10.5194/egusphere-2024-3731, 2024
Short summary
Short summary
Droughts can impact agriculture and regional economies, and their severity is rising with climate change. Our research introduces a new system, the Australian Agricultural Drought Indicators (AADI), which measures droughts based on their effects on crops, livestock, and farm profits rather than traditional weather metrics. Using climate data and modelling, AADI predicts drought impacts more accurately, helping policymakers prepare and respond to financial and social challenges during droughts.
Marliana Tri Widyastuti, Budiman Minasny, José Padarian, Federico Maggi, Matt Aitkenhead, Amélie Beucher, John Connolly, Dian Fiantis, Darren Kidd, Yuxin Ma, Fraser Macfarlane, Ciaran Robb, Rudiyanto, Budi Indra Setiawan, and Muh Taufik
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-333, https://doi.org/10.5194/essd-2024-333, 2024
Preprint withdrawn
Short summary
Short summary
PEATGRIDS, the first dataset containing maps of global peat thickness and carbon stock at 1 km resolution. The dataset has been publicly available at Zenodo to support further analyses and modelling of peatlands across the globe. This work employed the random forest machine learning model to provide spatially explicit peat carbon stock at pixel basis.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Frisa Irawan Ginting, Rudiyanto Rudiyanto, Fatchurahman, Ramisah Mohd Shah, Norhidayah Che Soh, Sunny Goh Eng Giap, Dian Fiantis, Budi Indra Setiawan, Sam Schiller, Aaron Davitt, and Budiman Minasny
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-90, https://doi.org/10.5194/essd-2024-90, 2024
Preprint withdrawn
Short summary
Short summary
This study is the first to map rice cropping intensity and the harvested area across Southeast Asia at a spatial resolution of 10 m (SEA-Rice-Ci10). We have developed a geospatial inventory of paddy rice parcels and rice cropping intensity by integrating Sentinel-1 and 2 time-series data in a framework called LUCK-PALM, based on local phenological expert interpretation. According to our best knowledge, it is the finest-resolution and most accurate database of paddy rice in Southeast Asia.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Alexandre M. J.-C. Wadoux, Nicolas P. A. Saby, and Manuel P. Martin
SOIL, 9, 21–38, https://doi.org/10.5194/soil-9-21-2023, https://doi.org/10.5194/soil-9-21-2023, 2023
Short summary
Short summary
We introduce Shapley values for machine learning model interpretation and reveal the local and global controlling factors of soil organic carbon (SOC) stocks. The method enables spatial analysis of the important variables. Vegetation and topography determine much of the SOC stock variation in mainland France. We conclude that SOC stock variation is complex and should be interpreted at multiple levels.
José Padarian, Budiman Minasny, Alex B. McBratney, and Pete Smith
SOIL Discuss., https://doi.org/10.5194/soil-2021-73, https://doi.org/10.5194/soil-2021-73, 2021
Manuscript not accepted for further review
Short summary
Short summary
Soil organic carbon sequestration is considered an attractive technology to partially mitigate climate change. Here, we show how the SOC storage potential varies globally. The estimated additional SOC storage potential in the topsoil of global croplands (29–67 Pg C) equates to only 2 to 5 years of emissions offsetting and 32 % of agriculture's 92 Pg historical carbon debt. Since SOC is temperature-dependent, this potential is likely to reduce by 18 % by 2040 due to climate change.
Edward J. Jones, Patrick Filippi, Rémi Wittig, Mario Fajardo, Vanessa Pino, and Alex B. McBratney
SOIL, 7, 33–46, https://doi.org/10.5194/soil-7-33-2021, https://doi.org/10.5194/soil-7-33-2021, 2021
Short summary
Short summary
Soil physical health is integral to maintaining functional agro-ecosystems. A novel method of assessing soil physical condition using a smartphone app has been developed – SLAKES. In this study the SLAKES app was used to investigate aggregate stability in a mixed agricultural landscape. Cropping areas were found to have significantly poorer physical health than similar soils under pasture. Results were mapped across the landscape to identify problem areas and pinpoint remediation efforts.
Wartini Ng, Budiman Minasny, Wanderson de Sousa Mendes, and José Alexandre Melo Demattê
SOIL, 6, 565–578, https://doi.org/10.5194/soil-6-565-2020, https://doi.org/10.5194/soil-6-565-2020, 2020
Short summary
Short summary
The number of samples utilised to create predictive models affected model performance. This research compares the number of samples needed by a deep learning model to outperform the traditional machine learning models using visible near-infrared spectroscopy data for soil properties predictions. The deep learning model was found to outperform machine learning models when the sample size was above 2000.
Cited articles
Aitchison, J.: The Statistical Analysis of Compositional Data, Monographs on statistics and applied probability, Chapman and Hall, 1986. ISBN 10 0412280604, 1986.
Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G., MacMillan, R., Hartemink, A., Lagacherie, P., and McKenzie, N. J.: The GlobalSoilMap project specifications, GlobalSoilMap, 494, 9–12, 2014.
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES). Land use: https://www.agriculture.gov.au/abares/aclump/land-use, last access: 20 September 2022.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage, Nature, 505, 543–545, 2014.
Baisden, W. T., Amundson, R., Cook, A. C., and Brenner, D. L.: Turnover and storage of C and N in five density fractions from California annual grassland surface soils, Global Biogeochem. Cy., 16, 64-61–64-16, https://doi.org/10.1029/2001GB001822, 2002.
Baldock, J. A., Hawke, B., Sanderman, J., and Macdonald, L. M.: Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra, Soil Res., 51, 577–583, https://doi.org/10.1071/Sr13077, 2013a.
Baldock, J. A., Sanderman, J., Macdonald, L., Allen, D., Cowie, A., Dalal, R., Davy, M., Doyle, R., Herrmann, T., Murphy, D., and Robertson, F.: Australian Soil Carbon Research Program. v2, CSIRO Data Collection [data set], https://doi.org/10.25919/5ddfd6888d4e5, 2013b.
Baldock, J. A., Sanderman, J., Macdonald, L. M., Puccini, A., Hawke, B., Szarvas, S., and McGowan, J.: Quantifying the allocation of soil organic carbon to biologically significant fractions, Soil Res., 51, 561–576, https://doi.org/10.1071/Sr12374, 2013c.
Baldock, J., Beare, M., Curtin, D., and Hawke, B.: Stocks, composition and vulnerability to loss of soil organic carbon predicted using mid-infrared spectroscopy, Soil Res., 56, 468–480, 2018.
Beaudette, D. E., Roudier, P., and Brown, A.: aqp: Algorithms for Quantitative Pedology, R package version 1.42, [code], https://doi.org/10.1016/j.cageo.2012.10.020, 2022.
Bennett, L. T., Hinko-Najera, N., Aponte, C., Nitschke, C. R., Fairman, T. A., Fedrigo, M., and Kasel, S.: Refining benchmarks for soil organic carbon in Australia's temperate forests, Geoderma, 368, 114246, https://doi.org/10.1016/j.geoderma.2020.114246, 2020.
Bishop, T. F. A., McBratney, A. B., and Laslett, G. M.: Modelling soil attribute depth functions with equal-area quadratic smoothing splines, Geoderma, 91, 27–45, https://doi.org/10.1016/S0016-7061(99)00003-8, 1999.
Bissett, A., Fitzgerald, A., Meintjes, T., Mele, P. M., Reith, F., Dennis, P. G., Breed, M. F., Brown, B., Brown, M. V., Brugger, J., Byrne, M., Caddy-Retalic, S., Carmody, B., Coates, D. J., Correa, C., Ferrari, B. C., Gupta, V. V. S. R., Hamonts, K., Haslem, A., Hugenholtz, P., Karan, M., Koval, J., Lowe, A. J., Macdonald, S., McGrath, L., Martin, D., Morgan, M., North, K. I., Paungfoo-Lonhienne, C., Pendall, E., Phillips, L., Pirzl, R., Powell, J. R., Ragan, M. A., Schmidt, S., Seymour, N., Snape, I., Stephen, J. R., Stevens, M., Tinning, M., Williams, K., Yeoh, Y. K., Zammit, C. M., and Young, A.: Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database, GigaScience, 5, 21, https://doi.org/10.1186/s13742-016-0126-5, 2016.
Bouveresse, E. and Massart, D. L.: Improvement of the piecewise direct standardisation procedure for the transfer of NIR spectra for multivariate calibration, Chemometr. Intell. Lab., 32, 201–213, https://doi.org/10.1016/0169-7439(95)00074-7, 1996.
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brus, D. J., Kempen, B., and Heuvelink, G. B. M.: Sampling for validation of digital soil maps, Eur. J. Soil Sci., 62, 394–407, https://doi.org/10.1111/j.1365-2389.2011.01364.x, 2011.
Bui, E., Henderson, B., and Viergever, K.: Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia, Global Biogeochem. Cy., 23, GB4033, https://doi.org/10.1029/2009GB003506, 2009.
Bui, E. N. and Henderson, B. L.: stoichiometry in Australian soils with respect to vegetation and environmental factors, Plant Soil, 373, 553–568, https://doi.org/10.1007/s11104-013-1823-9, 2013.
Bunemann, E. K., Bongiorno, G., Bai, Z. G., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mader, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., and Brussaard, L.: Soil quality – A critical review, Soil Biol. Biochem., 120, 105–125, https://doi.org/10.1016/j.soilbio.2018.01.030, 2018.
Burgeon, V., Fouché, J., Leifeld, J., Chenu, C., and Cornélis, J.-T.: Organo-mineral associations largely contribute to the stabilization of century-old pyrogenic organic matter in cropland soils, Geoderma, 388, 114841, https://doi.org/10.1016/j.geoderma.2020.114841, 2021.
Conant, R. T., Steinweg, J. M., Haddix, M. L., Paul, E. A., Plante, A. F., and Six, J.: Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance, Ecology, 89, 2384–2391, https://doi.org/10.1890/08-0137.1, 2008.
Congalton, R. G.: A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ., 37, 35–46, https://doi.org/10.1016/0034-4257(91)90048-B, 1991.
Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., and Parton, W. J.: Formation of soil organic matter via biochemical and physical pathways of litter mass loss, Nat. Geosci., 8, 776–779, https://doi.org/10.1038/ngeo2520, 2015.
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., and Lugato, E.: Soil carbon storage informed by particulate and mineral-associated organic matter, Nat. Geosci., 12, 989–994, https://doi.org/10.1038/s41561-019-0484-6, 2019.
Dangal, S. R. S., Schwalm, C., Cavigelli, M. A., Gollany, H. T., Jin, V. L., and Sanderman, J.: Improving Soil Carbon Estimates by Linking Conceptual Pools Against Measurable Carbon Fractions in the DAYCENT Model Version 4.5, J. Adv. Model. Earth Sy., 14, e2021MS002622, https://doi.org/10.1029/2021MS002622, 2022.
Doetterl, S., Cornelis, J.-T., Six, J., Bodé, S., Opfergelt, S., Boeckx, P., and Van Oost, K.: Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape, Biogeosciences, 12, 1357–1371, https://doi.org/10.5194/bg-12-1357-2015, 2015a.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Pinto, M. C., Casanova-Katny, A., Munoz, C., Boudin, M., Venegas, E. Z., and Boeckx, P.: Soil carbon storage controlled by interactions between geochemistry and climate, Nat. Geosci., 8, 780–783, https://doi.org/10.1038/Ngeo2516, 2015b.
Donohue, R., McVicar, T., and Roderick, M.: Fraction of Photosynthetically Active Radiation (FPAR) – AVHRR (5), Terrestrial Ecosystem Research Network [data set], 2021.
Dutta, R., Das, A., and Aryal, J.: Big data integration shows Australian bush-fire frequency is increasing significantly, Roy. Soc. Open Sci., 3, 150241, https://doi.org/10.1098/rsos.150241, 2016.
Dymov, A. A., Startsev, V. V., Gorbach, N. M., Pausova, I. N., Gabov, D. N., and Donnerhack, O.: Comparison of the Methods for Determining Pyrogenically Modified Carbon Compounds, Eurasian Soil Sci.+, 54, 1668–1680, https://doi.org/10.1134/S1064229321110065, 2021.
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barceló-Vidal, C.: Isometric Logratio Transformations for Compositional Data Analysis, Math. Geol., 35, 279–300, https://doi.org/10.1023/A:1023818214614, 2003.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., and Roth, L.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Filzmoser, P. and Hron, K.: Outlier Detection for Compositional Data Using Robust Methods, Math. Geosci., 40, 233–248, https://doi.org/10.1007/s11004-007-9141-5, 2008.
Gallant, J. C. and Austin, J. M.: Derivation of terrain covariates for digital soil mapping in Australia, Soil Res., 53, 895–906, https://doi.org/10.1071/SR14271, 2015.
Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom flatness for mapping depositional areas, Water Resour. Res., 39, 1347, https://doi.org/10.1029/2002WR001426, 2003.
Ge, Y., Morgan, C. L. S., Grunwald, S., Brown, D. J., and Sarkhot, D. V.: Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers, Geoderma, 161, 202–211, https://doi.org/10.1016/j.geoderma.2010.12.020, 2011.
Geng, J., Cheng, S. L., Fang, H. J., Pei, J., Xu, M., Lu, M. Z., Yang, Y., Cao, Z. C., and Li, Y. N.: Different Molecular Characterization of Soil Particulate Fractions under N Deposition in a Subtropical Forest, Forests, 10, 914, https://doi.org/10.3390/f10100914, 2019.
Gregorich, E. G., Beare, M. H., Mckim, U. F., and Skjemstad, J. O.: Chemical and biological characteristics of physically uncomplexed organic matter, Soil Sci. Soc. Am. J., 70, 975–985, 2006.
Grundy, M. J., Rossel, R. A. V., Searle, R. D., Wilson, P. L., Chen, C., and Gregory, L. J.: Soil and Landscape Grid of Australia, Soil Res., 53, 835–844, https://doi.org/10.1071/SR15191, 2015.
Harper, R. J., Gilkes, R. J., Hill, M. J., and Carter, D. J.: Wind erosion and soil carbon dynamics in south-western Australia, Aeolian Res., 1, 129–141, https://doi.org/10.1016/j.aeolia.2009.10.003, 2010.
Harris, S. and Lucas, C.: Understanding the variability of Australian fire weather between 1973 and 2017, Plos One, 14, e0222328, https://doi.org/10.1371/journal.pone.0222328, 2019.
Hartley, I. P., Hill, T. C., Chadburn, S. E., and Hugelius, G.: Temperature effects on carbon storage are controlled by soil stabilisation capacities, Nat. Commun., 12, 6713, https://doi.org/10.1038/s41467-021-27101-1, 2021.
Harwood, T.: 9s climatology for continental Australia 1976–2005: BIOCLIM variable suite. v1, [data set], https://doi.org/10.25919/5dce30cad79a8, 2019.
Heckman, K., Pries, C. E. H., Lawrence, C. R., Rasmussen, C., Crow, S. E., Hoyt, A. M., von Fromm, S. F., Shi, Z., Stoner, S., McGrath, C., Beem-Miller, J., Berhe, A. A., Blankinship, J. C., Keiluweit, M., Marin-Spiotta, E., Monroe, J. G., Plante, A. F., Schimel, J., Sierra, C. A., Thompson, A., and Wagai, R.: Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence, Global Change Biol., 28, 1178–1196, https://doi.org/10.1111/gcb.16023, 2022.
Hicks, W., Rossel, R. V., and Tuomi, S.: Developing the Australian mid-infrared spectroscopic database using data from the Australian Soil Resource Information System, Soil Res., 53, 922–931, 2015.
Hurlbut, C. S. and Klein, C.: Manual of mineralogy (after James D. Dana), Wiley, ISBN 10 0471422266, 1977.
Iooss, B., Da Veiga, S., Janon, A., and Pujol, G.: sensitivity: Global Sensitivity Analysis of Model Outputs, R package version 1.27.0, https://CRAN.R-project.org/package=sensitivity (last access: 1 March 2023), 2021.
Isbell, R. F., McDonald, W. S., and Ashton, L. J.: Concepts and rationale of the Australian Soil Classification, CSIRO Land and Water, ISBN 0643060103, 1997.
Jenkinson, D. S. and Rayner, J. H.: The turnover of soil organic matter in some of the Rothamsted classical experiments, Soil Sci., 123, 298–305, 1977.
Jia, Y., Kuzyakov, Y., Wang, G., Tan, W., Zhu, B., and Feng, X.: Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time, Land Degrad. Dev., 31, 632–645, https://doi.org/10.1002/ldr.3477, 2020.
Jo, I., Fei, S. L., Oswalt, C. M., Domke, G. M., and Phillips, R. P.: Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts, Sci. Adv., 5, eaav6358, https://doi.org/10.1126/sciadv.aav6358, 2019.
Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, https://doi.org/10.2307/2641104, 2000.
Johansen, K., Gill, T., Trevithick, R., Armston, J., Scarth, P., Flood, N., and Phinn, S.: Landsat based Persistent Green-Vegetation Fraction for Australia, Proceedings of the 16th Australasian Remote Sensing and Photogrammery Conference, 2012.
Joint Remote Sensing Research Program: Seasonal fractional cover – Landsat, JRSRP algorithm, Australia coverage (1.0.0), Terrestrial Ecosystem Research Network [data set], 2021.
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls, Nat. Commun., 7, 1–10, 2016.
Kleber, M., Sollins, P., and Sutton, R.: A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85, 9–24, https://doi.org/10.1007/s10533-007-9103-5, 2007.
Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., and Nico, P. S.: Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments, Adv. Agron., 130, 1–140, https://doi.org/10.1016/bs.agron.2014.10.005, 2015.
Knicker, H.: Soil organic N – An under-rated player for C sequestration in soils?, Soil Biol. Biochem., 43, 1118–1129, https://doi.org/10.1016/j.soilbio.2011.02.020, 2011.
Lane, R. J. L., Wynne, P. E., Poudjom Djomani, Y. H., Stratford, W. R., Barretto, J. A., and Caratori Tontini, F.: 2019 Australian National Gravity Grids, [data set], 2020.
Lavallee, J. M., Conant, R. T., Haddix, M. L., Follett, R. F., Bird, M. I., and Paul, E. A.: Selective preservation of pyrogenic carbon across soil organic matter fractions and its influence on calculations of carbon mean residence times, Geoderma, 354, 113866, https://doi.org/10.1016/j.geoderma.2019.07.024, 2019.
Lavallee, J. M., Soong, J. L., and Cotrufo, M. F.: Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century, Global Change Biol., 26, 261–273, https://doi.org/10.1111/gcb.14859, 2020.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Lehmann, J., Skjemstad, J., Sohi, S., Carter, J., Barson, M., Falloon, P., Coleman, K., Woodbury, P., and Krull, E.: Australian climate–carbon cycle feedback reduced by soil black carbon, Nat. Geosci., 1, 832–835, https://doi.org/10.1038/ngeo358, 2008.
Li, D., Schädel, C., Haddix, M. L., Paul, E. A., Conant, R., Li, J., Zhou, J., and Luo, Y.: Differential responses of soil organic carbon fractions to warming: Results from an analysis with data assimilation, Soil Biol. Biochem., 67, 24–30, https://doi.org/10.1016/j.soilbio.2013.07.008, 2013.
Li, J. Q., Nie, M., Powell, J. R., Bissett, A., and Pendall, E.: Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia, Environ. Res. Lett., 15, 094088, https://doi.org/10.1088/1748-9326/ab9f7e, 2020.
Liang, C., Amelung, W., Lehmann, J., and Kästner, M.: Quantitative assessment of microbial necromass contribution to soil organic matter, Global Change Biol., 25, 3578–3590, https://doi.org/10.1111/gcb.14781, 2019.
Lin, L. I.-K.: A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989.
Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., and Cotrufo, M. F.: Different climate sensitivity of particulate and mineral-associated soil organic matter (vol. 14, p. 295, 2021), Nat. Geosci., 15, 509, https://doi.org/10.1038/s41561-022-00945-y, 2022.
Lutfalla, S., Abiven, S., Barré, P., Wiedemeier, D. B., Christensen, B. T., Houot, S., Kätterer, T., Macdonald, A. J., van Oort, F., and Chenu, C.: Pyrogenic Carbon Lacks Long-Term Persistence in Temperate Arable Soils, Front. Earth Sc.-Switz., 5, 96, https://doi.org/10.3389/feart.2017.00096, 2017.
Lymburner, L., Tan, P., Mueller, N., Thackway, R., Thankappan, M., Islam, A., Lewis, A., Randall, L., and Senarath, U.: The National Dynamic Land Cover Dataset, [data set], 2010.
Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., and Ziegler, A.: Probability machines, Method. Inform. Med., 51, 74–81, 2012.
Malone, B. and Searle, R.: Improvements to the Australian national soil thickness map using an integrated data mining approach, Geoderma, 377, 114579, https://doi.org/10.1016/j.geoderma.2020.114579, 2020.
Malone, B. and Searle, R.: Updating the Australian digital soil texture mapping (Part 2*): spatial modelling of merged field and lab measurements, Soil Res., 59, 435–451, https://doi.org/10.1071/Sr20284, 2021.
Malone, B. and Wadoux, A. M. J.-C.: Soil carbon fraction model development and extension: A case of instrument transfer and assessment of model extensibility, CSIRO, 2021.
Malone, B., Stockmann, U., Tuomi, S., and Sparrow, B.: TERN Surveillance monitoring program: Soil vis-NIR spectral library with accompanying soil measurement data for 367 specimens. v1, [data set], https://doi.org/10.25919/9bya-9545, 2020.
Martin, M. P., Dimassi, B., Dobarco, M. R., Guenet, B., Arrouays, D., Angers, D. A., Blache, F., Huard, F., Soussana, J. F., and Pellerin, S.: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France, Global Change Biol., 27, 2458–2477, https://doi.org/10.1111/gcb.15547, 2021.
Martinez, J.-M.: Analyse de sensibilite globale par decomposition de la variance, GdR Ondes and GdR MASCOT-NUM, Institut Henri Poincare, Paris, France, 13 January 2011, 2011.
Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., Gao, F., Kutler, J., and Lim, T.-K.: A Landsat surface reflectance dataset for North America, 1990–2000, IEEE Geosci. Remote S., 3, 68–72, 2006.
McBratney, A. B., Santos, M. L. M., and Minasny, B.: On digital soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003.
McKenzie, N., Coughlan, K., and Cresswell, H.: Soil physical measurement and interpretation for land evaluation, CSIRO Publishing, https://doi.org/10.1071/9780643069879, 2002.
McKenzie, N., Jacquier, D., Isbell, R., and Brown, K.: Australian soils and landscapes: an illustrated compendium, CSIRO Publishing, https://doi.org/10.1071/9780643100732, 2004.
Meinshausen, N.: Quantile regression forests, J. Mach. Learn. Res., 7, 983–999, 2006.
Meyer, N., Bornemann, L., Welp, G., Schiedung, H., Herbst, M., and Amelung, W.: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow, Geoderma, 306, 89–98, https://doi.org/10.1016/j.geoderma.2017.07.004, 2017.
Miltner, A., Bombach, P., Schmidt-Brucken, B., and Kastner, M.: SOM genesis: microbial biomass as a significant source, Biogeochemistry, 111, 41–55, https://doi.org/10.1007/s10533-011-9658-z, 2012.
National Committee on Soil and Terrain: Australian soil and land survey field handbook, 3rd edn., Australian Soil and Land Survey Handbooks Series 1, CSIRO Publishing, Melbourne, Australia, https://doi.org/10.1071/9780643097117, 2009.
Ng, W., Minasny, B., Jeon, S. H., and McBratney, A.: Mid-infrared spectroscopy for accurate measurement of an extensive set of soil properties for assessing soil functions, Soil Security, 6, 100043, https://doi.org/10.1016/j.soisec.2022.100043, 2022.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity, BioScience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2, 2001.
Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J., Senapati, N., and Wiesmeier, M.: Reproducibility of a soil organic carbon fractionation method to derive RothC carbon pools, Eur. J. Soil Sci., 64, 735–746, https://doi.org/10.1111/ejss.12088, 2013.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content, Soil, 3, 61–66, 2017.
Poeplau, C., Don, A., Six, J., Kaiser, M., Benbi, D., Chenu, C., Cotrufo, M. F., Derrien, D., Gioacchini, P., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Haddix, M., Kuzyakov, Y., Kuhnel, A., Macdonald, L. M., Soong, J., Trigalet, S., Vermeire, M. L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S., Yevdokimov, I., and Nieder, R.: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison, Soil Biol. Biochem., 125, 10–26, https://doi.org/10.1016/j.soilbio.2018.06.025, 2018.
Rabbi, S. M. F., Linser, R., Hook, J. M., Wilson, B. R., Lockwood, P. V., Daniel, H., and Young, I. M.: Characterization of soil organic matter in aggregates and size-density fractions by solid state 13C CPMAS NMR spectroscopy, Commun. Soil Sci. Plan., 45, 1523–1537, https://doi.org/10.1080/00103624.2014.904335, 2014.
Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Pries, C. E. H., Marin-Spiotta, E., Plante, A. F., Schadel, C., Schimel, J. P., Sierra, C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved set of variables for predicting soil organic matter content, Biogeochemistry, 137, 297–306, https://doi.org/10.1007/s10533-018-0424-3, 2018.
Rayment, G. E. and Lyons, D. J.: Soil chemical methods: Australasia, CSIRO Publishing, https://doi.org/10.1071/9780643101364, 2011.
Reisser, M., Purves, R. S., Schmidt, M. W. I., and Abiven, S.: Pyrogenic Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its Content in Soil Organic Carbon and STocks, Front. Earth Sc.-Switz., 4, 80, https://doi.org/10.3389/feart.2016.00080, 2016.
Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., and Cotrufo, M. F.: Unifying soil organic matter formation and persistence frameworks: the MEMS model, Biogeosciences, 16, 1225–1248, https://doi.org/10.5194/bg-16-1225-2019, 2019.
Rocci, K. S., Lavallee, J. M., Stewart, C. E., and Cotrufo, M. F.: Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis, Sci. Total Environ., 793, 148569, https://doi.org/10.1016/j.scitotenv.2021.148569, 2021.
Rowley, M. C., Grand, S., and Verrecchia, E. P.: Calcium-mediated stabilisation of soil organic carbon, Biogeochemistry, 137, 27–49, https://doi.org/10.1007/s10533-017-0410-1, 2018.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.: Variance-based methods, in: Global Sensitivity Analysis. The Primer, John Wiley & Sons, Ltd, https://doi.org/10.1002/9780470725184, 2008.
Sanderman, J., Baldock, J., Hawke, B., Macdonald, L., Puccini, A., and Szarvas, S.: National soil carbon research programme: field and laboratory methodologies, ISBN 9780643107328, 2011.
Sanderman, J., Baldock, J. A., Dangal, S. R. S., Ludwig, S., Potter, S., Rivard, C., and Savage, K.: Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy, Biogeochemistry, 156, 97–114, https://doi.org/10.1007/s10533-021-00755-1, 2021.
Sandri, M. and Zuccolotto, P.: A bias correction algorithm for the Gini variable importance measure in classification trees, J. Comput. Graph. Stat., 17, 611–628, 2008.
Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., and Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool, Carbon Manag., 5, 81–91, https://doi.org/10.4155/Cmt.13.77, 2014.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schoenholtz, S. H., Van Miegroet, H., and Burger, J. A.: A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities, Forest Ecol. Manag., 138, 335–356, https://doi.org/10.1016/S0378-1127(00)00423-0, 2000.
Searle, R.: Australian Soil Classification Map, [data set], https://doi.org/10.25901/edyr-wg85, 2021.
Searle, R., Stenson, M., Wilson, P. L., Gregory, L. J., Singh, R., and Malone, B. P.: Soil data, united, will never be defeated – The SoilDataFederator, Joint Australian and New Zealand Soil Science Societies Conference, Cairns, QLD, 2021.
Shrestha, D. L. and Solomatine, D. P.: Machine learning approaches for estimation of prediction interval for the model output, Neural Networks, 19, 225–235, https://doi.org/10.1016/j.neunet.2006.01.012, 2006.
Singh, N., Abiven, S., Torn, M. S., and Schmidt, M. W. I.: Fire-derived organic carbon in soil turns over on a centennial scale, Biogeosciences, 9, 2847–2857, https://doi.org/10.5194/bg-9-2847-2012, 2012.
Sokol, N. W., Whalen, E. D., Jilling, A., Kallenbach, C., Pett-Ridge, J., and Georgiou, K.: Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective, Funct. Ecol., 36, 1411–1429, https://doi.org/10.1111/1365-2435.14040, 2022.
Sollins, P., Homann, P., and Caldwell, B. A.: Stabilization and destabilization of soil organic matter: Mechanisms and controls, Geoderma, 74, 65–105, https://doi.org/10.1016/S0016-7061(96)00036-5, 1996.
Sparrow, B. D., Foulkes, J. N., Wardle, G. M., Leitch, E. J., Caddy-Retalic, S., van Leeuwen, S. J., Tokmakoff, A., Thurgate, N. Y., Guerin, G. R., and Lowe, A. J.: A Vegetation and Soil Survey Method for Surveillance Monitoring of Rangeland Environments, Frontiers in Ecology and Evolution, 8, 157, https://doi.org/10.3389/fevo.2020.00157, 2020.
van den Boogaart, K. G., Tolosana-Delgado, R., and Bren, M.: compositions: Compositional Data Analysis, R package version 2.0-4, https://CRAN.R-project.org/package=compositions (last access: 1 March 2023), 2022.
van Leeuwen, J. P., Creamer, R. E., Cluzeau, D., Debeljak, M., Gatti, F., Henriksen, C. B., Kuzmanovski, V., Menta, C., Peres, G., Picaud, C., Saby, N. P. A., Trajanov, A., Trinsoutrot-Gattin, I., Visioli, G., and Rutgers, M.: Modeling of Soil Functions for Assessing Soil Quality: Soil Biodiversity and Habitat Provisioning, Frontiers in Environmental Science, 7, 113, https://doi.org/10.3389/fenvs.2019.00113, 2019.
Vaysse, K. and Lagacherie, P.: Using quantile regression forest to estimate uncertainty of digital soil mapping products, Geoderma, 291, 55–64, 2017.
Villarino, S. H., Pinto, P., Jackson, R. B., and Piñeiro, G.: Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions, Sci. Adv., 7, eabd3176, https://doi.org/10.1126/sciadv.abd3176, 2021.
Viscarra Rossel, R. and Hicks, W.: Soil organic carbon and its fractions estimated by visible–near infrared transfer functions, Eur. J. Soil Sci., 66, 438–450, 2015.
Viscarra Rossel, R. A., Webster, R., Bui, E. N., and Baldock, J. A.: Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change, Global Change Biol., 20, 2953–2970, https://doi.org/10.1111/gcb.12569, 2014.
Viscarra Rossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford, D., and Campbell, P. H.: The Australian three-dimensional soil grid: Australia's contribution to the GlobalSoilMap project, Soil Res., 53, 845–864, https://doi.org/10.1071/SR14366, 2015.
Viscarra Rossel, R. A., Lee, J., Behrens, T., Luo, Z., Baldock, J., and Richards, A.: Continental-scale soil carbon composition and vulnerability modulated by regional environmental controls, Nat. Geosci., 12, 547–552, https://doi.org/10.1038/s41561-019-0373-z, 2019.
von Lützow, M. and Kögel-Knabner, I.: Temperature sensitivity of soil organic matter decomposition – what do we know?, Biol. Fert. Soils, 46, 1–15, https://doi.org/10.1007/s00374-009-0413-8, 2009.
von Lützow, M., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review, Eur. J. Soil Sci., 57, 426–445, https://doi.org/10.1111/j.1365-2389.2006.00809.x, 2006.
von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., and Marschner, B.: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 39, 2183–2207, https://doi.org/10.1016/j.soilbio.2007.03.007, 2007.
Wadoux, A. M. J.-C., Román Dobarco, M., Malone, B., Minasny, M., McBratney, A. B., and Searle, R.: Baseline high-resolution maps of organic carbon content in Australian soils, [data set], 2022.
Webb, N. P., Chappell, A., Strong, C. L., Marx, S. K., and McTainsh, G. H.: The significance of carbon-enriched dust for global carbon accounting, Global Change Biol., 18, 3275–3278, https://doi.org/10.1111/j.1365-2486.2012.02780.x, 2012.
Wiesmeier, M., Poeplau, C., Sierra, C. A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., von Lützow, M., and Kögel-Knabner, I.: Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends, Sci. Rep.-UK, 6, 32525, https://doi.org/10.1038/srep32525, 2016.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lutzow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Liess, M., Garcia-Franco, N., Wollschlager, U., Vogel, H. J., and Kogel-Knabner, I.: Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales, Geoderma, 333, 149–162, https://doi.org/10.1016/j.geoderma.2018.07.026, 2019.
Wilford, J.: A weathering intensity index for the Australian continent using airborne gamma-ray spectrometry and digital terrain analysis, Geoderma, 183–184, 124–142, https://doi.org/10.1016/j.geoderma.2010.12.022, 2012.
Wilford, J. and Minty, B.: The use of airborne gamma-ray imagery for mapping soils and understanding landscape processes, in: Digital soil mapping: an introductory perspective, edited by: Lagacherie, P., McBratney, A. B., and Voltz, M., 207–218, https://doi.org/10.1016/S0166-2481(06)31016-1, 2007.
Wilford, J. R. and Kroll, A.: Complete Radiometric Grid of Australia (Radmap) v4 2019 with modelled infill, [data set], 2020.
Wilson, J. P. and Gallant, J. C.: Secondary topographic attributes, Terrain analysis: Principles and applications, 87–131, ISBN 0-471-32188-5, 2000.
Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests for High Dimensional Data in C and R, J. Stat. Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017.
Xu, X., Liu, W., and Kiely, G.: Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model, Agr. Ecosyst. Environ., 140, 372–381, https://doi.org/10.1016/j.agee.2010.12.018, 2011.
Zevenbergen, L. W. and Thorne, C. R.: Quantitative analysis of land surface topography, Earth Surf. Proc. Land., 12, 47–56, 1987.
Zhao, P., Li, L., Lin, L., Zhai, G., Cruse, R. M., and Wang, E.: Response of surface soil nutrients and organic carbon fractions to tillage erosion vs. water erosion in an agricultural landscape, Soil Sci. Soc. Am. J., 86, 1470–1482, https://doi.org/10.1002/saj2.20461, 2022.
Zimmerman, A. R. and Mitra, S.: Trial by Fire: On the Terminology and Methods Used in Pyrogenic Organic Carbon Research, Front. Earth Sc.-Switz., 5, 95, https://doi.org/10.3389/feart.2017.00095, 2017.
Zimmermann, M., Leifeld, J., Schmidt, M. W. I., Smith, P., and Fuhrer, J.: Measured soil organic matter fractions can be related to pools in the RothC model, Eur. J. Soil Sci., 58, 658–667, https://doi.org/10.1111/j.1365-2389.2006.00855.x, 2007.
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation...
Altmetrics
Final-revised paper
Preprint