Articles | Volume 20, issue 19
https://doi.org/10.5194/bg-20-4183-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-4183-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Karim Benzerara
CORRESPONDING AUTHOR
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Agnès Elmaleh
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Maria Ciobanu
Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
Alexis De Wever
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Paola Bertolino
Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
Miguel Iniesto
Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
Didier Jézéquel
IPGP, CNRS UMR 7154, Université de Paris & UMR CARRTEL, INRAE-USMB, Thonon-les-Bains, France
Purificación López-García
Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
Nicolas Menguy
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Elodie Muller
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Fériel Skouri-Panet
Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
Sufal Swaraj
Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin-BP 48, 91192 Gif-sur-Yvette, France
Rosaluz Tavera
Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
Christophe Thomazo
Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, Dijon, France
Institut Universitaire de France, Paris, France
David Moreira
Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
Related authors
Clémentin Bouquet, Hermine Billard, Cécile C. Bidaud, Jonathan Colombet, Young-Tae Chang, Joan Artigas, Isabelle Batisson, Karim Benzerara, Fériel Skouri-Panet, Elodie Duprat, and Anne-Catherine Lehours
Biogeosciences, 22, 1729–1744, https://doi.org/10.5194/bg-22-1729-2025, https://doi.org/10.5194/bg-22-1729-2025, 2025
Short summary
Short summary
In the context of the ecological sustainability of phosphorus, the ubiquitous presence of polyphosphate-accumulating bacteria in natural environments invites efforts to reveal their unknown roles in the biogeochemical cycle of phosphorus. In this study, we evaluated the potential of combining the staining of intracellular polyphosphate granules and their subsequent detection by flow cytometry for the detection, quantification and cell sorting of polyphosphate-accumulating bacteria.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, Francois Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, and Isabelle Basile-Doelsch
SOIL, 11, 535–552, https://doi.org/10.5194/soil-11-535-2025, https://doi.org/10.5194/soil-11-535-2025, 2025
Short summary
Short summary
This study explores the impact of converting forests to agricultural land on soil C stabilization. By analyzing soil samples from a forest and crop Andosols, we found that C-stabilizing mineral–organic associations were in the form of amorphous coprecipitates in both soils. However, their quantity was significantly lower in the crop topsoil, suggesting their vulnerability to agricultural conversion. This highlights the need to develop strategies to preserve these associations in crop soils.
Clémentin Bouquet, Hermine Billard, Cécile C. Bidaud, Jonathan Colombet, Young-Tae Chang, Joan Artigas, Isabelle Batisson, Karim Benzerara, Fériel Skouri-Panet, Elodie Duprat, and Anne-Catherine Lehours
Biogeosciences, 22, 1729–1744, https://doi.org/10.5194/bg-22-1729-2025, https://doi.org/10.5194/bg-22-1729-2025, 2025
Short summary
Short summary
In the context of the ecological sustainability of phosphorus, the ubiquitous presence of polyphosphate-accumulating bacteria in natural environments invites efforts to reveal their unknown roles in the biogeochemical cycle of phosphorus. In this study, we evaluated the potential of combining the staining of intracellular polyphosphate granules and their subsequent detection by flow cytometry for the detection, quantification and cell sorting of polyphosphate-accumulating bacteria.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2405–2424, https://doi.org/10.5194/bg-20-2405-2023, https://doi.org/10.5194/bg-20-2405-2023, 2023
Short summary
Short summary
Dissolved organic carbon (DOC) is a reservoir of prime importance in the C cycle of both continental and marine systems. It has also been suggested to influence the past Earth climate but is still poorly characterized in ancient-Earth-like environments. In this paper we show how DOC analyses from modern redox-stratified lakes can evidence specific metabolic reactions and environmental factors and how these can help us to interpret the C cycle of specific periods in the Earth's past.
Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, and Karim Benzerara
Biogeosciences, 20, 2347–2367, https://doi.org/10.5194/bg-20-2347-2023, https://doi.org/10.5194/bg-20-2347-2023, 2023
Short summary
Short summary
We describe the C cycle of four modern stratified water bodies from Mexico, a necessary step to better understand the C cycle of primitive-Earth-like environments, which were dominated by these kinds of conditions. We highlight the importance of local external factors on the C cycle of these systems. Notably, they influence the sensitivity of the carbonate record to environmental changes. We also show the strong C-cycle variability among these lakes and their organic C sediment record.
Daniel A. Petrash, Ingrid M. Steenbergen, Astolfo Valero, Travis B. Meador, Tomáš Pačes, and Christophe Thomazo
Biogeosciences, 19, 1723–1751, https://doi.org/10.5194/bg-19-1723-2022, https://doi.org/10.5194/bg-19-1723-2022, 2022
Short summary
Short summary
We spectroscopically evaluated the gradients of dissolved C, N, S, Fe and Mn in a newly formed redox-stratified lake. The lake features an intermediate redox state between nitrogenous and euxinic conditions that encompasses vigorous open sulfur cycling fuelled by the reducible Fe and Mn stocks of the anoxic sediments. This results in substantial bottom water loads of dissolved iron and sulfate. Observations made in this ecosystem have relevance for deep-time paleoceanographic reconstructions.
Pierre Nevers, Julien Bouchez, Jérôme Gaillardet, Christophe Thomazo, Delphine Charpentier, Laëticia Faure, and Catherine Bertrand
Earth Surf. Dynam., 9, 487–504, https://doi.org/10.5194/esurf-9-487-2021, https://doi.org/10.5194/esurf-9-487-2021, 2021
Cited articles
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.:
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389–3402, https://doi.org/10.1093/nar/25.17.3389, 1997.
Aumont, O. and Bopp, L.:
Globalizing results from ocean in situ iron fertilization studies, Global Biogeochem. Cy., 20, GB2017, https://doi.org/10.1029/2005GB002591, 2006.
Baker, A. R. and Croot, P. L.:
Atmospheric and marine controls on aerosol iron solubility in seawater, Mar. Chem., 120, 4–13, https://doi.org/10.1016/j.marchem.2008.09.003, 2010.
Baron, F., Petit, S., Tertre, E., and Decarreau, A.:
Influence of aqueous Si and Fe speciation on tetrahedral Fe(III) substitutions in nontronites: A clay synthesis approach, Clay. Clay Miner., 64, 230–244, https://doi.org/10.1346/CCMN.2016.0640309, 2016.
Beghoura, H., Gorgues, T., Aumont, O., Planquette, H. f., Tagliabue, A., and Auger, P.-A.:
Impact of inorganic particles of sedimentary origin on global dissolved iron and phytoplankton distribution, J. Geophys. Res.-Oceans, 124, 8626–8646, https://doi.org/10.1029/2019JC015119, 2019.
Benzerara, K., Yoon, T. H., Tyliszczak, T., Constantz, B., Spormann, A. M., and Brown Jr, G. E.:
Scanning transmission X-ray microscopy study of microbial calcification, Geobiology, 2, 249–259, https://doi.org/10.1111/j.1472-4677.2004.00039.x, 2004.
Boyd, P. W. and Ellwood, M. J.:
The biogeochemical cycle of iron in the ocean, Nat. Geosci., 3, 675–682, https://doi.org/10.1038/ngeo964, 2010.
Brown, I. I., Mummey, D., and Cooksey, K. E.:
A novel cyanobacterium exhibiting an elevated tolerance for iron, FEMS Microbiol. Ecol., 52, 307–314, https://doi.org/10.1016/j.femsec.2004.11.020, 2005.
Callieri, C., Cronberg, G., and Stockner, J. G.:
Freshwater picocyanobacteria: single cells, microcolonies and colonial forms, in: Ecology of Cyanobacteria II: Their Diversity in Space and Time, edited by: Whitton, B. A., Springer Netherlands, Dordrecht, 229–269, https://doi.org/10.1007/978-94-007-3855-3_8, 2012.
Canfield, D. E.:
The early history of atmospheric oxygen: Homage to Robert M. Garrels, Annu. Rev. Earth Pl. Sc., 33, 1–36, https://doi.org/10.1146/annurev.earth.33.092203.122711, 2005.
Capella-Gutiérrez, S., Silla-Martínez, J. M., and Gabaldón, T.:
trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, 25, 1972–1973, https://doi.org/10.1093/bioinformatics/btp348, 2009.
Chan, C. S., De Stasio, G., Welch, S. A., Girasole, M., Frazer, B. H., Nesterova, M. V., Fakra, S., and Banfield, J. F.:
Microbial polysaccharides template assembly of nanocrystal fibers, Science, 303, 1656–1658, https://doi.org/10.1126/science.1092098, 2004.
Cosmidis, J. and Benzerara, K.:
Why do microbes make minerals?, C. R. Geosci., 354, 1–39, https://doi.org/10.5802/crgeos.107, 2022.
Cronberg, G. and Weibull, C.:
Cyanodictyon imperfectum, a new chroococcal blue-green alga from Lake Trummen, Sweden, Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 27, 101–110, https://doi.org/10.1127/algol_stud/27/1981/101, 1981.
Crowe, S. A., O'Neill, A. H., Katsev, S., Hehanussa, P., Haffner, G. D., Sundby, B., Mucci, A., and Fowle, D. A.:
The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia, Limnol. Oceanogr., 53, 319–331, https://doi.org/10.4319/lo.2008.53.1.0319, 2008.
del Buey, P., Sanz-Montero, M. E., Braissant, O., Cabestrero, O., and Visscher, P. T.:
The role of microbial extracellular polymeric substances on formation of sulfate minerals and fibrous Mg-clays, Chem. Geol., 581, 120403, https://doi.org/10.1016/j.chemgeo.2021.120403, 2021.
Doelsch, E., Stone, W. E. E., Petit, S., Masion, A., Rose, J., Bottero, J.-Y., and Nahon, D.:
Speciation and crystal chemistry of Fe(III) chloride hydrolyzed in the presence of SiO4 ligands. 2. Characterization of Si−Fe aggregates by FTIR and 29Si solid-state NMR, Langmuir, 17, 1399–1405, https://doi.org/10.1021/la0013188, 2001.
Economou-Amilli, A. and Spartinou, M.:
The diversity of Cyanodictyon imperfectum (Chroococcales, Cyanophyceae) in Lake Amvrakia, Greece, Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 64, 105–114, 1991.
Elrod, V. A., Berelson, W. M., Coale, K. H., and Johnson, K. S.:
The flux of iron from continental shelf sediments: A missing source for global budgets, Geophys. Res. Lett., 31, L12307, https://doi.org/10.1029/2004GL020216, 2004.
Emerson, D. and Moyer, C. L.:
Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition, Appl. Environ. Microb., 68, 3085–3093, https://doi.org/10.1128/AEM.68.6.3085-3093.2002, 2002.
Hein, J. R. and Koschinsky, A.:
13.11 – Deep-Ocean Ferromanganese Crusts and Nodules, in: Treatise on Geochemistry (Second Edition), edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 273–291, https://doi.org/10.1016/B978-0-08-095975-7.01111-6, 2014.
Hindák, F.:
On some planktonic coccoid blue-green algae characteristic by Fe-pecipitates, Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 32, 241–258, 1982.
Hindák, F.:
Four new chroococcalean species (Cyanophyta/Cyanobacteria) from Western Slovakia, Biologia – Section Botany, 57, 415–422, 2002.
Hofer, F., Grogger, W., Kothleitner, G., and Warbichler, P.:
Quantitative analysis of EFTEM elemental distribution images, Ultramicroscopy, 67, 83–103, https://doi.org/10.1016/S0304-3991(96)00106-4, 1997.
Iniesto, M., Moreira, D., Benzerara, K., Reboul, G., Bertolino, P., Tavera, R., and López-García, P.:
Planktonic microbial communities from microbialite-bearing lakes sampled along a salinity-alkalinity gradient, Limnol. Oceanogr., 67, 2718–2733, https://doi.org/10.1002/lno.12233, 2022.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.:
Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, https://doi.org/10.1126/science.1105959, 2005.
Johnson, J. E.:
From minerals to metabolisms: Evidence for life before oxygen from the geological record, Free Radical Bio. Med., 140, 126–137, https://doi.org/10.1016/j.freeradbiomed.2019.01.047, 2019.
Katoh, K. and Standley, D. M.:
MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772–780, https://doi.org/10.1093/molbev/mst010, 2013.
Keil, R. G., Montluçon, D. B., Prahl, F. G., and Hedges, J. I.:
Sorptive preservation of labile organic matter in marine sediments, Nature, 370, 549–552, https://doi.org/10.1038/370549a0, 1994.
Keren, N., Aurora, R., and Pakrasi, H. B.:
Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria, Plant Physiol., 135, 1666–1673, https://doi.org/10.1104/pp.104.042770, 2004.
Konhauser, K. O. and Urrutia, M. M.:
Bacterial clay authigenesis: a common biogeochemical process, Chem. Geol., 161, 399–413, https://doi.org/10.1016/S0009-2541(99)00118-7, 1999.
Kranzler, C., Rudolf, M., Keren, N., and Schleiff, E.:
Chapter Three - Iron in Cyanobacteria, in: Advances in Botanical Research, vol. 65, edited by: Chauvat, F. and Cassier-Chauvat, C., Academic Press, https://doi.org/10.1016/B978-0-12-394313-2.00003-2, 57–105, 2013.
Kranzler, C., Lis, H., Finkel, O. M., Schmetterer, G., Shaked, Y., and Keren, N.:
Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria, ISME J., 8, 409–417, https://doi.org/10.1038/ismej.2013.161, 2014.
Lepot, K., Addad, A., Knoll, A. H., Wang, J., Troadec, D., Beche, A., and Javaux, E. J.:
Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation, Nat. Commun., 8, 14890, https://doi.org/10.1038/ncomms14890, 2017.
Lingappa, U. F., Yeager, C. M., Sharma, A., Lanza, N. L., Morales, D. P., Xie, G., Atencio, A. D., Chadwick, G. L., Monteverde, D. R., Magyar, J. S., Webb, S. M., Valentine, J. S., Hoffman, B. M., and Fischer, W. W.:
An ecophysiological explanation for manganese enrichment in rock varnish, P. Natl. Acad. Sci. USA, 118, e2025188118, https://doi.org/10.1073/pnas.2025188118, 2021.
Liu, L.-M., Li, D.-L., Deng, B., Wang, X.-W., and Jiang, H.-B.:
Special roles for efflux systems in iron homeostasis of non-siderophore-producing cyanobacteria, Environ. Microbiol., 24, 551–565, https://doi.org/10.1111/1462-2920.15506, 2021.
Liu, X. and Millero, F. J.:
The solubility of iron in seawater, Mar. Chem., 77, 43–54, https://doi.org/10.1016/S0304-4203(01)00074-3, 2002.
Nelson, N. and Junge, W.:
Structure and energy transfer in photosystems of oxygenic photosynthesis, Annu. Rev. Biochem., 84, 659–683, https://doi.org/10.1146/annurev-biochem-092914-041942, 2015.
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q.:
IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268–274, https://doi.org/10.1093/molbev/msu300, 2015.
Pokrovski, G. S., Schott, J., Farges, F., and Hazemann, J.-L.:
Iron(III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy, Geochim. Cosmochim. Ac., 67, 3559–3573, https://doi.org/10.1016/S0016-7037(03)00160-1, 2003.
Qiu, G.-W., Jiang, H.-B., Lis, H., Li, Z.-K., Deng, B., Shang, J.-L., Sun, C.-Y., Keren, N., and Qiu, B.-S.:
A unique porin meditates iron-selective transport through cyanobacterial outer membranes, Environ. Microbiol., 23, 376–390, https://doi.org/10.1111/1462-2920.15324, 2021.
Rasmussen, B., Muhling, J. R., Tosca, N. J., and Tsikos, H.:
Evidence for anoxic shallow oceans at 2.45 Ga: Implications for the rise of oxygenic photosynthesis, Geology, 47, 622–626, https://doi.org/10.1130/G46162.1, 2019.
Raven, J. A., Evans, M. C. W., and Korb, R. E.:
The role of trace metals in photosynthetic electron transport in O2-evolving organisms, Photosynth. Res., 60, 111–150, https://doi.org/10.1023/A:1006282714942, 1999.
Swanner, E. D., Wu, W., Hao, L., Wüstner, M. L., Obst, M., Moran, D. M., McIlvin, M. R., Saito, M. A., and Kappler, A.:
Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions, Front. Earth Sci., 3, 6, https://doi.org/10.3389/feart.2015.00060, 2015.
Tagliabue, A., Bopp, L., Dutay, J.-C., Bowie, A. R., Chever, F., Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M., and Jeandel, C.:
Hydrothermal contribution to the oceanic dissolved iron inventory, Nat. Geosci., 3, 252–256, https://doi.org/10.1038/ngeo818, 2010.
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and Saito, M. A.:
The integral role of iron in ocean biogeochemistry, Nature, 543, 51–59, https://doi.org/10.1038/nature21058, 2017.
Taylor, S. R.:
Abundance of chemical elements in the continental crust: a new table, Geochim. Cosmochim. Ac., 28, 1273–1285, https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Tosca, N. J., Guggenheim, S., and Pufahl, P. K.:
An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater, GSA Bull., 128, 511–530, https://doi.org/10.1130/B31339.1, 2016.
Wilhelm, S. W.:
Ecology of iron-limited cyanobacteria: a review of physiological responses and implications for aquatic systems, Aquat. Microb. Ecol., 09, 295–303, https://doi.org/10.3354/ame009295, 1995.
Wollast, R., Mackenzie, F. T., and Bricker, O. P.:
Experimental precipitation and genesis of sepiolite at earth-surface conditions, Am. Mineral., 53, 1645–1662, 1968.
Wood, A. M., Horan, P. K., Muirhead, K., Phinney, D. A., Yentsch, C. M., and Waterbury, J. B.:
Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry1, Limnol. Oceanogr., 30, 1303–1315, https://doi.org/10.4319/lo.1985.30.6.1303, 1985.
Zeyen, N., Benzerara, K., Li, J., Groleau, A., Balan, E., Robert, J.-L., Esteve, I., Tavera, R., Moreira, D., and Lopez-Garcia, P.:
Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization, Front. Earth Sci., 3, 1–23, https://doi.org/10.3389/feart.2015.00064, 2015.
Zeyen, N., Benzerara, K., Menguy, N., Brest, J., Templeton, A. S., Webb, S. M., Gérard, E., Moreira, D., López-García, P., Tavera, R., and Morin, G.:
Fe-bearing phases in modern lacustrine microbialites from Mexico, Geochim. Cosmochim. Ac., 253, 201–230, https://doi.org/10.1016/j.gca.2019.03.021, 2019.
Zeyen, N., Benzerara, K., Beyssac, O., Daval, D., Muller, E., Thomazo, C., Tavera, R., López-García, P., Moreira, D., and Duprat, E.:
Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation?, Geochim. Cosmochim. Ac., 305, 148–184, https://doi.org/10.1016/j.gca.2021.04.030, 2021.
Co-editor-in-chief
This study documents the formation of Fe, Mn and Si amorphous mineral phases by very small cyanobacteria living in oxic, alkaline lakes. This finding has implications for using sedimentary Fe/Mn enrichments as a proxy for redox cycling in the past and extends the documented evidence for biomineralization of Si-rich phases.
This study documents the formation of Fe, Mn and Si amorphous mineral phases by very small...
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under...
Altmetrics
Final-revised paper
Preprint