Articles | Volume 20, issue 11
https://doi.org/10.5194/bg-20-2189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal controls override forest harvesting effects on the composition of dissolved organic matter mobilized from boreal forest soil organic horizons
Keri L. Bowering
Department of Earth Sciences, Memorial University of Newfoundland, St.
John's, A1C 5S7, Canada
Kate A. Edwards
Natural Resources Canada, Canadian Forest Service, Ottawa, K1A 0E4,
Canada
Department of Earth Sciences, Memorial University of Newfoundland, St.
John's, A1C 5S7, Canada
Related authors
No articles found.
Scout M. Quinn, Benjamin Misiuk, Mackenzie E. Patrick, and Susan E. Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3475, https://doi.org/10.5194/egusphere-2025-3475, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Boreal forest soils store approximately one third of forest soil carbon globally. Stabilization of organic carbon in these soils is largely controlled by reactive aluminum content derived from parent material, which in boreal regions is typically glacial till. We used a Random Forest approach to predictively map and model reactive aluminum and its uncertainty in glacial till across Newfoundland. This supports future modelling efforts and estimates of the soil carbon reservoir in boreal forests.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Cited articles
Averill, C. and Waring, B.: Nitrogen limitation of decomposition and decay:
How can it occur?, Glob. Change Biol., 24, 1417–1427, https://doi.org/10.1111/gcb.13980, 2018.
Batterson, M. J. and Catto, N. R.: Topographically-controlled deglacial history
of the Humber River basin, western Newfoundland, Geogr. Phys.
Quatern., 55, 213–228, https://doi.org/10.7202/006851ar,
2001.
Berggren, M. and Giorgio, P. A.: Distinct patterns of microbial metabolism
associated to riverine dissolved organic carbon of different source and
quality, J. Geophys. Res.-Biogeo., 120, 989–999, https://doi.org/10.1002/2015jg002963, 2015.
Bowering, K. L., Edwards, K. A., Prestegaard, K., Zhu, X., and Ziegler, S.
E.: Dissolved organic carbon mobilized from organic horizons of mature and
harvested black spruce plots in a mesic boreal region, Biogeosciences, 17,
581–595, https://doi.org/10.5194/bg-17-581-2020, 2020.
Bowering, K. L., Edwards, K. A., and Ziegler, S. E.: Seasonal controls override forest harvesting effects on the composition of dissolved organic matter mobilized from boreal forest soil organic horizons (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.8019215, 2023.
Brooks, P. D., Grogan, P., Templer, P. H., Groffman, P., Öquist, M. G.,
and Schimel, J.: Carbon and Nitrogen Cycling in Snow-Covered Environments:
Carbon and nitrogen cycling in snow-covered environments, Geogr. Compass, 5,
682–699, https://doi.org/10.1111/j.1749-8198.2011.00420.x,
2011.
Campbell, J. L., Reinmann, A. B., and Templer, P. H.: Soil Freezing Effects
on Sources of Nitrogen and Carbon Leached During Snowmelt, Soil Sci. Soc. Am.
J., 78, 297–308, https://doi.org/10.2136/sssaj2013.06.0218,
2014.
Casas-Ruiz, J. P., Bodmer, P., Bona, K. A., Butman, D., Couturier, M.,
Emilson, E. J. S., Finlay, K., Genet, H., Hayes, D., Karlsson, J., Paré,
D., Peng, C., Striegl, R., Webb, J., Wei, X., Ziegler, S. E., and del Giorgio,
P. A.: Integrating terrestrial and aquatic ecosystems to constrain
estimates of land-atmosphere carbon exchange, Nat. Commun., 14, 1571,
https://doi.org/10.1038/s41467-023-37232-2, 2023.
Catalán, N., Marcé, R., Kothawala, D. N., and Tranvik, Lars. J.:
Organic carbon decomposition rates controlled by water retention time across
inland waters, Nat. Geosci., 9, 501–504, https://doi.org/10.1038/ngeo2720, 2016.
Clarholm, M. and Skyllberg, U.: Translocation of metals by trees and fungi
regulates pH, soil organic matter turnover and nitrogen availability in
acidic forest soils, Soil Biol. Biochem., 63, 142–153, https://doi.org/10.1016/j.soilbio.2013.03.019, 2013.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M.,
Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton,
W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. Å. M., and
Bradford, M. A.: Temperature and soil organic matter decomposition rates –
synthesis of current knowledge and a way forward, Glob. Change Biol., 17,
3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x,
2011.
Cortina, J., Romanyà, J., and Vallejo, V. R.: Nitrogen and phosphorus
leaching from the forest floor of a mature Pinus radiata stand, Geoderma,
66, 321–330, https://doi.org/10.1016/0016-7061(95)00006-a,
1995.
Cronan, C. S. and Aiken, G. R.: Chemistry and transport of soluble humic
substances in forested watersheds of the Adirondack Park, New York, Geochim.
Cosmochim. Ac., 49, 1697–1705, https://doi.org/10.1016/0016-7037(85)90140-1, 1985.
Ecoregions Working Group: Ecoclimate regions of Canada, Ecol. Land Class,
Series No. 23, Environment Canada, Canadian Wildlife Service, Ottawa, ON,
118 pp., https://d1ied5g1xfgpx8.cloudfront.net/pdfs/23092.pdf (last access: 7 November 2020),
1989.
Farrell, M., Prendergast-Miller, M., Jones, D. L., Hill, P. W., and Condron,
L. M.: Soil microbial organic nitrogen uptake is regulated by carbon
availability, Soil Biol. Biochem., 77, 261–267, https://doi.org/10.1016/j.soilbio.2014.07.003, 2014.
Fierer, N. and Schimel, J. P.: Effects of drying–rewetting frequency on
soil carbon and nitrogen transformations, Soil Biol. Biochem., 34,
777–787, https://doi.org/10.1016/s0038-0717(02)00007-x, 2002.
Fröberg, M., Hansson, K., Kleja, D. B., and Alavi, G.: Dissolved organic
carbon and nitrogen leaching from Scots pine, Norway spruce and silver birch
stands in southern Sweden, Forest Ecol. Manag., 262, 1742–1747,
https://doi.org/10.1016/j.foreco.2011.07.033, 2011.
Giesler, R., Högberg, M. N., Strobel, B. W., Richter, A., Nordgren, A.,
and Högberg, P.: Production of dissolved organic carbon and
low-molecular weight organic acids in soil solution driven by recent tree
photosynthate, Biogeochemistry, 84, 1–12, https://doi.org/10.1007/s10533-007-9069-3, 2007.
Gödde, M., David, M. B., Christ, M. J., Kaupenjohann, M., and Vance, G.
F.: Carbon mobilization from the forest floor under red spruce in the
northeastern USA, Soil Biol. Biochem., 28, 1181–1189, https://doi.org/10.1016/0038-0717(96)00130-7, 1996.
Groffman, P. M., Driscoll, C. T., Durán, J., Campbell, J. L.,
Christenson, L. M., Fahey, T. J., Fisk, M. C., Fuss, C., Likens, G. E.,
Lovett, G., Rustad, L., and Templer, P. H.: Nitrogen oligotrophication in
northern hardwood forests, Biogeochemistry, 141, 523–539, https://doi.org/10.1007/s10533-018-0445-y, 2018.
Gudasz, C., Bastviken, D., Premke, K., Steger, K., and Tranvik, L. J.:
Constrained microbial processing of allochthonous organic carbon in boreal
lake sediments, Limnol. Oceanogr., 57, 163–175, https://doi.org/10.4319/lo.2012.57.1.0163, 2012.
Guggenberger, G. and Zech, W.: Dissolved organic carbon control in acid
forest soils of the Fichtelgebirge (Germany) as revealed by distribution
patterns and structural composition analyses, Geoderma, 59, 109–129,
https://doi.org/10.1016/0016-7061(93)90065-s, 1993.
Guggenberger, G. and Zech, W.: Composition and dynamics of dissolved
carbohydrates and lignin-degradation products in two coniferous forests,
N.E. Bavaria, Germany, Soil Biol. Biochem., 26, 19–27, https://doi.org/10.1016/0038-0717(94)90191-0, 2002.
Haei, M., Öquist, M. G., Ilstedt, U., and Laudon, H.: The influence of
soil frost on the quality of dissolved organic carbon in a boreal forest
soil: combining field and laboratory experiments, Biogeochemistry, 107,
95–106, https://doi.org/10.1007/s10533-010-9534-2, 2010.
Hansson, K., Kleja, D. B., Kalbitz, K., and Larsson, H.: Amounts of carbon
mineralised and leached as DOC during decomposition of Norway spruce needles
and fine roots, Soil Biol. Biochem., 42, 178–185, https://doi.org/10.1016/j.soilbio.2009.10.013, 2010.
Heijden, M. G. A. van der, Bardgett, R. D., and Straalen, N. M. van: The
unseen majority: soil microbes as drivers of plant diversity and
productivity in terrestrial ecosystems, Ecol. Lett., 11, 296–310,
https://doi.org/10.1111/j.1461-0248.2007.01139.x, 2008.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and
Mopper, K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969, 2008.
Hensgens, G., Laudon, H., Peichl, M., Gil, I. A., Zhou, Q., and Berggren,
M.: The role of the understory in litter DOC and nutrient leaching in boreal
forests, Biogeochemistry, 149, 87–103, https://doi.org/10.1007/s10533-020-00668-5, 2020.
Hilli, S., Stark, S., and Derome, J.: Carbon Quality and Stocks in Organic
Horizons in Boreal Forest Soils, Ecosystems, 11, 270–282, https://doi.org/10.1007/s10021-007-9121-0, 2008.
Huntington, T. G., Balch, W. M., Aiken, G. R., Sheffield, J., Luo, L.,
Roesler, C. S., and Camill, P.: Climate change and dissolved organic carbon
export to the Gulf of Maine, J. Geophys. Res.-Biogeo.,
121, 2700–2716, https://doi.org/10.1002/2015jg003314, 2016.
Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W. H., and
Campbell, J. L.: Spatial and temporal variations in DOM composition in
ecosystems: The importance of long-term monitoring of optical properties,
J. Geophys. Res., 113, JG000683, https://doi.org/10.1029/2008jg000683, 2008.
Jansen, B., Kalbitz, K., and McDOWELL, W. H.: Dissolved Organic Matter:
Linking Soils and Aquatic Systems, Vadose Zone J., 13, 1–4, https://doi.org/10.2136/vzj2014.05.0051, 2014.
Jones, D. L. and Kielland, K.: Amino acid, peptide and protein
mineralization dynamics in a taiga forest soil, Soil Biol. Biochem., 55,
60–69, https://doi.org/10.1016/j.soilbio.2012.06.005, 2012.
Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral
surfaces in the preservation of organic matter in soils, Org. Geochem., 31,
711–725, https://doi.org/10.1016/s0146-6380(00)00046-2, 2000.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kaiser, K., Guggenberger, G., Haumaier, L., and Zech, W.: Seasonal
variations in the chemical composition of dissolved organic matter in
organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in
northeastern Bavaria, Germany, Biogeochemistry, 55, 103–143, https://doi.org/10.1023/a:1010694032121, 2001.
Kalbitz, K.: Changes in properties of soil-derived dissolved organic matter
induced by biodegradation, Soil Biol. Biochem., 35, 1129–1142,
https://doi.org/10.1016/s0038-0717(03)00165-2, 2003.
Kalbitz, K., Meyer, A., Yang, R., and Gerstberger, P.: Response of dissolved
organic matter in the forest floor to long-term manipulation of litter and
throughfall inputs, Biogeochemistry, 86, 301–318, https://doi.org/10.1007/s10533-007-9161-8, 2007.
Kassambara, A. and Mundt, F.: Package “factoextra”: Extract and Visualize
the Results of Multivariate Data Analyses, https://cran.r-project.org/web/packages/factoextra/ (last access: 17 May 2022), 2017.
Kellerman, A. M., Kothawala, D. N., Dittmar, T., and Tranvik, L. J.:
Persistence of dissolved organic matter in lakes related to its molecular
characteristics, Nat. Geosci., 8, 454–457, https://doi.org/10.1038/ngeo2440, 2015.
Kielland, K., McFarland, J. W., Ruess, R. W., and Olson, K.: Rapid Cycling
of Organic Nitrogen in Taiga Forest Ecosystems, Ecosystems, 10, 360–368,
https://doi.org/10.1007/s10021-007-9037-8, 2007.
Kirschbaum, M.: The Temperature-Dependence of Soil Organic-Matter
Decomposition, and the Effect of Global Warming on Soil Organic-C Storage,
Soil Biol. Biochem., 27, 753–760, https://doi.org/10.1016/0038-0717(94)00242-s, 1995.
Klotzbücher, T., Kaiser, K., Filley, T. R., and Kalbitz, K.: Processes
controlling the production of aromatic water-soluble organic matter during
litter decomposition, Soil Biol. Biochem., 67, 133–139, https://doi.org/10.1016/j.soilbio.2013.08.003, 2013.
Köhler, S. J., Kothawala, D., Futter, M. N., Liungman, O., and Tranvik,
L.: In-lake processes offset increased terrestrial inputs of dissolved
organic carbon and color to lakes, PLoS ONE, 8, e70598, https://doi.org/10.1371/journal.pone.0070598, 2013.
Kothawala, D. N., Moore, T. R., and Hendershot, W. H.: Adsorption of
dissolved organic carbon to mineral soils: A comparison of four isotherm
approaches, Geoderma, 148, 43–50, https://doi.org/10.1016/j.geoderma.2008.09.004, 2008.
Kothawala, D. N., Stedmon, C. A., Müller, R. A., Weyhenmeyer, G. A.,
Köhler, S. J., and Tranvik, L. J.: Controls of dissolved organic matter
quality: evidence from a large-scale boreal lake survey, Glob. Change Biol.,
20, 1101–1114, https://doi.org/10.1111/gcb.12488, 2014.
Kreutzweiser, D. P., Hazlett, P. W., and Gunn, J. M.: Logging impacts on the
biogeochemistry of boreal forest soils and nutrient export to aquatic
systems: A review, Environ. Rev., 16, 157–179, https://doi.org/10.1139/a08-006, 2008.
Laudon, H., Tetzlaff, D., Soulsby, C., Carey, S., Seibert, J., Buttle, J.,
Shanley, J., McDonnell, J. J., and McGuire, K.: Change in winter climate
will affect dissolved organic carbon and water fluxes in mid-to-high
latitude catchments, Hydrol. Process., 27, 700–709, https://doi.org/10.1002/hyp.9686, 2013.
Lee, M.-H., Park, J.-H., and Matzner, E.: Sustained production of dissolved
organic carbon and nitrogen in forest floors during continuous leaching,
Geoderma, 310, 163–169, https://doi.org/10.1016/j.geoderma.2017.07.027, 2018.
Lenth, R. V.: Package “lsmeans”: Least-squares means, J.
Stat. Softw., 69, 1–33, https://doi.org/10.18637/jss.v069.i01, 2016.
Lilienfein, J., Qualls, R. G., Uselman, S. M., and Bridgham, S. D.:
Adsorption of dissolved organic carbon and nitrogen in soils of a weathering
chronosequence, Soil Sci. Soc. Am. J., 68, 292–305, 2004.
Malcolm, R. L.: The uniqueness of humic substances in each of soil, stream
and marine environments, Anal. Chim. Acta, 232, 19–30, https://doi.org/10.1016/s0003-2670(00)81222-2, 1990.
Mangiafico, S. S.: Summary and Analysis of Extension Program Evaluation in R,
version 1.20.01, https://rcompanion.org/handbook/I_09.html (last access: 17 May 2022), 2016.
Marschner, B. and Kalbitz, K.: Controls of bioavailability and
biodegradability of dissolved organic matter in soils, Geoderma, 113,
211–235, https://doi.org/10.1016/s0016-7061(02)00362-2,
2003.
McDowell, N. G., Bowling, D. R., Schauer, A., Irvine, J., Bond, B. J., Law,
B. E., and Ehleringer, J. R.: Associations between carbon isotope ratios of
ecosystem respiration, water availability and canopy conductance: carbon
isotope ratio of ecosystem respiration, Glob. Change Biol., 10, 1767–1784,
https://doi.org/10.1111/j.1365-2486.2004.00837.x, 2004.
McDowell, W. H. and Likens, G. E.: Origin, Composition, and Flux of
Dissolved Organic Carbon in the Hubbard Brook Valley, Ecol. Monogr., 58,
177–195, https://doi.org/10.2307/2937024, 1988.
McGroddy, M. E., Baisden, W. T., and Hedin, L. O.: Stoichiometry of
hydrological C, N, and P losses across climate and geology: An environmental
matrix approach across New Zealand primary forests, Global Biogeochem.
Cy., 22, GB003005, https://doi.org/10.1029/2007gb003005, 2008.
McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T.,
and Andersen, D. T.: Spectrofluorometric characterization of dissolved
organic matter for indication of precursor organic material and aromaticity,
Limnol. Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Mellander, P.-E., Löfvenius, M. O., and Laudon, H.: Climate change
impact on snow and soil temperature in boreal Scots pine stands, Climatic
Change, 85, 179–193, https://doi.org/10.1007/s10584-007-9254-3, 2007.
Michalzik, B. and Matzner, E.: Dynamics of dissolved organic nitrogen and
carbon in a Central European Norway spruce ecosystem: Dynamics of dissolved
organic nitrogen and carbon in soil, Eur. J. Soil Sci., 50, 579–590,
https://doi.org/10.1046/j.1365-2389.1999.00267.x, 1999.
Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., and Matzner, E.:
Fluxes and concentrations of dissolved organic carbon and nitrogen – a
synthesis for temperate forests, Biogeochemistry, 52, 173–205, https://doi.org/10.1023/a:1006441620810, 2001.
Michel, K. and Matzner, E.: Release of dissolved organic carbon and nitrogen
from forest floors in relation to solid phase properties, respiration and
N-mineralization, J. Plant Nutr. Soil Sc., 162, 645–652, https://doi.org/10.1002/(sici)1522-2624(199912)162:6<645::aid-jpln645>3.0.co;2-t, 1999.
Moore, T. R., Paré, D., and Boutin, R.: Production of Dissolved Organic
Carbon in Canadian Forest Soils, Ecosystems, 11, 740–751, https://doi.org/10.1007/s10021-008-9156-x, 2008.
Moroni, M. T., Carter, P. Q., and Ryan, D. A. J.: Harvesting and
slash piling affect soil respiration, soil temperature, and soil
moisture regimes in Newfoundland boreal forests, Can. J. Soil
Sci., 89, 345–355, 2009.
Näsholm, T., Ekblad, A., NORDIN, A., Giesler, R., Högberg, M., and
Högberg, P.: Boreal forest plants take up organic nitrogen, Nature, 392,
914–916, https://doi.org/10.1038/31921, 1998.
Neff, J. C., Chapin, F. S., and Vitousek, P. M.: Breaks in the cycle:
dissolved organic nitrogen in terrestrial ecosystems, Front Ecol. Environ., 1,
205–211, https://doi.org/10.1890/1540-9295(2003)001[0205:bitcdo]2.0.co;2, 2003.
Oades, J. M.: The retention of organic matter in soils, Biogeochemistry,
5, 35–70, https://doi.org/10.1007/bf02180317, 1988.
Patel, K. F., Tatariw, C., MacRae, J. D., Ohno, T., Nelson, S. J., and
Fernandez, I. J.: Soil carbon and nitrogen responses to snow removal and
concrete frost in a northern coniferous forest, Can. J. Soil Sci., 98,
436–447, https://doi.org/10.1139/cjss-2017-0132, 2018.
Patrick, M. E., Young, C. T., Zimmerman, A. R., and Ziegler, S. E.:
Mineralogic controls are harbingers of hydrological controls on soil organic
matter content in warmer boreal forests, Geoderma, 425, 116059, https://doi.org/10.1016/j.geoderma.2022.116059, 2022.
Philben, M., Butler, S., Billings, S. A., Benner, R., Edwards, K. A., and
Ziegler, S. E.: Biochemical and structural controls on the decomposition
dynamics of boreal upland forest moss tissues, Biogeosciences, 15,
6731–6746, https://doi.org/10.5194/bg-15-6731-2018, 2018.
Pinheiro, J., Bates, D., and Team, R. C.: Package “nlme”: Linear and
Nonlinear Mixed Effects Models, https://svn.r-project.org/R-packages/trunk/nlme/
(last access: May 17 2022), 2022.
Poulin, B. A., Ryan, J. N., and Aiken, G. R.: Effects of Iron on Optical
Properties of Dissolved Organic Matter, Environ. Sci.
Technol., 48, 10098–10106, https://doi.org/10.1021/es502670r,
2014.
Prijac, A., Gandois, L., Jeanneau, L., Taillardat, P., and Garneau, M.:
Dissolved organic matter concentration and composition discontinuity at the
peat–pool interface in a boreal peatland, Biogeosciences, 19,
4571–4588, https://doi.org/10.5194/bg-19-4571-2022, 2022.
Qualls, R. G. and Haines, B. L.: Geochemistry of Dissolved Organic Nutrients
in Water Percolating through a Forest Ecosystem, Soil Sci. Soc. Am. J., 55,
1112–1123, https://doi.org/10.2136/sssaj1991.03615995005500040036x, 1991.
Quinn, G. P. and Keough, M. J.: Experimental Design and Data Analysis for
Biologists, Cambridge University Press, Cambridge, UK, 553 pp., ISBN 9780521009768, https://doi.org/10.1017/cbo9780511806384, 2002.
Radulovich, R. and Sollins, P.: Improved Performance of Zero-Tension
Lysimeters, Soil Sci. Soc. Am. J., 51, 1386–1388, https://doi.org/10.2136/sssaj1987.03615995005100050054x, 1987.
Roulet, N. and Moore, T. R.: Environmental chemistry: browning the waters,
Nature, 444, 283–284, https://doi.org/10.1038/444283a, 2006.
Schimel, J. P. and Bennett, J.: Nitrogen mineralization: challenges of a
changing paradigm, Ecology, 85, 591–602, https://doi.org/10.1890/03-8002, 2008.
Schimel, J. P. and Clein, J. S.: Microbial response to freeze-thaw cycles in
tundra and taiga soils, Soil Biol. Biochem., 28, 1061–1066, https://doi.org/10.1016/0038-0717(96)00083-1, 1996.
Shen, Y., Chapelle, F. H., Strom, E. W., and Benner, R.: Origins and
bioavailability of dissolved organic matter in groundwater, Biogeochemistry,
122, 61–78, https://doi.org/10.1007/s10533-014-0029-4, 2014.
Slessarev, E. W., Chadwick, O. A., Sokol, N. W., Nuccio, E. E., and
Pett-Ridge, J.: Rock weathering controls the potential for soil carbon
storage at a continental scale, Biogeochemistry, 157, 1–13,
https://doi.org/10.1007/s10533-021-00859-8, 2022.
Soil Classification Working Group: The Canadian System of Soil
Classification, 3rd Edn., Agriculture and Agri-Food Canada Publication 1646,
187 pp., ISBN 0-660-17404-9, 1998.
Stark, S., Martz, F., Ovaskainen, A., Vuosku, J., Männistö, M. K.,
and Rautio, P.: Ice-on-snow and compacted and absent snowpack exert
contrasting effects on soil carbon cycling in a northern boreal forest, Soil
Biol. Biochem., 150, 107983, https://doi.org/10.1016/j.soilbio.2020.107983, 2020.
Ste-Marie, C. and Paré, D.: Soil, pH and N availability effects on net
nitrification in the forest floors of a range of boreal forest stands, Soil
Biol. Biochem., 31, 1579–1589, https://doi.org/10.1016/s0038-0717(99)00086-3, 1999.
Stevenson, F. J.: Humus Chemistry: Genesis, Composition, Reactions, Second
Edition, J. Chem. Educ., 72, A93, https://doi.org/10.1021/ed072pa93.6, 1995.
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.:
Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes,
J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010jhm1202.1, 2010.
Tang, Y., Horikoshi, M., and Li, W.: Package “ggfortify”: Unified
interface to visualize statistical results of popular r packages, R Journal,
8, 478–489, https://doi.org/10.32614/rj-2016-060, 2016.
Tank, S. E., Fellman, J. B., Hood, E., and Kritzberg, E. S.: Beyond
respiration: Controls on lateral carbon fluxes across the
terrestrial-aquatic interface, Limnol. Oceanogr. Lett., 3, 76–88,
https://doi.org/10.1002/lol2.10065, 2018.
Titus, B. D., Kingston, D. G. O., Pitt, C. M., and Mahendrappa, M. K.: A
lysimeter system for monitoring soil solution chemistry, Can. J. Soil Sci., 80,
219–226, https://doi.org/10.4141/s99-018, 2000.
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., and
Hendricks, D. M.: Mineral control of soil organic carbon storage and
turnover, Nature, 389, 170–173, https://doi.org/10.1038/38260,
1997.
Wachenfeldt, E. von, Sobek, S., Bastviken, D., and Tranvik, L. J.: Linking
allochthonous dissolved organic matter and boreal lake sediment carbon
sequestration: The role of light-mediated flocculation, Limnol. Oceanogr., 53,
2416–2426, https://doi.org/10.4319/lo.2008.53.6.2416, 2008.
Wachenfeldt, E. von, Bastviken, D., and Tranvika, L. J.: Microbially induced
flocculation of allochthonous dissolved organic carbon in lakes, Limnol.
Oceanogr., 54, 1811–1818, https://doi.org/10.4319/lo.2009.54.5.1811, 2009.
Weintraub, M. N., Scott-Denton, L. E., Schmidt, S. K., and Monson, R. K.:
The effects of tree rhizodeposition on soil exoenzyme activity, dissolved
organic carbon, and nutrient availability in a subalpine forest ecosystem,
Oecologia, 154, 327–38, https://doi.org/10.1007/s00442-007-0804-1, 2006.
Weyhenmeyer, G. A., Prairie, Y. T., and Tranvik, L. J.: Browning of boreal
freshwaters coupled to carbon-iron interactions along the aquatic
continuum, PLoS ONE, 9, e88104, https://doi.org/10.1371/journal.pone.0088104, 2014.
Žifčáková, L., Větrovský, T., Lombard, V.,
Henrissat, B., Howe, A., and Baldrian, P.: Feed in summer, rest in winter:
microbial carbon utilization in forest topsoil, Microbiome, 5, 122,
https://doi.org/10.1186/s40168-017-0340-0, 2017.
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper...
Altmetrics
Final-revised paper
Preprint