Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-439-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-439-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Marine nitrogen fixation as a possible source of atmospheric water-soluble organic nitrogen aerosols in the subtropical North Pacific
Tsukasa Dobashi
Graduate School of Environmental Science, Hokkaido University,
Sapporo, 060-0810, Japan
Institute of Low Temperature Science, Hokkaido University, Sapporo,
060-0819, Japan
Institute of Low Temperature Science, Hokkaido University, Sapporo,
060-0819, Japan
Eri Tachibana
Institute of Low Temperature Science, Hokkaido University, Sapporo,
060-0819, Japan
Kazutaka Takahashi
Graduate School of Agricultural and Life Sciences, The University of
Tokyo, Tokyo, 113-8657, Japan
Sachiko Horii
Graduate School of Agricultural and Life Sciences, The University of
Tokyo, Tokyo, 113-8657, Japan
now at: Fisheries Resources Institute, Japan Fisheries Research and
Education Agency, Nagasaki, 851-2213, Japan
Fuminori Hashihama
Department of Ocean Sciences, Tokyo University of Marine Science and
Technology, Tokyo, 108-8477, Japan
Saori Yasui-Tamura
Department of Ocean Sciences, Tokyo University of Marine Science and
Technology, Tokyo, 108-8477, Japan
Yoko Iwamoto
Graduate School of Integrated Sciences for Life, Hiroshima University,
Hiroshima, 739-8521, Japan
Shu-Kuan Wong
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
now at: National Institute of Polar Research, Tokyo, 190-8518, Japan
Koji Hamasaki
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, 277-8564, Japan
Related authors
No articles found.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidataka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1294, https://doi.org/10.5194/egusphere-2024-1294, 2024
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph and plays a crucial role for marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Kaori Kawana, Fumikazu Taketani, Kazuhiko Matsumoto, Yutaka Tobo, Yoko Iwamoto, Takuma Miyakawa, Akinori Ito, and Yugo Kanaya
Atmos. Chem. Phys., 24, 1777–1799, https://doi.org/10.5194/acp-24-1777-2024, https://doi.org/10.5194/acp-24-1777-2024, 2024
Short summary
Short summary
Based on comprehensive shipborne observations, we found strong links between sea-surface biological materials and the formation of atmospheric fluorescent bioaerosols, cloud condensation nuclei, and ice-nucleating particles over the Arctic Ocean and Bering Sea during autumn 2019. Taking the wind-speed effect into account, we propose equations to approximate the links for this cruise, which can be used as a guide for modeling as well as for systematic comparisons with other observations.
Yuhao Cui, Eri Tachibana, Kimitaka Kawamura, and Yuzo Miyazaki
Biogeosciences, 20, 4969–4980, https://doi.org/10.5194/bg-20-4969-2023, https://doi.org/10.5194/bg-20-4969-2023, 2023
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids in plant leaves and serve as surface-active aerosols. Our study on the aerosol size distributions in a forest suggests that secondary FAs (SFAs) originated from plant waxes and that leaf senescence status is likely an important factor controlling the size distribution of SFAs. This study provides new insights into the sources of primary biological aerosol particles (PBAPs) and their effects on the aerosol ice nucleation activity.
Sayako Ueda, Yoko Iwamoto, Fumikazu Taketani, Mingxu Liu, and Hitoshi Matsui
Atmos. Chem. Phys., 23, 10117–10135, https://doi.org/10.5194/acp-23-10117-2023, https://doi.org/10.5194/acp-23-10117-2023, 2023
Short summary
Short summary
We examine iron in atmospheric fine aerosol particles collected over the Indian Ocean during shipborne observations in November 2018. Transmission electron microscopy analysis with water dialysis shows that various types of iron (fly ash, iron oxide, and mineral dust) co-exist with ammonium sulfate and that their solubility differs depending on the iron type. Using PM2.5 bulk samples and global model simulations, we elucidate their origins, aging, and implications for present iron simulations.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jinyoung Jung, Yuzo Miyazaki, Jin Hur, Yun Kyung Lee, Mi Hae Jeon, Youngju Lee, Kyoung-Ho Cho, Hyun Young Chung, Kitae Kim, Jung-Ok Choi, Catherine Lalande, Joo-Hong Kim, Taejin Choi, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 23, 4663–4684, https://doi.org/10.5194/acp-23-4663-2023, https://doi.org/10.5194/acp-23-4663-2023, 2023
Short summary
Short summary
This study examined the summertime fluorescence properties of water-soluble organic carbon (WSOC) in aerosols over the western Arctic Ocean. We found that the WSOC in fine-mode aerosols in coastal areas showed a higher polycondensation degree and aromaticity than in sea-ice-covered areas. The fluorescence properties of atmospheric WSOC in the summertime marine Arctic boundary can improve our understanding of the WSOC chemical and biological linkages at the ocean–sea-ice–atmosphere interface.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Sharmine Akter Simu, Yuzo Miyazaki, Eri Tachibana, Henning Finkenzeller, Jérôme Brioude, Aurélie Colomb, Olivier Magand, Bert Verreyken, Stephanie Evan, Rainer Volkamer, and Trissevgeni Stavrakou
Atmos. Chem. Phys., 21, 17017–17029, https://doi.org/10.5194/acp-21-17017-2021, https://doi.org/10.5194/acp-21-17017-2021, 2021
Short summary
Short summary
The tropical Indian Ocean (IO) is expected to be a significant source of water-soluble organic carbon (WSOC), which is relevant to cloud formation. Our study showed that marine secondary organic formation dominantly contributed to the aerosol WSOC mass at the high-altitude observatory in the southwest IO in the wet season in both marine boundary layer and free troposphere (FT). This suggests that the effect of marine secondary sources is important up to FT, a process missing in climate models.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021, https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
Yuzo Miyazaki, Divyavani Gowda, Eri Tachibana, Yoshiyuki Takahashi, and Tsutom Hiura
Biogeosciences, 16, 2181–2188, https://doi.org/10.5194/bg-16-2181-2019, https://doi.org/10.5194/bg-16-2181-2019, 2019
Short summary
Short summary
Fatty alcohols (FAs) are major components of surface lipids and can act as surface-active atmospheric organic aerosols, influencing the cloud formation. We identified five secondary FAs in atmospheric aerosols at two temperate forest sites and revealed their distinct seasonal variation for the first time. Our results suggest that they originated mostly from plant wax and could be used as useful tracers for primary biological aerosol particles.
Tomoki Mochizuki, Kimitaka Kawamura, Yuzo Miyazaki, Bhagawati Kunwar, and Suresh Kumar Reddy Boreddy
Atmos. Chem. Phys., 19, 2421–2432, https://doi.org/10.5194/acp-19-2421-2019, https://doi.org/10.5194/acp-19-2421-2019, 2019
Short summary
Short summary
Monocarboxylic acids (MCAs) in gases and particles were measured in deciduous forest. Formic acid in the gas phase and isopentanoic acid in the particle phase were dominant MCAs. Gaseous normal monoacids showed positive correlations with isobutyric acid. Particulate isopentanoic acid showed a positive correlation with lactic acid. The florest floor with soil microbes contributes to emission of MCAs. Our results may be useful to improve understanding of organic aerosol formation in the forest.
Sayako Ueda, Kazuo Osada, Keiichiro Hara, Masanori Yabuki, Fuminori Hashihama, and Jota Kanda
Atmos. Chem. Phys., 18, 9207–9224, https://doi.org/10.5194/acp-18-9207-2018, https://doi.org/10.5194/acp-18-9207-2018, 2018
Short summary
Short summary
We investigated mixing states and morphological features of soot-containing particles, by using water-dialysis analysis in remote ocean areas over the southern Indian Ocean and the Southern Ocean. Most particles were water-soluble. However, rarely were particles (2.1 % of particles on a TEM sample at a maximum) found to contain insoluble residuals with the characteristic soot shape.
Yuzo Miyazaki, Sean Coburn, Kaori Ono, David T. Ho, R. Bradley Pierce, Kimitaka Kawamura, and Rainer Volkamer
Atmos. Chem. Phys., 16, 7695–7707, https://doi.org/10.5194/acp-16-7695-2016, https://doi.org/10.5194/acp-16-7695-2016, 2016
Short summary
Short summary
We conducted a WSOC-specific 13C analysis of submicron marine aerosols over the eastern equatorial Pacific for the first time. The analysis of 13C combined with monosaccharides provides evidence of a significant contribution of marine dissolved organic carbon (DOC) to submicron particles in the MBL regardless of the oceanic area. The study demonstrates that DOC is closely correlated with the submicron WSOC and implies that it may characterize background OA in the MBL over the study region.
T. Shiozaki, S. Takeda, S. Itoh, T. Kodama, X. Liu, F. Hashihama, and K. Furuya
Biogeosciences, 12, 6931–6943, https://doi.org/10.5194/bg-12-6931-2015, https://doi.org/10.5194/bg-12-6931-2015, 2015
Short summary
Short summary
The high abundance of Trichodesmium and active nitrogen fixation in the Kuroshio were not explained by the nutrient (nitrate, phosphate, and iron) distribution. We observed a Trichodesmium bloom and high nitrogen fixation near islands situated along the Kuroshio. Numerical particle-tracking experiments simulated the transportation of water around the Ryukyu Islands to the Kuroshio. Our results indicate that Trichodesmium growing around the Ryukyu Islands could be advected into the Kuroshio.
T. Mochizuki, Y. Miyazaki, K. Ono, R. Wada, Y. Takahashi, N. Saigusa, K. Kawamura, and A. Tani
Atmos. Chem. Phys., 15, 12029–12041, https://doi.org/10.5194/acp-15-12029-2015, https://doi.org/10.5194/acp-15-12029-2015, 2015
Short summary
Short summary
Simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene in a forest, along with their oxidation products in aerosols, suggest that the inflow of anthropogenic precursors/aerosols enhanced the formation of both isoprene- and α-pinene-derived secondary organic aerosol (SOA) within the forest canopy even when the flux was low. We also emphasize the role of vegetation/soils near the forest floor as important sources of isoprene and α-pinene in the forest.
M. Girault, H. Arakawa, A. Barani, H. J. Ceccaldi, F. Hashihama, and G. Gregori
Biogeosciences, 12, 3607–3621, https://doi.org/10.5194/bg-12-3607-2015, https://doi.org/10.5194/bg-12-3607-2015, 2015
Short summary
Short summary
This study focuses on the distribution of three heterotrophic prokaryote groups in relation to the environmental conditions met in the western part of NPSG. Our results showed that the high variability between the various heterotrophic prokaryote cluster abundances depend both on the mesoscale structures and the oligotrophic gradient. To the best of our knowledge, this study is the first report of the heterotrophic prokaryotes distribution under La Niña conditions in the western part of NPSG.
K. F. Ho, R.-J. Huang, K. Kawamura, E. Tachibana, S. C. Lee, S. S. H. Ho, T. Zhu, and L. Tian
Atmos. Chem. Phys., 15, 3111–3123, https://doi.org/10.5194/acp-15-3111-2015, https://doi.org/10.5194/acp-15-3111-2015, 2015
Short summary
Short summary
The objective of this study is to identify the influence of traffic emissions and regional transport to the atmosphere in Beijing during the CAREBeijing-2007 in summer. This study demonstrates that even when primary exhaust was controlled by traffic restrictions, the contribution of secondary organic species formed from photochemical processes was critical with long-range atmospheric transport of pollutants.
Y. Miyazaki, M. Sawano, and K. Kawamura
Biogeosciences, 11, 4407–4414, https://doi.org/10.5194/bg-11-4407-2014, https://doi.org/10.5194/bg-11-4407-2014, 2014
M. Sato, R. Sakuraba, and F. Hashihama
Biogeosciences, 10, 7677–7688, https://doi.org/10.5194/bg-10-7677-2013, https://doi.org/10.5194/bg-10-7677-2013, 2013
M. Girault, H. Arakawa, A. Barani, H. J. Ceccaldi, F. Hashihama, S. Kinouchi, and G. Gregori
Biogeosciences, 10, 5947–5965, https://doi.org/10.5194/bg-10-5947-2013, https://doi.org/10.5194/bg-10-5947-2013, 2013
K. Kawamura, E. Tachibana, K. Okuzawa, S. G. Aggarwal, Y. Kanaya, and Z. F. Wang
Atmos. Chem. Phys., 13, 8285–8302, https://doi.org/10.5194/acp-13-8285-2013, https://doi.org/10.5194/acp-13-8285-2013, 2013
Related subject area
Biogeochemistry: Air - Sea Exchange
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 1: Differences between seawater DMS estimations
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part 2: Sea–air fluxes
Aerosol trace element solubility and deposition fluxes over the polluted, dusty Mediterranean and Black Sea basins
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas
Estimating marine carbon uptake in the northeast Pacific using a neural network approach
Sea–air methane flux estimates derived from marine surface observations and instantaneous atmospheric measurements in the northern Labrador Sea and Baffin Bay
Global analysis of the controls on seawater dimethylsulfide spatial variability
Air–sea gas exchange in a seagrass ecosystem – results from a 3He ∕ SF6 tracer release experiment
Concentrations of dissolved dimethyl sulfide (DMS), methanethiol and other trace gases in context of microbial communities from the temperate Atlantic to the Arctic Ocean
Ice nucleating properties of the sea ice diatom Fragilariopsis cylindrus and its exudates
On physical mechanisms enhancing air–sea CO2 exchange
Winter season Southern Ocean distributions of climate-relevant trace gases
How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study
Identifying the biological control of the annual and multi-year variations in South Atlantic air–sea CO2 flux
The sensitivity of pCO2 reconstructions to sampling scales across a Southern Ocean sub-domain: a semi-idealized ocean sampling simulation approach
Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)
Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO2 than expected
New constraints on biological production and mixing processes in the South China Sea from triple isotope composition of dissolved oxygen
Tidal mixing of estuarine and coastal waters in the western English Channel is a control on spatial and temporal variability in seawater CO2
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans
Sea ice concentration impacts dissolved organic gases in the Canadian Arctic
Evaluating the Arabian Sea as a regional source of atmospheric CO2: seasonal variability and drivers
An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series
Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source
Eukaryotic community composition in the sea surface microlayer across an east–west transect in the Mediterranean Sea
Enhancement of the North Atlantic CO2 sink by Arctic Waters
Global ocean dimethyl sulfide climatology estimated from observations and an artificial neural network
Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem
Underway seawater and atmospheric measurements of volatile organic compounds in the Southern Ocean
Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs
Spatial variations in CO2 fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model
Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification
Insights from year-long measurements of air–water CH4 and CO2 exchange in a coastal environment
On the role of climate modes in modulating the air–sea CO2 fluxes in eastern boundary upwelling systems
Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study
Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades
Utilizing the Drake Passage Time-series to understand variability and change in subpolar Southern Ocean pCO2
Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment
The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models
Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2
Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean
Constraints on global oceanic emissions of N2O from observations and models
Arctic Ocean CO2 uptake: an improved multiyear estimate of the air–sea CO2 flux incorporating chlorophyll a concentrations
Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and spatial analysis
Phytoplankton growth response to Asian dust addition in the northwest Pacific Ocean versus the Yellow Sea
Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation
Changes in the partial pressure of carbon dioxide in the Mauritanian–Cap Vert upwelling region between 2005 and 2012
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, and Rafel Simó
Biogeosciences, 21, 4439–4452, https://doi.org/10.5194/bg-21-4439-2024, https://doi.org/10.5194/bg-21-4439-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emission and quantification of its impacts have large uncertainties, but a detailed study on the emissions and drivers of their uncertainty is missing to date. The emissions are usually calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in DMS seawater products, which can affect DMS fluxes.
Sankirna D. Joge, Anoop S. Mahajan, Shrivardhan Hulswar, Christa A. Marandino, Martí Galí, Thomas G. Bell, Mingxi Yang, and Rafel Simó
Biogeosciences, 21, 4453–4467, https://doi.org/10.5194/bg-21-4453-2024, https://doi.org/10.5194/bg-21-4453-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is the largest natural source of sulfur in the atmosphere and leads to the formation of cloud condensation nuclei. DMS emissions and quantification of their impacts have large uncertainties, but a detailed study on the range of emissions and drivers of their uncertainty is missing to date. The emissions are calculated from the seawater DMS concentrations and a flux parameterization. Here we quantify the differences in the effect of flux parameterizations used in models.
Rachel Ursula Shelley, Alexander Roberts Baker, Max Thomas, and Sam Murphy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2667, https://doi.org/10.5194/egusphere-2024-2667, 2024
Short summary
Short summary
The fractions of trace elements in atmospheric particles over the Mediterranean and Black seas that are soluble have been measured. These soluble fractions can affect the growth of microorganisms in the ocean and our results show that they are affected by mixing with pollutants from the surrounding land and shipping emissions. Atmospheric particles contribute to the soluble element loads found in the Mediterranean surface waters and influence the balance between nitrogen and phosphorus there.
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024, https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Short summary
High frequency pCO2 measurements reveal net neutral CO2 flux in a mesohaline reach of the Chesapeake Bay. Net off-gassing to the atmosphere begins in June when water temperatures rise above ~26ºC, continuing through November when temperatures fall below ~10ºC. Dissolved CO2 concentrations follow day–night cycles and are especially pronounced in warm waters. From December through May, the river is largely an uninterrupted sink for CO2 (i.e. CO2 is drawn out of the atmosphere into the river).
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024, https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Short summary
Delving into CO dynamics from the East Sea to the Bering Sea, our study unveils the influence of physical transport on CO budgets. By measuring CO concentrations and parameters, we elucidate the interplay between biological and physical processes, highlighting the role of lateral transport in shaping CO distributions. Our findings underscore the importance of considering both biogeochemical and physical drivers in understanding marine carbon fluxes.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing-Guang Lai, and Qian Liu
Biogeosciences, 21, 161–176, https://doi.org/10.5194/bg-21-161-2024, https://doi.org/10.5194/bg-21-161-2024, 2024
Short summary
Short summary
The distributions of volatile organic sulfur compounds (VSCs) (DMS, COS, and CS2) in the seawater and atmosphere of the Bohai and Yellow Seas were evaluated. Seasonal variations in VSCs were found and showed summer > spring. The COS concentrations exhibited positive correlation with DOC concentrations in seawater during summer. VSCs concentrations in seawater decreased with the depth. Sea-to-air fluxes of COS, DMS, and CS2 indicated that these marginal seas are sources of atmospheric VSCs.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ryo Dobashi and David T. Ho
Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, https://doi.org/10.5194/bg-20-1075-2023, 2023
Short summary
Short summary
Seagrass meadows are productive ecosystems and bury much carbon. Understanding their role in the global carbon cycle requires knowledge of air–sea CO2 fluxes and hence the knowledge of gas transfer velocity (k). In this study, k was determined from the dual tracer technique in Florida Bay. The observed gas transfer velocity was lower than previous studies in the coastal and open oceans at the same wind speeds, most likely due to wave attenuation by seagrass and limited wind fetch in this area.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Lukas Eickhoff, Maddalena Bayer-Giraldi, Naama Reicher, Yinon Rudich, and Thomas Koop
Biogeosciences, 20, 1–14, https://doi.org/10.5194/bg-20-1-2023, https://doi.org/10.5194/bg-20-1-2023, 2023
Short summary
Short summary
The formation of ice is an important process in Earth’s atmosphere, biosphere, and cryosphere, in particular in polar regions. Our research focuses on the influence of the sea ice diatom Fragilariopsis cylindrus and of molecules produced by it upon heterogenous ice nucleation. For that purpose, we studied the freezing of tiny droplets containing the diatoms in a microfluidic device. Together with previous studies, our results suggest a common freezing behaviour of various sea ice diatoms.
Lucía Gutiérrez-Loza, Erik Nilsson, Marcus B. Wallin, Erik Sahlée, and Anna Rutgersson
Biogeosciences, 19, 5645–5665, https://doi.org/10.5194/bg-19-5645-2022, https://doi.org/10.5194/bg-19-5645-2022, 2022
Short summary
Short summary
The exchange of CO2 between the ocean and the atmosphere is an essential aspect of the global carbon cycle and is highly relevant for the Earth's climate. In this study, we used 9 years of in situ measurements to evaluate the temporal variability in the air–sea CO2 fluxes in the Baltic Sea. Furthermore, using this long record, we assessed the effect of atmospheric and water-side mechanisms controlling the efficiency of the air–sea CO2 exchange under different wind-speed conditions.
Li Zhou, Dennis Booge, Miming Zhang, and Christa A. Marandino
Biogeosciences, 19, 5021–5040, https://doi.org/10.5194/bg-19-5021-2022, https://doi.org/10.5194/bg-19-5021-2022, 2022
Short summary
Short summary
Trace gas air–sea exchange exerts an important control on air quality and climate, especially in the Southern Ocean (SO). Almost all of the measurements there are skewed to summer, but it is essential to expand our measurement database over greater temporal and spatial scales. Therefore, we report measured concentrations of dimethylsulfide (DMS, as well as related sulfur compounds) and isoprene in the Atlantic sector of the SO. The observations of isoprene are the first in the winter in the SO.
Theresa Barthelmeß and Anja Engel
Biogeosciences, 19, 4965–4992, https://doi.org/10.5194/bg-19-4965-2022, https://doi.org/10.5194/bg-19-4965-2022, 2022
Short summary
Short summary
Greenhouse gases released by human activity cause a global rise in mean temperatures. While scientists can predict how much of these gases accumulate in the atmosphere based on not only human-derived sources but also oceanic sinks, it is rather difficult to predict the major influence of coastal ecosystems. We provide a detailed study on the occurrence, composition, and controls of substances that suppress gas exchange. We thus help to determine what controls coastal greenhouse gas fluxes.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Laique M. Djeutchouang, Nicolette Chang, Luke Gregor, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 19, 4171–4195, https://doi.org/10.5194/bg-19-4171-2022, https://doi.org/10.5194/bg-19-4171-2022, 2022
Short summary
Short summary
Based on observing system simulation experiments using a mesoscale-resolving model, we found that to significantly improve uncertainties and biases in carbon dioxide (CO2) mapping in the Southern Ocean, it is essential to resolve the seasonal cycle (SC) of the meridional gradient of CO2 through high frequency (at least daily) observations that also span the region's meridional axis. We also showed that the estimated SC anomaly and mean annual CO2 are highly sensitive to seasonal sampling biases.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Hana Jurikova, Osamu Abe, Fuh-Kwo Shiah, and Mao-Chang Liang
Biogeosciences, 19, 2043–2058, https://doi.org/10.5194/bg-19-2043-2022, https://doi.org/10.5194/bg-19-2043-2022, 2022
Short summary
Short summary
We studied the isotopic composition of oxygen dissolved in seawater in the South China Sea. This tells us about the origin of oxygen in the water column, distinguishing between biological oxygen produced by phytoplankton communities and atmospheric oxygen entering seawater through gas exchange. We found that the East Asian Monsoon plays an important role in determining the amount of oxygen produced vs. consumed by the phytoplankton, as well as in inducing vertical water mass mixing.
Richard P. Sims, Michael Bedington, Ute Schuster, Andrew J. Watson, Vassilis Kitidis, Ricardo Torres, Helen S. Findlay, James R. Fishwick, Ian Brown, and Thomas G. Bell
Biogeosciences, 19, 1657–1674, https://doi.org/10.5194/bg-19-1657-2022, https://doi.org/10.5194/bg-19-1657-2022, 2022
Short summary
Short summary
The amount of carbon dioxide (CO2) being absorbed by the ocean is relevant to the earth's climate. CO2 values in the coastal ocean and estuaries are not well known because of the instrumentation used. We used a new approach to measure CO2 across the coastal and estuarine zone. We found that CO2 and salinity were linked to the state of the tide. We used our CO2 measurements and model salinity to predict CO2. Previous studies overestimate how much CO2 the coastal ocean draws down at our site.
Thi Tuyet Trang Chau, Marion Gehlen, and Frédéric Chevallier
Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, https://doi.org/10.5194/bg-19-1087-2022, 2022
Short summary
Short summary
Air–sea CO2 fluxes and associated uncertainty over the open ocean to coastal shelves are estimated with a new ensemble-based reconstruction of pCO2 trained on observation-based data. The regional distribution and seasonality of CO2 sources and sinks are consistent with those suggested in previous studies as well as mechanisms discussed therein. The ensemble-based uncertainty field allows identifying critical regions where improvements in pCO2 and air–sea CO2 flux estimates should be a priority.
Charel Wohl, Anna E. Jones, William T. Sturges, Philip D. Nightingale, Brent Else, Brian J. Butterworth, and Mingxi Yang
Biogeosciences, 19, 1021–1045, https://doi.org/10.5194/bg-19-1021-2022, https://doi.org/10.5194/bg-19-1021-2022, 2022
Short summary
Short summary
We measured concentrations of five different organic gases in seawater in the high Arctic during summer. We found higher concentrations near the surface of the water column (top 5–10 m) and in areas of partial ice cover. This suggests that sea ice influences the concentrations of these gases. These gases indirectly exert a slight cooling effect on the climate, and it is therefore important to measure the levels accurately for future climate predictions.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Jesse M. Vance, Kim Currie, John Zeldis, Peter W. Dillingham, and Cliff S. Law
Biogeosciences, 19, 241–269, https://doi.org/10.5194/bg-19-241-2022, https://doi.org/10.5194/bg-19-241-2022, 2022
Short summary
Short summary
Long-term monitoring is needed to detect changes in our environment. Time series of ocean carbon have aided our understanding of seasonal cycles and provided evidence for ocean acidification. Data gaps are inevitable, yet no standard method for filling gaps exists. We present a regression approach here and compare it to seven other common methods to understand the impact of different approaches when assessing seasonal to climatic variability in ocean carbon.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Birthe Zäncker, Michael Cunliffe, and Anja Engel
Biogeosciences, 18, 2107–2118, https://doi.org/10.5194/bg-18-2107-2021, https://doi.org/10.5194/bg-18-2107-2021, 2021
Short summary
Short summary
Fungi are found in numerous marine environments. Our study found an increased importance of fungi in the Ionian Sea, where bacterial and phytoplankton counts were reduced, but organic matter was still available, suggesting fungi might benefit from the reduced competition from bacteria in low-nutrient, low-chlorophyll (LNLC) regions.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Wei-Lei Wang, Guisheng Song, François Primeau, Eric S. Saltzman, Thomas G. Bell, and J. Keith Moore
Biogeosciences, 17, 5335–5354, https://doi.org/10.5194/bg-17-5335-2020, https://doi.org/10.5194/bg-17-5335-2020, 2020
Short summary
Short summary
Dimethyl sulfide, a volatile compound produced as a byproduct of marine phytoplankton activity, can be emitted to the atmosphere via gas exchange. In the atmosphere, DMS is oxidized to cloud condensation nuclei, thus contributing to cloud formation. Therefore, oceanic DMS plays an important role in regulating the planet's climate by influencing the radiation budget. In this study, we use an artificial neural network model to update the global DMS climatology and estimate the sea-to-air flux.
Yuri Galletti, Silvia Becagli, Alcide di Sarra, Margherita Gonnelli, Elvira Pulido-Villena, Damiano M. Sferlazzo, Rita Traversi, Stefano Vestri, and Chiara Santinelli
Biogeosciences, 17, 3669–3684, https://doi.org/10.5194/bg-17-3669-2020, https://doi.org/10.5194/bg-17-3669-2020, 2020
Short summary
Short summary
This paper reports the first data about atmospheric deposition of dissolved organic matter (DOM) on the island of Lampedusa. It also shows the implications for the surface marine layer by studying the impact of atmospheric organic carbon deposition in the marine ecosystem. It is a preliminary study, but it is pioneering and important for having new data that can be crucial in order to understand the impact of atmospheric deposition on the marine carbon cycle in a global climate change scenario.
Charel Wohl, Ian Brown, Vassilis Kitidis, Anna E. Jones, William T. Sturges, Philip D. Nightingale, and Mingxi Yang
Biogeosciences, 17, 2593–2619, https://doi.org/10.5194/bg-17-2593-2020, https://doi.org/10.5194/bg-17-2593-2020, 2020
Short summary
Short summary
The oceans represent a poorly understood source of organic carbon to the atmosphere. In this paper, we present ship-based measurements of specific compounds in ambient air and seawater of the Southern Ocean. We present fluxes of these gases between air and sea at very high resolution. The data also contain evidence for day and night variations in some of these compounds. These measurements can be used to better understand the role of the Southern Ocean in the cycling of these compounds.
Rebecca L. Jackson, Albert J. Gabric, Roger Cropp, and Matthew T. Woodhouse
Biogeosciences, 17, 2181–2204, https://doi.org/10.5194/bg-17-2181-2020, https://doi.org/10.5194/bg-17-2181-2020, 2020
Short summary
Short summary
Coral reefs are a strong source of atmospheric sulfur through stress-induced emissions of dimethylsulfide (DMS). This biogenic sulfur can influence aerosol and cloud properties and, consequently, the radiative balance over the ocean. DMS emissions may therefore help to mitigate coral physiological stress via increased low-level cloud cover and reduced sea surface temperature. The importance of DMS in coral physiology and climate is reviewed and the implications for coral bleaching are discussed.
Louise Delaigue, Helmuth Thomas, and Alfonso Mucci
Biogeosciences, 17, 547–566, https://doi.org/10.5194/bg-17-547-2020, https://doi.org/10.5194/bg-17-547-2020, 2020
Short summary
Short summary
This paper reports on the first compilation and analysis of the surface water pCO2 distribution in the Saguenay Fjord, the southernmost subarctic fjord in the Northern Hemisphere, and thus fills a significant knowledge gap in current regional estimates of estuarine CO2 emissions.
Tim Fischer, Annette Kock, Damian L. Arévalo-Martínez, Marcus Dengler, Peter Brandt, and Hermann W. Bange
Biogeosciences, 16, 2307–2328, https://doi.org/10.5194/bg-16-2307-2019, https://doi.org/10.5194/bg-16-2307-2019, 2019
Short summary
Short summary
We investigated air–sea gas exchange in oceanic upwelling regions for the case of nitrous oxide off Peru. In this region, routine concentration measurements from ships at 5 m or 10 m depth prove to overestimate surface (bulk) concentration. Thus, standard estimates of gas exchange will show systematic error. This is due to very shallow stratified layers that inhibit exchange between surface water and waters below and can exist for several days. Maximum bias occurs in moderate wind conditions.
Mingxi Yang, Thomas G. Bell, Ian J. Brown, James R. Fishwick, Vassilis Kitidis, Philip D. Nightingale, Andrew P. Rees, and Timothy J. Smyth
Biogeosciences, 16, 961–978, https://doi.org/10.5194/bg-16-961-2019, https://doi.org/10.5194/bg-16-961-2019, 2019
Short summary
Short summary
We quantify the emissions and uptake of the greenhouse gases carbon dioxide and methane from the coastal seas of the UK over 1 year using the state-of-the-art eddy covariance technique. Our measurements show how these air–sea fluxes vary twice a day (tidal), diurnally (circadian) and seasonally. We also estimate the air–sea gas transfer velocity, which is essential for modelling and predicting coastal air-sea exchange.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Stelios Myriokefalitakis, Akinori Ito, Maria Kanakidou, Athanasios Nenes, Maarten C. Krol, Natalie M. Mahowald, Rachel A. Scanza, Douglas S. Hamilton, Matthew S. Johnson, Nicholas Meskhidze, Jasper F. Kok, Cecile Guieu, Alex R. Baker, Timothy D. Jickells, Manmohan M. Sarin, Srinivas Bikkina, Rachel Shelley, Andrew Bowie, Morgane M. G. Perron, and Robert A. Duce
Biogeosciences, 15, 6659–6684, https://doi.org/10.5194/bg-15-6659-2018, https://doi.org/10.5194/bg-15-6659-2018, 2018
Short summary
Short summary
The first atmospheric iron (Fe) deposition model intercomparison is presented in this study, as a result of the deliberations of the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP; http://www.gesamp.org/) Working Group 38. We conclude that model diversity over remote oceans reflects uncertainty in the Fe content parameterizations of dust aerosols, combustion aerosol emissions and the size distribution of transported aerosol Fe.
Liliane Merlivat, Jacqueline Boutin, David Antoine, Laurence Beaumont, Melek Golbol, and Vincenzo Vellucci
Biogeosciences, 15, 5653–5662, https://doi.org/10.5194/bg-15-5653-2018, https://doi.org/10.5194/bg-15-5653-2018, 2018
Short summary
Short summary
The fugacity of carbon dioxide in seawater (fCO2) was measured hourly in the surface waters of the NW Mediterranean Sea during two 3-year sequences separated by 18 years. A decrease of pH of 0.0022 yr−1 was computed. About 85 % of the accumulation of dissolved inorganic carbon (DIC) comes from chemical equilibration with increasing atmospheric CO2; the remaining 15 % accumulation is consistent with estimates of transfer of Atlantic waters through the Gibraltar Strait.
Amanda R. Fay, Nicole S. Lovenduski, Galen A. McKinley, David R. Munro, Colm Sweeney, Alison R. Gray, Peter Landschützer, Britton B. Stephens, Taro Takahashi, and Nancy Williams
Biogeosciences, 15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, https://doi.org/10.5194/bg-15-3841-2018, 2018
Short summary
Short summary
The Southern Ocean is highly under-sampled and since this region dominates the ocean sink for CO2, understanding change is critical. Here we utilize available observations to evaluate how the seasonal cycle, variability, and trends in surface ocean carbon in the well-sampled Drake Passage region compare to that of the broader subpolar Southern Ocean. Results indicate that the Drake Passage is representative of the broader region; however, additional winter observations would improve comparisons.
Cui-Ci Sun, Martin Sperling, and Anja Engel
Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, https://doi.org/10.5194/bg-15-3577-2018, 2018
Short summary
Short summary
Biogenic gel particles such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) are important components in the sea-surface microlayer (SML). Their potential role in air–sea gas exchange and in primary organic aerosol emission has generated considerable research interest. Our wind wave channel experiment revealed how wind speed controls the accumulation and size distribution of biogenic gel particles in the SML.
N. Precious Mongwe, Marcello Vichi, and Pedro M. S. Monteiro
Biogeosciences, 15, 2851–2872, https://doi.org/10.5194/bg-15-2851-2018, https://doi.org/10.5194/bg-15-2851-2018, 2018
Short summary
Short summary
Here we analyze seasonal cycle of CO2 biases in 10 CMIP5 models in the SO. We find two main model biases; exaggeration of primary production such that biologically driven DIC changes mainly regulates FCO2 variability, and an overestimation of the role of solubility, such that changes in temperature dominantly drive FCO2 seasonal changes to an extent of opposing biological CO2 uptake in spring. CMIP5 models show greater zonal homogeneity in the seasonal cycle of FCO2 than observational products.
Allison R. Moreno, George I. Hagstrom, Francois W. Primeau, Simon A. Levin, and Adam C. Martiny
Biogeosciences, 15, 2761–2779, https://doi.org/10.5194/bg-15-2761-2018, https://doi.org/10.5194/bg-15-2761-2018, 2018
Short summary
Short summary
To bridge the missing links between variable marine elemental stoichiometry, phytoplankton physiology and carbon cycling, we embed four environmentally controlled stoichiometric models into a five-box ocean model. As predicted each model varied in its influence on the biological pump. Surprisingly, we found that variation can lead to nonlinear controls on atmospheric CO2 and carbon export, suggesting the need for further studies of ocean C : P and the impact on ocean carbon cycling.
Luke Gregor, Schalk Kok, and Pedro M. S. Monteiro
Biogeosciences, 15, 2361–2378, https://doi.org/10.5194/bg-15-2361-2018, https://doi.org/10.5194/bg-15-2361-2018, 2018
Short summary
Short summary
The Southern Ocean accounts for a large portion of the variability in oceanic CO2 uptake. However, the drivers of these changes are not understood due to a lack of observations. In this study, we used an ensemble of gap-filling methods to estimate surface CO2. We found that winter was a more important driver of longer-term variability driven by changes in wind stress. Summer variability of CO2 was driven primarily by increases in primary production.
Erik T. Buitenhuis, Parvadha Suntharalingam, and Corinne Le Quéré
Biogeosciences, 15, 2161–2175, https://doi.org/10.5194/bg-15-2161-2018, https://doi.org/10.5194/bg-15-2161-2018, 2018
Short summary
Short summary
Thanks to decreases in CFC concentrations, N2O is now the third-most important greenhouse gas, and the dominant contributor to stratospheric ozone depletion. Here we estimate the ocean–atmosphere N2O flux. We find that an estimate based on observations alone has a large uncertainty. By combining observations and a range of model simulations we find that the uncertainty is much reduced to 2.45 ± 0.8 Tg N yr−1, and better constrained and at the lower end of the estimate in the latest IPCC report.
Sayaka Yasunaka, Eko Siswanto, Are Olsen, Mario Hoppema, Eiji Watanabe, Agneta Fransson, Melissa Chierici, Akihiko Murata, Siv K. Lauvset, Rik Wanninkhof, Taro Takahashi, Naohiro Kosugi, Abdirahman M. Omar, Steven van Heuven, and Jeremy T. Mathis
Biogeosciences, 15, 1643–1661, https://doi.org/10.5194/bg-15-1643-2018, https://doi.org/10.5194/bg-15-1643-2018, 2018
Short summary
Short summary
We estimated monthly air–sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014, after mapping pCO2 in the surface water using a self-organizing map technique. The addition of Chl a as a parameter enabled us to improve the estimate of pCO2 via better representation of its decline in spring. The uncertainty in the CO2 flux estimate was reduced, and a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C y−1 was determined to be significant.
Alizée Roobaert, Goulven G. Laruelle, Peter Landschützer, and Pierre Regnier
Biogeosciences, 15, 1701–1720, https://doi.org/10.5194/bg-15-1701-2018, https://doi.org/10.5194/bg-15-1701-2018, 2018
Chao Zhang, Huiwang Gao, Xiaohong Yao, Zongbo Shi, Jinhui Shi, Yang Yu, Ling Meng, and Xinyu Guo
Biogeosciences, 15, 749–765, https://doi.org/10.5194/bg-15-749-2018, https://doi.org/10.5194/bg-15-749-2018, 2018
Short summary
Short summary
This study compares the response of phytoplankton growth in the northwest Pacific to those in the Yellow Sea. In general, larger positive responses of phytoplankton induced by combined nutrients (in the subtropical gyre of the northwest Pacific) than those induced by a single nutrient (in the Kuroshio Extension and the Yellow Sea) from the dust are observed. We also emphasize the importance of an increase in bioavailable P stock for phytoplankton growth following dust addition.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Melchor González-Dávila, J. Magdalena Santana Casiano, and Francisco Machín
Biogeosciences, 14, 3859–3871, https://doi.org/10.5194/bg-14-3859-2017, https://doi.org/10.5194/bg-14-3859-2017, 2017
Short summary
Short summary
The Mauritanian–Cap Vert upwelling is shown to be sensitive to climate change forcing on upwelling processes, which strongly affects the CO2 surface distribution, ocean acidification rates, and air–sea CO2 exchange. We confirmed an upwelling intensification, an increase in the CO2 outgassing, and an important decrease in the pH of the surface waters. Upwelling areas are poorly studied and VOS lines are shown as one of the most significant contributors to our knowledge of the ocean's response.
Cited articles
Altieri, K. E., Fawcett, S. E., Peters, A. J., Sigman, D. M., and Hastings,
M. G.: Marine biogenic source of atmospheric organic nitrogen in the
subtropical North Atlantic, P. Natl. Acad. Sci. USA, 113, 925–930,
https://doi.org/10.1073/pnas.1516847113, 2016.
Altieri, K. E., Fawcett, S. E., and Hastings, M. G.: Reactive Nitrogen Cycling
in the Atmosphere and Ocean, Annu. Rev. Earth Planet. Sci., 49,
523–550, https://doi.org/10.1146/annurev-earth-083120-052147, 2021.
Berthelot, H., Bonnet, S., Camps, M., Grosso, O., and Moutin, T.: Assessment
of the dinitrogen released as ammonium and dissolved organic nitrogen by
unicellular and filamentous marine diazotrophic cyanobacteria grown in
culture, Front. Mar. Sci., 2, 80, https://doi.org/10.3389/fmars.2015.00080, 2015.
Blake, N. J., Blake, D. R., Swanson, A. L., Atlas, E., Flocke, F., and
Rowland, F. S.: Latitudinal, vertical, and seasonal variations of C1-C4
alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics
A and B: Oceanic and continental sources, J. Geophys. Res., 108, 8242,
https://doi.org/10.1029/2001JD001444, 2003.
Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and Capone, D. G.:
Nitrogen fixation in the western equatorial Pacific: rates, diazotrophic
cyanobacterial size class distribution, and biogeochemical significance,
Global Biogeochem. Cy., 23, GB3012, https://doi.org/10.1029/2008GB003439,
2009.
Brüggemann, M., Hayeck, N., and George, C.: Interfacial photochemistry at
the ocean surface is a global source of organic vapors and aerosols, Nat.
Commun., 9, 1–8, https://doi.org/10.1038/s41467-018-04528-7, 2018.
Cachier, H., Buat-Ménard, M. P., Fontugne, M., and Chesselet, R.:
Long-range transport of continentally derived particulate carbon in the
marine atmosphere: evidence from stable isotope studies, Tellus, 38,
161–177, https://doi.org/10.1111/j.1600-0889.1986.tb00184.x, 1986.
Capone, D. G., Ferrier, M. D., and Carpenter, E. J.: Cycling and release of
glutamate and glutamine in colonies of the marine planktonic cyanobacterium,
Trichodesmium thiebautii, Appl. Environ. Microbiol., 60, 3989–3995, 1994.
Carter, T. S., Joyce, E. E., and Hastings, M. G.: Quantifying Nitrate Formation
Pathways in the Equatorial Pacific Atmosphere from the GEOTRACES Peru-Tahiti
Transect, ACS Earth Space Chem., 5, 2638–2651, 2021.
Cheung, S., Nitanai, R., Tsurumoto, C., Endo, H., Nakaoka, S., Cheah, W.,
Lorda, J. F., Xia, X., Liu, H., and Suzuki, K.: Physical forcing controls the
basin-scale occurrence of nitrogen-fixing organisms in the North Pacific
Ocean, Global Biogeochem. Cy., 34, e2019GB006452,
https://doi.org/10.1029/2019GB006452, 2020.
Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K.,
Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S.,
Tiwari, S., Hameed, Z., and Gustafsson, Ö.: Photochemical degradation
affects the light absorption of water-soluble brown carbon in the South
Asian outflow, Sci. Adv., 5, eaau8066, https://doi.org/10.1126/sciadv.aau8066, 2019.
Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone,
D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider,
R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M.,
Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T.,
Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M.,
Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of atmospheric
anthropogenic nitrogen on the open ocean, Science, 320, 893–897,
https://doi.org/10.1126/science.1150369, 2008.
Dutheil, C., Aumont, O., Gorguès, T., Lorrain, A., Bonnet, S., Rodier, M., Dupouy, C., Shiozaki, T., and Menkes, C.: Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean, Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018, 2018.
Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E., Mircea,
M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., and O'Dowd, C. D.:
Important Source of Marine Secondary Organic Aerosol from Biogenic Amines,
Environ. Sci. Technol., 42, 9116–9121, https://doi.org/10.1021/es8018385,
2008.
Frischkorn, K. R., Haley, S. T., and Dyhrman, S. T.: Coordinated gene expression
between Trichodesmium and its microbiome over day–night cycles in the North Pacific
Subtropical Gyre, ISME Journal, 12, 997–1007,
https://doi.org/10.1038/s41396-017-0041-5, 2018.
Glibert, P. M. and Bronk, D. A.: Release of dissolved organicnitrogen by marine diazotrophic cyanobacteria, Trichodesmium spp., Appl. Environ. Microbiol., 60, 3996–4000, 1994.
Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A.,
and Ichimura, S.: Measurement of photosynthetic production of a marine
phytoplankton population using a stable 13C isotope, Mar. Biol., 73, 31–36,
https://doi.org/10.1007/BF00396282, 1983.
Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., and
Kanda, J.: Macro-scale exhaustion of surface phosphate by dinitrogen
fixation in the western North Pacific, Geophys. Res. Lett., 36, L03610,
https://doi.org/10.1029/2008GL036866, 2009.
Hashihama, F., Kanda, J., Tauchi, A., Kodama, T., Saito, H., and Furuya, K.:
Liquid waveguide spectrophotometric measurement of nanomolar ammonium in
seawater based on the indophenol reaction with o-phenylphenol (OPP),
Talanta, 143, 374–380, 2015.
Hashihama, F., Saito, H., Shiozaki, T., Ehama, M., Suwa, S., Sugiyama, T.,
Kato, H., Kanda, J., Sato, M., Kodama, T., Yamaguchi, T., Horii, S.,
Tanita., I, Takino, S., Takahashi, K., and Ogawa, H.: Biogeochemical
controls of particulate phosphorus distribution across the oligotrophic
subtropical Pacific ocean, Global Biogeochem. Cy., 34, e2020GB006669,
https://doi.org/10.1029/2020GB006669, 2020.
Horii, S., Takahashi, K., Shiozaki, T., Hashihama, F., and Furuya, K.:
Stable isotopic evidence for differential contribution of diazotrophs to the
epipelagic grazing food chain in the mid-Pacific Ocean, Global Ecol.
Biogeogr., 27, 1467–1480, https://doi.org/10.1111/geb.12823, 2018.
Jiang, H. B., Fu, F. X., Rivero-Calle, S., Levine, N. M.,
Sañudo-Wilhelmy, S. A., Qu, P. P., Wang, X. W., Pinedo-Gonzalez, P.,
Zhu, Z., and Hutchins, D. A.: Ocean warming alleviates iron limitation of
marine nitrogen fixation, Nature Climate Change, 8, 709–712,
https://doi.org/10.1038/s41558-018-0216-8, 2018.
Jickells, T. D., Kelly, S. D., Baker, A. R., Biswas, K., Dennis, P. F.,
Spokes, L. J., Witt, M., and Yeatman, S. G.: Isotopic evidence for a marine
ammonia source, Geophys. Res. Lett., 30, 1374,
https://doi.org/10.1029/2002GL016728, 2003.
Johnson, M. T., Liss, P. S., Bell, T. G., Lesworth, T. J., Baker, A. R.,
Hind, A. J., Jickells, T. D., Biswas, K. F., Woodward, E. M. S., and Gibb,
S. W.: Field observations of the ocean-atmosphere exchange of ammonia:
Fundamental importance of temperature as revealed by a comparison of high
and low latitudes, Global Biogeochem. Cy., 22, GB1019,
https://doi.org/10.1029/2007GB003039, 2008.
Kamezaki, K., Hattori, S., Iwamoto, Y., Ishino, S., Furutani, H., Miki, Y.,
Uematsu, M., Miura, K., and Yoshida, N.: Tracing the sources and formation
pathways of atmospheric particulate nitrate over the Pacific Ocean using
stable isotopes, Atmos. Environ., 209, 152–166,
https://doi.org/10.1016/J.ATMOSENV.2019.04.026, 2019.
Kanakidou, M., Duce, R. A., Prospero, J. M., Baker, A. R., Benitez-Nelson,
C., Dentener, F. J., Hunter, K. A., Liss, P. S., Mahowald, N., Okin, G. S.,
Sarin, M., Tsigaridis, K., Uematsu, M., Zamora, L. M., and Zhu, T.: Atmospheric
fluxes of organic N and P to the global ocean, Global Biogeochem. Cy., 26,
GB3026, https://doi.org/10.1029/2011GB004277, 2012.
Karl, D. M., Letelier, R., Hebel, D. V., Bird, D. F., and Winn, C. D.:
Trichodesmium blooms and new nitrogen in the north Pacific gyre, Marine
pelagic cyanobacteria: Trichodesmium and other diazotrophs, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 219–237, https://doi.org/10.1007/978-94-015-7977-3_14, 1992.
Letelier, R. M. and Karl, D. M: The role of Trichodesmium spp. In the productivity of the
subtropical North Pacific Ocean, Mar. Ecol. Prog. Ser., 133, 263–273, 1994.
Luo, Y.-W., Lima, I. D., Karl, D. M., Deutsch, C. A., and Doney, S. C.: Data-based assessment of environmental controls on global marine nitrogen fixation, Biogeosciences, 11, 691–708, https://doi.org/10.5194/bg-11-691-2014, 2014.
Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., and Uematsu, M.: Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific, Atmos. Chem. Phys., 11, 3037–3049, https://doi.org/10.5194/acp-11-3037-2011, 2011.
Miyazaki, Y., Fu, P. Q., Kawamura, K., Mizoguchi, Y., and Yamanoi, K.: Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest, Atmos. Chem. Phys., 12, 1367–1376, https://doi.org/10.5194/acp-12-1367-2012, 2012.
Miyazaki, Y., Coburn, S., Ono, K., Ho, D. T., Pierce, R. B., Kawamura, K., and Volkamer, R.: Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific, Atmos. Chem. Phys., 16, 7695–7707, https://doi.org/10.5194/acp-16-7695-2016, 2016.
Miyazaki, Y., Yamashita, Y., Kawana, K., Tachibana, E., Kagami,S., Mochida,
M., Suzuki, K., and Nishioka, J.: Chemical transfer of dissolved organic
matter from surface seawater to sea spray water-soluble organic aerosol in
the marine atmosphere, Sci. Rep., 8, 14861,
https://doi.org/10.1038/s41598-018-32864-7, 2018.
Mohr, W., Großkopf, T., Wallace, D. W. R., and Laroche, J.:
Methodological underestimation of oceanic nitrogen fixation rates, PLoS ONE,
5, e12583, https://doi.org/10.1371/journal.pone.0012583, 2010.
Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prévôt, A. S. H., Xu,
L., Ng, N. L., Herndon, S. C., Williams, L. R., Franklin J. P., Zahniser, M.
S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J., Dubey
M. K., Allan J. D., and Thornton, J. A.: Contribution of nitrated phenols to
wood burning brown carbon light absorption in Detling, United Kingdom during
wintertime, Environ. Sci. Technol., 47, 6316–6324,
https://doi.org/10.1021/es400683v, 2013.
Montoya, J. P., Voss, M., Kaehler, P., and Capone, D. G.: A simple, high
precision, high sensitivity tracer assay for dinitrogen fixation, Appl.
Environ. Microbiol., 62, 986–993,
https://doi.org/10.1128/AEM.62.3.986-993.1996, 1996.
Montoya, J. P., Holl, C. M., Zehr, J. P., Hansen, A., Villareal, T. A., and
Capone, D. G.: High rates of N2 fixation by unicellular diazotrophs in
the oligotrophic Pacific Ocean, Nature, 430, 1027–1032,
https://doi.org/10.1038/nature02824, 2004.
Mungall, E. L., Wong, J. P. S., and Abbatt, P. D.: Heterogeneous oxidation of
particulate methanesulfonic acid by the hydroxyl radical: kinetics and
atmospheric implications, ACS Earth Space Chem., 2, 48–55, 2018.
Nehir, M. and Koçak, M.: Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity, Atmos. Chem. Phys., 18, 3603–3618, https://doi.org/10.5194/acp-18-3603-2018, 2018.
Oreopoulos, L. and Platnick, S.: Radiative susceptibility of cloudy
atmospheres to droplet number perturbations. II. Global analysis from MODIS,
J. Geophys. Res., 113, D14S21, https://doi.org/10.1029/2007JD009655, 2008.
Ottesen, E. A., Young, C. R., Gifford, S. M., Eppley, J. M., Marin, R. 3rd,
Schuster, S. C., Scholin, C. A., and DeLong, E. F.: Ocean microbes.
Multispecies diel transcriptional oscillations in open ocean heterotrophic
bacterial assemblages, Science, 345, 207–212,
https://doi.org/10.1126/science.1252476, 2014.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global
Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106,
2015.
Rosenfeld, D., Zhu, Y. N., Wang, M. H., Zheng, Y. T., Goren, T., and Yu, S.
C.: Aerosol-driven droplet concentrations dominate coverage and water of
oceanic low level clouds, Science, 363, eaav0566,
https://doi.org/10.1126/science.aav0566, 2019.
Rousseaux, C. S. and Gregg, W. W.: Climate variability and phytoplankton
composition in the Pacific Ocean, J. Geophys. Res., 117, C10006,
https://doi.org/10.1029/2012JC008083, 2012.
Salter, S., Sortino, G., and Latham, J.: Sea-going hardware for the cloud
albedo method of reversing global warming, Philos. T. Roy. Soc. A, 366,
3989–4006, https://doi.org/10.1098/rsta.2008.0136, 2008.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehoma, M., Hamasaki, K., and Furuya, K.: Basin scale variablity of active
diazotrophs and nitrogen fixation in the North Pacific, from the tropics to
the subarctic Bering Sea, Global Biogeochem. Cy., 31, 996–1009,
https://doi.org/10.1002/2017GB005681, 2017.
Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T.,
Tanita, I., Takeda, S., Saito, H., Hamasaki, K., and Furuya, K.: Linkage between
dinitrogen fixation and primary production in the oligotrophic South Pacific
Ocean, Global Biogeochem. Cy., 32, 1028–1044,
https://doi.org/10.1029/2017GB005869, 2018.
Suzuki, R. and Ishimaru, T.: An improved method for the determination of
phytoplankton chlorophyll using N, N-dimethylformamide, J. Oceanog.,
46, 190–194, 1990.
van Pinxteren, M., Barthel, S., Fomba, K. W., Müller, K., von
Tümpling, W., and Herrmann, H.: The influence of environmental drivers
on the enrichment of organic carbon in the sea surface microlayer and in
submicron aerosol particles-Measurements from the Atlantic Ocean,
Elementa Science of the Anthropocene, 5, 35, https://doi.org/10.1525/elementa.225,
2017.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
Wannicke, N., Koch, B. P., and Voss, M.: Release of fixed N2 and C as
dissolved compounds by Trichodesmium erythreum and Nodularia spumigena under
the influence of high light and high nutrient (P), Aquat. Microb. Ecol., 57,
175–189, https://doi.org/10.3354/ame01343, 2009.
Yamaguchi, T., Sato, M., Hashihama, F., Ehama, M., Shiozaki, T., Takahashi,
K., and Furuya, K.: Basin-scale variations in labile dissolved phosphoric
monoesters and diesters in the central North Pacific Ocean, J. Geophys.
Res.-Oceans, 124, 3058–3072, https://doi.org/10.1029/2018jc014763, 2019.
Yamaguchi, T., Sato, M., Hashihama, F., Kato, H., Sugiyama, T., Ogawa, H.,
Takahashi, K., and Furuya, K.: Longitudinal and vertical variations of
dissolved labile phosphoric monoesters and diesters in the subtropical North
Pacific, Front. Microbiol., 11, 570081,
https://doi.org/10.3389/fmicb.2020.570081, 2021.
Yasui-Tamura, S., Hashihama, F., Ogawa, H., Nishimura, T., and Kanda, J.:
Automated simultaneous determination of total dissolved nitrogen and
phosphorus in seawater by persulfate oxidation method, Talanta Open, 2,
100016, https://doi.org/10.1016/j.talo.2020.100016, 2020.
Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G., and Allen, A. P.:
Temperature and the biogeography of algal stoichiometry, Global Ecology and
Biogeography, 24, 562–570, https://doi.org/10.1111/geb.12280, 2015.
Zehr, J. P. and Capone, D. G.: Changing perspectives on nitrogen fixation,
Science, 368, eaay9514, https://doi.org/10.1126/science.aay9514, 2020.
Zhu, L., Nenes, A., Wine, P. H., and Nicovich, J. M.: Effects of aqueous
organosulfur chemistry on particulate methanesulfonate to nonsea salt
sulfate ratios in the marine atmosphere, J. Geophys. Res., 111, D05316,
https://doi.org/10.1029/2005JD006326, 2006.
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling...
Altmetrics
Final-revised paper
Preprint