Articles | Volume 20, issue 14
https://doi.org/10.5194/bg-20-2919-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-2919-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Katharina Ramskogler
CORRESPONDING AUTHOR
Institute for Alpine Environment, Eurac Research,
Drususallee/Viale Druso 1, 39100 Bozen/Bolzano, Italy
Department of Botany, Universität Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria
Bettina Knoflach
CORRESPONDING AUTHOR
Department of Geography, Universität Innsbruck, Innrain
52, 6020 Innsbruck, Austria
Bernhard Elsner
Kompass-Karten GmbH, Karl-Kapferer-Str. 5, 6020 Innsbruck, Austria
Brigitta Erschbamer
private address: General-Feuerstein-Str. 24, 6020 Innsbruck, Austria
Florian Haas
Physical Geography, Catholic University of Eichstätt-Ingolstadt, Osten 14 and 18, 85072 Eichstätt, Germany
Tobias Heckmann
Physical Geography, Catholic University of Eichstätt-Ingolstadt, Osten 14 and 18, 85072 Eichstätt, Germany
Florentin Hofmeister
Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany
Livia Piermattei
Remote sensing Group, Research Unit Land Change Science, Swiss Federal Institute for Forest Snow and Landscape Research WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
Camillo Ressl
Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstr. 8, 1050 Vienna, Austria
Svenja Trautmann
Department of Geography, Universität Innsbruck, Innrain
52, 6020 Innsbruck, Austria
Michael H. Wimmer
Federal Office of Metrology and Surveying (BEV), Arltgasse 35, 1020 Vienna, Austria
Clemens Geitner
Department of Geography, Universität Innsbruck, Innrain
52, 6020 Innsbruck, Austria
Johann Stötter
Department of Geography, Universität Innsbruck, Innrain
52, 6020 Innsbruck, Austria
Erich Tasser
Institute for Alpine Environment, Eurac Research,
Drususallee/Viale Druso 1, 39100 Bozen/Bolzano, Italy
Related authors
No articles found.
Florentin Hofmeister, Xinyang Fan, Madlene Pfeiffer, Ben Marzeion, Bettina Schaefli, and Gabriele Chiogna
EGUsphere, https://doi.org/10.5194/egusphere-2025-3256, https://doi.org/10.5194/egusphere-2025-3256, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We use the WRF model for dynamically downscaling a global reanalysis product for the period 1850 to 2015 for the central European Alps. We demonstrate a workflow for transferring coarse-resolution (2 km) WRF temperature and precipitation to a much finer spatial resolution (25 m) of a physics-based hydrological model (WaSiM) and evaluate the results in a multi-data approach covering different simulation periods. Our results highlight the need for plausible and consistent elevation gradients.
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025, https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Short summary
The glacier-expanded SWAT (Soil Water Assessment Tool) version, SWAT-GL, was tested in four different catchments, highlighting the capabilities of the glacier routine. It was evaluated based on the representation of glacier mass balance, snow cover and glacier hypsometry. The glacier changes over a long timescale could be adequately represented, leading to promising potential future applications in glaciated and high mountain environments and significantly outperforming standard SWAT models.
Michael Grömer, Benjamin Wild, Camillo Ressl, Johannes Otepka, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 95–100, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-95-2025, 2025
Xinyang Fan, Florentin Hofmeister, Bettina Schaefli, and Gabriele Chiogna
EGUsphere, https://doi.org/10.5194/egusphere-2025-1500, https://doi.org/10.5194/egusphere-2025-1500, 2025
Preprint archived
Short summary
Short summary
We adopt a fully-distributed, physics-based hydrological modeling approach, to understand streamflow variations and their interactions with groundwater in a high-elevation glaciated environment. We demonstrate opportunities and challenges of integrating point-scale groundwater observations into a distributed model. This study sheds new lights on surface-subsurface processes in high alpine environments and highlights the importance of improving subsurface representation in hydrological modeling.
Thirawat Bannakulpiphat, Wilfried Karel, Camillo Ressl, and Norbert Pfeifer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W7-2024, 17–24, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-W7-2024-17-2024, 2024
Reuma Arav, Camillo Ressl, Robert Weiss, Thomas Artz, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 9–16, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-9-2024, 2024
Moritz Altmann, Madlene Pfeiffer, Florian Haas, Jakob Rom, Fabian Fleischer, Tobias Heckmann, Livia Piermattei, Michael Wimmer, Lukas Braun, Manuel Stark, Sarah Betz-Nutz, and Michael Becht
Earth Surf. Dynam., 12, 399–431, https://doi.org/10.5194/esurf-12-399-2024, https://doi.org/10.5194/esurf-12-399-2024, 2024
Short summary
Short summary
We show a long-term erosion monitoring of several sections on Little Ice Age lateral moraines with derived sediment yield from historical and current digital elevation modelling (DEM)-based differences. The first study period shows a clearly higher range of variability of sediment yield within the sites than the later periods. In most cases, a decreasing trend of geomorphic activity was observed.
Livia Piermattei, Tobias Heckmann, Sarah Betz-Nutz, Moritz Altmann, Jakob Rom, Fabian Fleischer, Manuel Stark, Florian Haas, Camillo Ressl, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
Earth Surf. Dynam., 11, 383–403, https://doi.org/10.5194/esurf-11-383-2023, https://doi.org/10.5194/esurf-11-383-2023, 2023
Short summary
Short summary
Alpine rivers have experienced strong changes over the last century. In the present study, we explore the potential of historical multi-temporal elevation models, combined with recent topographic data, to quantify 66 years (from 1953 to 2019) of river changes in the glacier forefield of an Alpine catchment. Thereby, we quantify the changes in the river form as well as the related sediment erosion and deposition.
Sarah Betz-Nutz, Tobias Heckmann, Florian Haas, and Michael Becht
Earth Surf. Dynam., 11, 203–226, https://doi.org/10.5194/esurf-11-203-2023, https://doi.org/10.5194/esurf-11-203-2023, 2023
Short summary
Short summary
The geomorphic activity of LIA lateral moraines is of high interest due to its implications for the sediment fluxes and hazards within proglacial areas. We derived multitemporal models from historical aerial images and recent drone images to investigate the morphodynamics on moraine slopes over time. We found that the highest erosion rates occur on the steepest moraine slopes, which stay active for decades, and that the slope angle explains morphodynamics better than the time since deglaciation.
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023, https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Short summary
In this study, an area-wide slope-type debris flow record has been established for Horlachtal, Austria, since 1947 based on historical and recent remote sensing data. Spatial and temporal analyses show variations in debris flow activity in space and time in a high-alpine region. The results can contribute to a better understanding of past slope-type debris flow dynamics in the context of extreme precipitation events and their possible future development.
G. Verhoeven, B. Wild, J. Schlegel, M. Wieser, N. Pfeifer, S. Wogrin, L. Eysn, M. Carloni, B. Koschiček-Krombholz, A. Molada-Tebar, J. Otepka-Schremmer, C. Ressl, M. Trognitz, and A. Watzinger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 513–520, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-513-2022, 2022
Marcel Lerch, Tobias Bromm, Clemens Geitner, Jean Nicolas Haas, Dieter Schäfer, Bruno Glaser, and Michael Zech
Biogeosciences, 19, 1135–1150, https://doi.org/10.5194/bg-19-1135-2022, https://doi.org/10.5194/bg-19-1135-2022, 2022
Short summary
Short summary
Faecal biomarker analyses present a useful tool in geoarcheological research. For a better understanding of the lives of our ancestors in alpine regions, we investigated modern livestock faeces and Holocene soils at the prehistorical encampment site of Ullafelsen in the Fotsch Valley, Stubai Alps, Austria. Initial results show a high input of livestock faeces and a negligible input of human faeces for this archeological site. Future studies will focus on mire archives in the Fotsch Valley.
Fabian Fleischer, Florian Haas, Livia Piermattei, Madlene Pfeiffer, Tobias Heckmann, Moritz Altmann, Jakob Rom, Manuel Stark, Michael H. Wimmer, Norbert Pfeifer, and Michael Becht
The Cryosphere, 15, 5345–5369, https://doi.org/10.5194/tc-15-5345-2021, https://doi.org/10.5194/tc-15-5345-2021, 2021
Short summary
Short summary
We investigate the long-term (1953–2017) morphodynamic changes in rock glaciers in Kaunertal valley, Austria. Using a combination of historical aerial photographs and laser scanning data, we derive information on flow velocities and surface elevation changes. We observe a loss of volume and an acceleration from the late 1990s onwards. We explain this by changes in the meteorological forcing. Individual rock glaciers react to these changes to varying degrees.
Michael Zech, Marcel Lerch, Marcel Bliedtner, Tobias Bromm, Fabian Seemann, Sönke Szidat, Gary Salazar, Roland Zech, Bruno Glaser, Jean Nicolas Haas, Dieter Schäfer, and Clemens Geitner
E&G Quaternary Sci. J., 70, 171–186, https://doi.org/10.5194/egqsj-70-171-2021, https://doi.org/10.5194/egqsj-70-171-2021, 2021
J. Otepka, G. Mandlburger, W. Karel, B. Wöhrer, C. Ressl, and N. Pfeifer
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 35–42, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-35-2021, 2021
Kerstin Wegner, Florian Haas, Tobias Heckmann, Anne Mangeney, Virginie Durand, Nicolas Villeneuve, Philippe Kowalski, Aline Peltier, and Michael Becht
Nat. Hazards Earth Syst. Sci., 21, 1159–1177, https://doi.org/10.5194/nhess-21-1159-2021, https://doi.org/10.5194/nhess-21-1159-2021, 2021
Short summary
Short summary
In mountainous regions rockfall is a common geomorphic process. We selected four study sites that feature different rock types. High-resolution terrestrial laser scanning data were acquired to measure the block size and block shape (axial ratio) of rockfall particles on the scree deposits. Laser scanning data were also used to characterize the morphology of these landforms. Our results show that hill slope and rock particle properties govern rock particle runout in a complex manner.
Cited articles
Albrecht, M., Riesen, M., and Schmid, B.: Plant-pollinator network assembly
along the chronosequence of a glacier foreland, Oikos, 119, 1610–1624,
https://doi.org/10.1111/j.1600-0706.2010.18376.x, 2010.
Alfredsen, G. and Høiland, K.: Succession of terrestrial macrofungi along
a deglaciation gradient at Glacier Blåisen, South Norway, Nord. J. Bot., 21, 19–37, https://doi.org/10.1111/j.1756-1051.2001.tb01335.x,
2001.
Andreis, C., Caccianiga, M., and Cerabolini, B.: Vegetation and
environmental factors during primary succession on glacier forelands: Some
outlines from the Italian Alps, Plant Biosyst., 135, 295–310,
https://doi.org/10.1080/11263500112331350930, 2001.
Anschlag, K., Tatti, D., Hellwig, N., Sartori, G., Gobat, J.-M., and Broll,
G.: Vegetation-based bioindication of humus forms in coniferous mountain
forests, J. Mt. Sci., 14, 662–673,
https://doi.org/10.1007/s11629-016-4290-y, 2017.
Arnold, R. W., Szabolcs, I., and Targulian, V. O.: Global soil change. Report of an IIASA-ISSS-UNEP task force on the role of
soil in global change. International Institute for Applied Systems
Analysis, Laxenburg, 1990.
Ballantyne, C. K.: A general model of paraglacial landscape response, The
Holocene, 12, 371–376, https://doi.org/10.1191/0959683602hl553fa, 2002.
Bayle: A recent history of deglaciation and vegetation establishment in a
contrasted geomorphological context, Glacier Blanc, French Alps, J. Maps, 2020, 766–775, https://doi.org/10.1080/17445647.2020.189115, 2020.
Beniston, M.: Mountain weather and climate: A general overview and a focus
on climatic change in the Alps, Hydrobiologia, 562, 3–16,
https://doi.org/10.1007/s10750-005-1802-0, 2006.
Beven, K. J. and Kirkby, M. J.: A physically based variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Bishop, C. and Bishop, J.: Alpine Plants as Indicators of Climate Change, Presentation given at the 28th Annual Desert Symposium, 2014.
Brutel-Vuilmet, C., Ménégoz, M., and Krinner, G.: An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models, The Cryosphere, 7, 67–80, https://doi.org/10.5194/tc-7-67-2013, 2013.
Burga, C. A.: Vegetation development on the glacier forefield Morteratsch
(Switzerland), Appl. Veg. Sci., 2, 17–24,
https://doi.org/10.2307/1478877, 1999.
Burga, C. A., Krüsi, B., Egli, M., Wernli, M., Elsener, S., Ziefle, M.,
Fischer, T., and Mavris, C.: Plant succession and soil development on the
foreland of the Morteratsch glacier (Pontresina, Switzerland): Straight
forward or chaotic?, Flora – Morphology, Distribution, Funct. Ecol. Plants, 205, 561–576, https://doi.org/10.1016/j.flora.2009.10.001, 2010.
Caccianiga, M. and Andreis, C.: Pioneer herbaceous vegetation on glacier
forelands in the Italian Alps, Phyto, 34, 55–89,
https://doi.org/10.1127/0340-269X/2004/0034-0055, 2004.
Carlson, B. Z., Georges, D., Rabatel, A., Randin, C. F., Renaud, J.,
Delestrade, A., Zimmermann, N. E., Choler, P., and Thuiller, W.: Accounting
for tree line shift, glacier retreat and primary succession in mountain
plant distribution models, Diversity Distrib., 20, 1379–1391,
https://doi.org/10.1111/ddi.12238, 2014.
Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., and
Choler, P.: Observed long-term greening of alpine vegetation – a case study
in the French Alps, Environ. Res. Lett., 12, 114006,
https://doi.org/10.1088/1748-9326/aa84bd, 2017.
Cazzolla Gatti, R., Dudko, A., Lim, A., Velichevskaya, A. I., Lushchaeva, I.
V., Pivovarova, A. V., Ventura, S., Lumini, E., Berruti, A., and Volkov, I.
V.: The last 50 years of climate-induced melting of the Maliy Aktru glacier
(Altai Mountains, Russia) revealed in a primary ecological succession, Ecol.
Evol., 8, 7401–7420, https://doi.org/10.1002/ece3.4258, 2018.
Conway, J., Carey-Smith, T., Cattoën-Gilbert, C., Moore, S., Sirguey,
P., and Zammit, C.: Simulations of seasonal snowpack duration and water
storage across New Zealand, Weather Clim., 41, 72–89,
https://doi.org/10.2307/27127990, 2021.
D'Amico, M. E., Freppaz, M., Filippa, G., and Zanini, E.: Vegetation
influence on soil formation rate in a proglacial chronosequence (Lys
Glacier, NW Italian Alps), Catena, 113, 122–137,
https://doi.org/10.1016/j.catena.2013.10.001, 2014.
D'Amico, M. E., Freppaz, M., Zanini, E., and Bonifacio, E.: Primary
vegetation succession and the serpentine syndrome: the proglacial area of
the Verra Grande glacier, North-Western Italian Alps, Plant Soil, 415,
283–298, https://doi.org/10.1007/s11104-016-3165-x, 2017.
Descombes, P., Walthert, L., Baltensweiler, A., Meuli, R. G., Karger, D. N.,
Ginzler, C., Zurell, D., and Zimmermann, N. E.: Spatial modelling of
ecological indicator values improves predictions of plant distributions in
complex landscapes, Ecography, 43, 1448–1463,
https://doi.org/10.1111/ecog.05117, 2020.
Dial, R.: How to use aspects i.e. N, NE, SE etc. in PCA or CCA for analysis,
especially using PAST, researchgate, PhD, 2017.
DOeAV: Der Ausbruch des Eissees im Martellthale, Mittheilungen des
Deutschen und Oesterreichischen Alpenvereins, 17, 159–160, 1891.
DOeAV: Die Gletscherausbrüche des Martell-Thales, Mittheilungen des
Deutschen und Oesterreichischen Alpenvereins, 21, 149 pp., 1895.
Dolezal, J., Homma, K., Takahashi, K., Yakubov, V., Vetrova, V. P., and
Hara, T.: Primary Succession Following Deglaciation at Koryto Glacier
Valley, Kamchatka, Arc. Antarc. Alp. Res., 40,
309–322, https://doi.org/10.1657/1523-0430(06-123)[DOLEZAL]2.0.CO;2, 2008.
Dormann, C. F.: Modeling Species' Distributions, in: Modelling Complex
Ecological Dynamics, edited by: Jopp, F., Reuter, H., and Breckling, B.,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-05029-9_13, 2011.
Eichel, J.: Vegetation Succession and Biogeomorphic Interactions in Glacier
Forelands, in: Geomorphology of Proglacial Systems, edited by: Heckmann, T.
and Morche, D., Springer International Publishing, Cham, 327–349,
https://doi.org/10.1007/978-3-319-94184-4_19, 2019.
Eichel, J., Krautblatter, M., Schmidtlein, S., and Dikau, R.: Biogeomorphic
interactions in the Turtmann glacier forefield, Switzerland, Geomorphology,
201, 98–110, https://doi.org/10.1016/j.geomorph.2013.06.012, 2013.
Eichel, J., Corenblit, D., and Dikau, R.: Conditions for feedbacks between
geomorphic and vegetation dynamics on lateral moraine slopes: a
biogeomorphic feedback window: Conditions for biogeomorphic feedbacks on
lateral moraine slopes, Earth Surf. Proc. Land., 41, 406–419,
https://doi.org/10.1002/esp.3859, 2016.
Eichel, J., Draebing, D., and Meyer, N.: From active to stable: Paraglacial
transition of Alpine lateral moraine slopes, Land Degrad. Dev., 29,
4158–4172, https://doi.org/10.1002/ldr.3140, 2018.
Erschbamer, B. and Caccianiga, M. S.: Glacier Forelands: Lessons of Plant
Population and Community Development, in: Progress in Botany Vol. 78, edited by: Cánovas, F. M., Lüttge, U., and Matyssek, R.,
Springer International Publishing, Cham, 259–284,
https://doi.org/10.1007/124_2016_4, 2016.
Erschbamer, B. and Mayer, R.: Can successional species groups be
discriminated based on their life history traits? A study from a glacier
foreland in the Central Alps, Plant Ecol. Divers., 4, 341–351,
https://doi.org/10.1080/17550874.2012.664573, 2011.
Erschbamer, B., Niederfriniger Schlag, R., and Winkler, E.: Colonization
processes on a central Alpine glacier foreland, J. Veg. Sci., 19, 855–862, https://doi.org/10.3170/2008-8-18464, 2008.
Ferrari, S. and Cribari-Neto, F.: Beta regression for modelling rates and
proportions, J. Appl. Stat., 31, 799–815,
https://doi.org/10.1080/0266476042000214501, 2004.
Fickert, T.: Glacier Forelands – Unique Field Laboratories for the Study of
Primary Succession of Plants, in: Glaciers Evolution in a Changing World,
edited by: Godone, D., InTech, https://doi.org/10.5772/intechopen.69479,
2017.
Fickert, T.: Common Patterns and Diverging Trajectories in Primary
Succession of Plants in Eastern Alpine Glacier Forelands, Diversity, 12,
191, https://doi.org/10.3390/d12050191, 2020.
Fickert, T. and Grüninger, F.: High-speed colonization of bare
ground-Permanent plot studies on primary succession of plants in recently
deglaciated glacier forelands, Land Degrad. Dev., 29, 2668–2680,
https://doi.org/10.1002/ldr.3063, 2018.
Fickert, T., Grüninger, F., and Damm, B.: Klebelsberg revisited: did
primary succession of plants in glacier forelands a century ago differ from
today?, Alp. Botan., 127, 17–29, https://doi.org/10.1007/s00035-016-0179-1,
2017.
Finsterwalder, S.: Die Gletscherausbrüche des Martell-Thales,
Zeitschrift des Deutschen und Oesterreichischen Alpenvereins, 21, 21–34,
1890.
Fischer, A.: Long-term glacier monitoring at the LTER test sites
Hintereisferner, Kesselwandferner and Jamtalferner and other glaciers in
Tyrol: a source of ancillary information for biological succession studies,
Plant Ecol. Divers., 6, 537–547,
https://doi.org/10.1080/17550874.2011.568529, 2013.
Fischer, A., Fickert, T., Schwaizer, G., Patzelt, G., and Groß, G.:
Vegetation dynamics in Alpine glacier forelands tackled from space, Sci. Rep.,
9, 13918, https://doi.org/10.1038/s41598-019-50273-2, 2019.
Fischer, M. A., Oswald, K., and Adler, W.: Exkursionsflora für
Österreich, Liechtenstein und Südtirol, 3rd ed., Biologiezentrum der
Oberösterreichischen Landesmuseen, ISBN: 978-3-85474-187-9, 2008.
Florinsky, I. V.: An illustrated introduction to general geomorphometry,
Prog. Phys. Geogr., 41, 723–752,
https://doi.org/10.1177/0309133317733667, 2017.
Francon, L., Corona, C., Till-Bottraud, I., Choler, P., Roussel, E.,
Carlson, B. Z., Morin, S., Girard, B., and Stoffel, M.: Shrub growth in the
Alps diverges from air temperature since the 1990s, Environ. Res. Lett., 16,
074026, https://doi.org/10.1088/1748-9326/ac0b67, 2021.
Franz, H.: Verwitterung und Bodenbildung im Hochgebirge und in polaren
Bereichen, in: Ökologie der Hochgebirge, Ulmer, Stuttgart, 35–62, 1979.
Franzén, M., Dieker, P., Schrader, J., and Helm, A.: Rapid plant
colonization of the forelands of a vanishing glacier is strongly associated
with species traits, Arc. Antarc. Alp. Res., 51, 366–378,
https://doi.org/10.1080/15230430.2019.1646574, 2019.
Frenot, Y., Gloaguen, J. C., Cannavacciuolo, M., and Bellido, A.: Primary
succession on glacier forelands in the subantarctic Kerguelen Islands,
J. Veg. Sci. 9, 75–84, https://doi.org/10.2307/3237225,
1998.
Garbarino, M., Lingua, E., Nagel, T. A., Godone, D., and Motta, R.: Patterns
of larch establishment following deglaciation of Ventina glacier, central
Italian Alps, Forest Ecol. Manage., 259, 583–590,
https://doi.org/10.1016/j.foreco.2009.11.016, 2010.
Göransson, H., Welc, M., Bünemann, E. K., Christl, I., and
Venterink, H. O.: Nitrogen and phosphorus availability at early stages of
soil development in the Damma glacier forefield, Switzerland; implications
for establishment of N2-fixing plants, Plant Soil, 404, 251–261,
https://doi.org/10.1007/s11104-016-2821-5, 2016.
Grime, J. P.: Vegetation classification by reference to strategies, Nature,
250, 26–31, 1974.
Hartig, F.: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.6 [code], https://CRAN.R-project.org/package=DHARMa (last access: 10 May 2022), 2022.
Haselberger, S., Ohler, L., Junker, R. R., Otto, J., Glade, T., and
Kraushaar, S.: Quantification of biogeomorphic interactions between
small-scale sediment transport and primary vegetation succession on
proglacial slopes of the Gepatschferner, Austria, Earth Surf. Proc. Land., 46, 1941–1952, https://doi.org/10.1002/esp.5136, 2021.
Heckmann, T. and Morche, D. (Eds.): Geomorphology of Proglacial Systems:
Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes,
Springer International Publishing, Cham,
https://doi.org/10.1007/978-3-319-94184-4, 2019.
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi,
Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau,
U., Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor,
M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 131–202, 2019.
Hodkinson, I. D., Coulson, S. J., and Webb, N. R.: Community assembly along
proglacial chronosequences in the high Arctic: vegetation and soil
development in north-west Svalbard, J. Ecol., 91, 651–663,
https://doi.org/10.1046/j.1365-2745.2003.00786.x, 2003.
Hofmeister, F., Arias-Rodriguez, L. F., Premier, V., Marin, C., Notarnicola,
C., Disse, M., and Chiognoa, G.: Intercomparison of Sentinel-2 and modelled
snow cover maps in a high-elevation Alpine catchment, J. Hydrol., 15, 100–123, 2022.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and
Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in
the European Alps, Quat. Sci. Rev., 28, 2137–2149,
https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Jiang, Y., Song, M., Zhang, S., Cai, Z., and Lei, Y.: Unravelling community
assemblages through multi-element stoichiometry in plant leaves and roots
across primary successional stages in a glacier retreat area, Plant Soil,
428, 291–305, https://doi.org/10.1007/s11104-018-3683-9, 2018.
Jones, C. C. and del Moral, R.: Dispersal and establishment both limit
colonization during primary succession on a glacier foreland, Plant Ecol,
204, 217–230, https://doi.org/10.1007/s11258-009-9586-3, 2009.
Junker, R. R., He, X., Otto, J.-C., Ruiz-Hernández, V., and Hanusch, M.:
Divergent assembly processes? A comparison of the plant and soil microbiome
with plant communities in a glacier forefield, FEMS Microbiol. Ecol.,
97, fiab135, https://doi.org/10.1093/femsec/fiab135, 2021.
Kastens, K. A., Manduca, C. A., Cervato, C., Frodeman, R., Goodwin, C.,
Liben, L. S., Mogk, D. W., Spangler, T. C., Stillings, N. A., and Titus, S.:
How Geoscientists Think and Learn, Eos, 90, 265–266, https://doi.org/10.1029/2009EO310001, 2009.
Kaufmann, R.: Glacier foreland colonisation: distinguishing between
short-term and long-term effects of climate change, Oecologia, 130,
470–475, https://doi.org/10.1007/s00442-001-0815-2, 2002.
Kaufmann, R. and Raffl, C.: Diversity in Primary Succession: The
Chronosequence of a Glacier Foreland, in: Global Mountain Biodiversity: A
Global Asessment, Parthenon Publishing, London, UK, 177–190, 2002.
Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F.,
Marta, S., Rabatel, A., Dentant, C., Cauvy-Fraunié, S., Anthelme, F.,
Gielly, L., Ambrosini, R., Franzetti, A., Azzoni, R. S., Caccianiga, M. S.,
Compostella, C., John Clague, Tielidze, L., Messager, E., Choler, P., and
Ficetola, G. F.: Topsoil organic matter build-up in glacier forelands around
the world, Global Change Biol., 27, 1662–1677, https://doi.org/10.1111/gcb.15496, 2021.
Kinzl, H.: Die größten nacheiszeitlichen Gletschervorstöße
in den Schweizer Alpen und in der Montblancgruppe, Zeitschrift für
Gletscherkunde, 20, 269–397, 1932.
Knoflach, B., Ramskogler, K., Talluto, M., Hofmeister, F., Haas, F.,
Heckmann, T., Pfeiffer, M., Piermattei, L., Ressl, C., Wimmer, M. H.,
Geitner, C., Erschbamer, B., and Stötter, J.: Modelling of Vegetation
Dynamics from Satellite Time Series to Determine Proglacial Primary
Succession in the Course of Global Warming – A Case Study in the Upper
Martell Valley (Eastern Italian Alps), Remote Sens., 13, 4450,
https://doi.org/10.3390/rs13214450, 2021.
Kost, B.: Kontrolle der entwicklung durch Ausßenfaktoren, in:
Strasburger – Lehrbuch der Pflanzenwissenschaften, Springer Spektrum, Berlin,
Heidelberg, 313–331, 2014.
Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., and
Samacoïts: 21st Century alpine climate change, Clim. Dynam., 60, 65–86,
https://doi.org/10.1007/s00382-022-06303-3, 2022.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of
the Köppen-Geiger Climate Classification Updated, Meteorol. Z., 15, 259–263, 2006.
Lambert, C. B., Resler, L. M., Shao, Y., and Butler, D. R.: Vegetation
change as related to terrain factors at two glacier forefronts, Glacier
National Park, Montana, U.S.A, J. Mount. Sci., 17, 1–15,
https://doi.org/10.1007/s11629-019-5603-8, 2020.
Landolt, E., Bäumler, B., Ehrhardt, A., Hegg, O., Klötzli, F.,
Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingruber, F.,
Theurillat, J.-P., Urmi, E., Vust, M., and Wohlgemuth, T.: Flora indicativa:
Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der
Schweiz und der Alpen, 2., Völlig neu bearbeitete und erweiterte Auflage
der Ökologischen Zeigerwerte zur Flora der Schweiz (1977), Haupt, Bern, ISBN: 978-3-258-07461-0,
2010.
Larcher, W.: Ökologie der Pflnazen auf physiologischer Grundlage: 54
Tabellen, 4. überarbeitete Auflage, Stuttgart, Ulmer, ISBN: 3800125293, 1984.
Lin, H.: Earth's Critical Zone and hydropedology: concepts, characteristics, and advances, Hydrol. Earth Syst. Sci., 14, 25–45, https://doi.org/10.5194/hess-14-25-2010, 2010.
Llambí, L. D., Melfo, A., Gámez, L. E., Pelayo, R. C.,
Cárdenas, M., Rojas, C., Torres, J. E., Ramírez, N., Huber, B., and
Hernández, J.: Vegetation Assembly, Adaptive Strategies and Positive
Interactions During Primary Succession in the Forefield of the Last
Venezuelan Glacier, Front. Ecol. Evol., 9, 657755,
https://doi.org/10.3389/fevo.2021.657755, 2021.
Losapio, G., Jordán, F., Caccianiga, M., and Gobbi, M.:
Structure-dynamic relationship of plant–insect networks along a primary
succession gradient on a glacier foreland, Ecol. Modell., 314,
73–79, https://doi.org/10.1016/j.ecolmodel.2015.07.014, 2015.
Losapio, G., Cerabolini, B. E. L., Maffioletti, C., Tampucci, D., Gobbi, M.,
and Caccianiga, M.: The Consequences of Glacier Retreat Are Uneven Between
Plant Species, Front. Ecol. Evol., 8, 616562,
https://doi.org/10.3389/fevo.2020.616562, 2021.
Mainetti, A., Ravetto Enri, S., and Lonati, M.: Vegetation trajectories in
proglacial primary successions within Gran Paradiso National Park: A
comparison between siliceous and basic substrates, IBEX-J. Mount. Ecol., 14, 1–18, 2022.
Marcante, S., Sierra-Almeida, A., Spindelböck, J. P., Erschbamer, B.,
and Neuner, G.: Frost as a limiting factor for recruitment and establishment
of early development stages in an alpine glacier foreland?, J. Veg. Sci., 23,
858–868, https://doi.org/10.1111/j.1654-1103.2012.01411.x, 2012.
Martin, S., Montresor, L., Mair, V., Pellegrini, G. B., Avanzini, M.,
Fellin, G., Gambillara, R., Tumiati, S., Santuliana, E., Monopoli, B.,
Gaspari, D., Sapigni, M., and Surian, N.: Erläuterungen zur geologischen Karte von Italien im Maßstab 1:50.000, Blatt 025 Rabbi., Land Technology & Services,
Treviso, https://www.isprambiente.gov.it/Media/carg/note_illustrative/25_Rabbi_Ted.pdf (last access: 15 October 2021), 2009.
Matthews, J. A.: The ecology of recently-deglaciated terrain: a
geoecological approach to glacier forelands and primary succession,
University Press Cambridge, Cambridge, ISBN: 9780521361095, 1992.
Matthews, J. A. and Whittaker, R. J.: Vegetation Succession on the Storbreen
Glacier Foreland, Jotunheimen, Norway: A Review, Arctic and Alpine Research,
19, 385, https://doi.org/10.2307/1551403, 1987.
Mazhar, N., Mirza, A. I., Zia, S., Butt, Z. S., Shahid, G., and Mirza, A.
I.: An Analysis of Glacial Retreat and Resultant Vegetation Expansion in the
Karakorum: A case study of Passu Glacier in Hunza valley, BIOLOGIA, 64, 135–145, 2018.
Mizuno, K.: Succession Processes of Alpine Vegetation in Response to Glacial
Fluctuations of Tyndall Glacier, Mt. Kenya, Kenya, Arc. Alp. Res., 30, 340, https://doi.org/10.2307/1552006, 1998.
Mizuno, K.: Glacial Fluctuation and Vegetation Succession on Tyndall
Glacier, Mt Kenya, Mount. Res. Develop., 25, 68–75,
https://doi.org/10.1659/0276-4741(2005)025[0068:GFAVSO]2.0.CO;2, 2005.
Molau, U.: ITEX climate stations, in: ITEX Manual, edited by: Molau, U.,
Danish Polar Center, 6–10, 1993.
Najafi, M. R., Zwiers, F. W., and Gillett, N. P.: Attribution of the spring
snow cover extent decline in the Northern Hemisphere, Eurasia and North
America to anthropogenic influence, Clim. Change, 136, 571–586,
https://doi.org/10.1007/s10584-016-1632-2, 2016.
Oke, T. R.: Boundary Layer Climates, 2nd Edition., Routledge, London, UK, ISBN: 9780415043199,
1987.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P.,
McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P.,
Stevens, M. H. H., Szoecs, E., and Wagner, H.: vegan community ecology package version 2.5-7 November 2020 [code], 2020.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing [code], Vienna, Austria, https://www.R-project.org/ (last access: 7 January 2019), 2019.
Raffl, C. and Erschbamer, B.: Comparative vegetation analyses of two
transects crossing a characteristic glacier valley in the Central Alps,
Phyto, 34, 225–240, https://doi.org/10.1127/0340-269X/2004/0034-0225, 2004.
Raffl, C., Mallaun, M., Mayer, R., and Erschbamer, B.: Vegetation Succession
Pattern and Diversity Changes in a Glacier Valley, Central Alps, Austria,
Arc. Antarc. Alp. Res., 38, 421–428,
https://doi.org/10.1657/1523-0430(2006)38[421:VSPADC]2.0.CO;2, 2006.
Rech, J. A., Reeves, R. W., and Hendricks, D. M.: The influence of slope
aspect on soil weathering processes in the Springerville volcanic field,
Arizona, Catena, 43, 49–62, 2001.
Revelle, W.: Psych: procedures for personality and psychological research, R package version 2.1.9. [code], https://CRAN.R-project.org/package=psych (last access: 29 November 2021), 2021.
Robbins, J. A. and Matthews, J. A.: Regional Variation in Successional
Trajectories and Rates of Vegetation Change on Glacier Forelands in
South-Central Norway, Arc. Antarc. Alp. Res., 42, 351–361,
https://doi.org/10.1657/1938-4246-42.3.351, 2010.
Rydgren, K., Halvorsen, R., Töpper, J. P., and Njøs, J. M.: Glacier
foreland succession and the fading effect of terrain age, J.
Veg. Sci., 25, 1367–1380, https://doi.org/10.1111/jvs.12184, 2014.
Scherrer, D. and Körner, C.: Topographically controlled thermal-habitat
differentiation buffers alpine plant diversity against climate warming:
Topographical control of thermal-habitat differentiation buffers alpine
plant diversity, J. Biogeogr., 38, 406–416,
https://doi.org/10.1111/j.1365-2699.2010.02407.x, 2011.
Schmidlin, T. W., Dethier, B. E., and Eggle, K. L.: Freeze-Thaw Days in the
Northeastern United States, J. Appl. Meteorol. Clim., 26, 142–155, 1987.
Schröder, B. and Reineking, B.: Modellierung der Art-Habitat-Beziehung –
ein Überblick über die Verfahren der Habitatmodellierung, in:
Habitatmodelle Methodik, Anwendung, Nutzen, vol. UFZ-Berichte, edited by:
Dormann, C. F., Blaschke, T., Lausch, T., Schröder, B., and
Söndgerath, D., Eigenverlag UFZ, Leipzig, 5–26, 2004.
Schulla, J. and Jasper, K.: Modell Description WaSiM (Water Balance
Simulation Model), http://www.wasim.ch/downloads/doku/wasim/wasim_2007_en.pdf (accessed on 3 November 2021), 2019.
Schumann, K., Gewolf, S., and Tackenberg, O.: Factors affecting primary
succession of glacier foreland vegetation in the European Alps, Alp Botan.,
126, 105–117, https://doi.org/10.1007/s00035-016-0166-6, 2016.
Serquet, G., Marty, C., Dulex, J.-P., and Rebetez, M.: Seasonal trends and
temperature dependence of the snowfall/precipitation-day ratio in
Switzerland, Geophys. Res. Lett., 38,
https://doi.org/10.1029/2011GL046976, 2011.
Simon, A., Geitner, C., and Katzensteiner, K.: A framework for the
predictive mapping of forest soil properites in mountain areas, Geoderma,
371, 114383, https://doi.org/10.1016/j.geoderma.2020.114383, 2020.
Sintubin, M.: 4.5 Billion Years of Global Change, in: Lectures for the XXIst
Century, edited by: Raymaekers, B., Leuven University Press, 103–126, 2008.
Sitzia, T., Dainese, M., Krüsi, B. O., and McCollin, D.: Landscape
metrics as functional traits in plants: perspectives from a glacier
foreland, PeerJ, 5, e3552, https://doi.org/10.7717/peerj.3552, 2017.
Smithson, M. and Verkuilen, J.: “A Better
Lemon Squeezer?, Maximum-Likelihood Regres sion with Beta-Distributed
Dependent Variables”, Psychol. Meth., 11, 54–71, 2006.
Stötter, J., Formayer, HerbertH., Prettenthaler, F., Coy, M., Monreal,
M., and Tappeiner, U.: Zur Kopplung zwischen Treiber- und Reaktionssystemen
sowie zur Bewertung von Folgen des Komawandels, in: Österreichischer
Sachstandsbericht Klimawandel 2014 (AAR14), Austrian Panel on Climate Change
(APCC), Verlag der Österreichischen Akademie der Wissenschaften, Wien,
Österreich, 383–410, 2014.
Szymañski, W., Maciejowski, W., Ostafin, K., Ziaja, W., and Sobucki, M.:
Impact of parent material, vegetation cover, and site wetness on variability
of soil properties in proglacial areas of small glaciers along the
northeastern coast of Sørkappland (SE Spitsbergen), Catena, 183, 104209,
https://doi.org/10.1016/j.catena.2019.104209, 2019.
Tampucci, D., Gobbi, M., Marano, G., Boracchi, P., Boffa, G., Ballarin, F.,
Pantini, P., Seppi, R., Compostella, C., and Caccianiga, M.: Ecology of
active rock glaciers and surrounding landforms: climate, soil, plants and
arthropods, Boreas, 46, 185–198, https://doi.org/10.1111/bor.12219, 2017.
Temme, A. J. A. M. and Lange, K.: Pro-glacial soil variablility and
geomorphic activity – the case of three Swiss valleys, Earth Surf. Proc. Land., 39, 1492–1499, https://doi.org/10.1002/esp.3553, 2014.
Theurillat, J.-P., Felber, F., Geissler, P., Gobat, J.-M., Fierz, M.,
Fischlin, A., Küpfer, P., Schlüssel, A., Velluti, C., Zhao, G.-F.,
and Williams, J.: Sensitivity of plants and soil ecosystems of the Alps to
climate change, in: Views from the Alps: regional perspectives on climate
change, edited by: Cebon, P., Dahinden, U., Davies, H., Imboden, D., and
Jaeger, C. C., MITPress, Cambridge, MA, USA, 225–308, 1998.
Thornton, J. M., Brauchli, T., Mariethoz, G., and Brunner, P.: Efficient
multi-objective calibration and uncertainty analysis of distributed snow
simulations in rugged alpine terrain, J. Hydrol., 598,
https://doi.org/10.1016/j.jhydrol.2021.126241, 2021.
Unterholzner, Lu., Prendin, A. L., Dibona, R., Menardi, R., Casolo, V.,
Gargiula, S., Boscutti, F., and Carrer Marco: Transient Effects of Snow
Cover Duration on Primary Growth and Leaf Traits in a Tundra Shrub,
Front. Plant Sci., 13, 822901, https://doi.org/10.3389/fpls.2022.822901,
2022.
Vetaas, O. R.: Primary Succession of Plant Assemblages on a Glacier
Foreland-Bodalsbreen, Southern Norway, J. Biogeogr., 21, 297,
https://doi.org/10.2307/2845531, 1994.
Wehren, B., Weingartner, R., Schädler, B., and Viviroli, D.: General
characteristics of Alpine Waters, in: Alpine Waters. The Handbook of
Environmental Chemistry, vol. 6, edited by: Bundi, U., Springer, Berlin,
Heidelberg, 17–58, 2010.
Wei, T., Shangguan, D., Yi, S., and Ding, Y.: Characteristics and controls
of vegetation and diversity changes monitored with an unmanned aerial
vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China,
Sci. Total Environ., 771, 145433,
https://doi.org/10.1016/j.scitotenv.2021.145433, 2021.
Wietrzyk, P., Rola, K., Osyczka, P., Nicia, P., Szymañski, W., and
Wêgrzyn, M.: The relationships between soil chemical properties and
vegetation succession in the aspect of changes of distance from the glacier
forehead and time elapsed after glacier retreat in the Irenebreen foreland
(NW Svalbard), Plant Soil, 428, 195–211,
https://doi.org/10.1007/s11104-018-3660-3, 2018.
Wietrzyk-Pelka, P., Rola, K., Patchett, A., Szymañski, W., Wegrzyn, M.
H., and Björk, R. G.: Patterns and drivers of cryptogam and vascular
plant diversity in glacier forelands, Sci. Total Environ., 770,
https://doi.org/10.1016/j.scitotenv.2020.144793, 2021.
Wojcik, R., Eichel, J., Bradley, J. A., and Benning, L. G.: How allogenic
factors affect succession in glacier forefields, Earth-Sci. Rev., 218,
103642, https://doi.org/10.1016/j.earscirev.2021.103642, 2021.
Wood, S. N.: Fast stable restricted maximum likelihood and marginal
likelihood estimation of sempiparametric generalized linear models, J.
Roy. Stat. Soc. B, 73, 3–36, 2011.
Wood, S.: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation [code], https://cran.irsn.fr/web/packages/mgcv/mgcv.pdf (last access: 23 November 2021), 2022.
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Primary succession in proglacial areas depends on complex driving forces. To concretise the...
Altmetrics
Final-revised paper
Preprint