Articles | Volume 20, issue 2
https://doi.org/10.5194/bg-20-489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-489-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil organic matter diagenetic state informs boreal forest ecosystem feedbacks to climate change
Allison N. Myers-Pigg
CORRESPONDING AUTHOR
Department of Earth Sciences, Memorial University of Newfoundland,
St. John's, A1B2S7, Canada
currently at: Marine
and Coastal Research Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, USA
Karl Kaiser
Department of Marine Science, Texas A&M University at Galveston, Galveston, Texas 77553, USA
Department of Oceanography, Texas A&M University, College Station, Texas 77840, USA
Ronald Benner
Department of Biological Sciences, School of the Earth, Ocean and
Environment, University of South Carolina, Columbia, South Carolina 29208, USA
Department of Earth Sciences, Memorial University of Newfoundland,
St. John's, A1B2S7, Canada
Related authors
No articles found.
Scout M. Quinn, Benjamin Misiuk, Mackenzie E. Patrick, and Susan E. Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3475, https://doi.org/10.5194/egusphere-2025-3475, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Boreal forest soils store approximately one third of forest soil carbon globally. Stabilization of organic carbon in these soils is largely controlled by reactive aluminum content derived from parent material, which in boreal regions is typically glacial till. We used a Random Forest approach to predictively map and model reactive aluminum and its uncertainty in glacial till across Newfoundland. This supports future modelling efforts and estimates of the soil carbon reservoir in boreal forests.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Cited articles
Abolin, A. A.: Change of the structure of the moss cover in relation to the
distribution of precipitation under the forest canopy, Sov. J. Ecol., 5,
243–247, 1974.
Amelung, W., Flach, K.-W., and Zech, W.: Lignin in Particle-Size Fractions
of Native Grassland Soils as Influenced by Climate, Soil Sci. Soc. Am. J.,
63, 1222, https://doi.org/10.2136/sssaj1999.6351222x, 1999.
Baldock, J. A., Oades, J. M., Nelson, P. N., Skene, T. M., Golchin, A., and
Clarke, P.: Assessing the extent of decomposition of natural organic
materials using solid-state 13C NMR spectroscopy, Aust. J. Soil Res., 35,
1061–83, https://doi.org/10.1071/S97004, 1997.
Baldock, J. A., Masiello, C. A., Gélinas, Y., and Hedges, J. I.: Cycling
and composition of organic matter in terrestrial and marine ecosystems, Mar.
Chem., 92, 39–64, https://doi.org/10.1016/j.marchem.2004.06.016, 2004.
Benner, R., Hatcher, P. G., and Hedges, J. I.: Early diagenesis of mangrove
leaves in a tropical estuary: Bulk chemical characterization using
solid-state 13C NMR and elemental analysis, Geochim. Cosmochim. Ac., 54,
2003–2013, 1990a.
Benner, R., Weliky, K., and Hedges, J. I.: Early diagenesis of mangrove
leaves in a tropical estuary: Molecular-level analyses of neutral sugars and
lignin-derived phenols, Geochim. Cosmochim. Ac., 54, 1991–2001,
https://doi.org/10.1016/0016-7037(90)90267-O, 1990b.
Billings, S. A., Ziegler, S. E., Schlesinger, W. H., Benner, R., and
Richter, D. D.: Predicting Carbon Cycle Feedbacks to Climate: Integrating
the Right Tools for the Job, EOS, 93, 188–189, 2012.
Bowering, K. L., Edwards, K. A., Wiersma, Y. F., Billings, S. A., Warren, J., Skinner, A., and Ziegler, S. E.: Dissolved Organic Carbon Mobilization Across a Climate Transect of Mesic Boreal Forests Is Explained by Air Temperature and Snowpack Duration, Ecosystems, 1–17, https://doi.org/10.1007/s10021-022-00741-0, 2022.
Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M. T., Tau-Strand,
L., Vesterdal, L., and Westman, C. J.: Soil carbon stores in Nordic
well-drained forest soils-relationships with climate and texture class,
Glob. Change Biol., 9, 358–370,
https://doi.org/10.1046/j.1365-2486.2003.00587.x, 2003.
Cerdeira, J. O., Duarte Silva, P., Cadima, J., and Minhoto, M.: subselect: Selecting Variable Subsets, R package version 0.14,
https://CRAN.R-project.org/package=subselect,
last access: 19 July 2018.
Charney, N. D., Babst, F., Poulter, B., Record, S., Trouet, V. M., Frank,
D., Enquist, B. J., and Evans, M. E. K.: Observed forest sensitivity to
climate implies large changes in 21st century North American forest growth,
Ecol. Lett., 19, 1119–1128, https://doi.org/10.1111/ele.12650, 2016.
D'Orangeville, L., Duchesne, L., Houle, D., Kneeshaw, D., Cote, B., and
Pederson, N.: Northeastern North America as a potential refugium for boreal
forests in a warming climate, Science, 352, 1452–1455,
https://doi.org/10.1126/science.aaf4951, 2016.
D'Orangeville, L., Houle, D., Duchesne, L., Phillips, R. P., Bergeron, Y.,
and Kneeshaw, D.: Beneficial effects of climate warming on boreal tree
growth may be transitory, Nat. Commun., 9, 3213,
https://doi.org/10.1038/s41467-018-05705-4, 2018.
Dauwe, B., Middelburg, J. J., Herman, P. M. J., and Heip, C. H. R.: Linking
diagenetic alteration of amino acids and bulk organic matter reactivity,
Limnol. Oceanogr., 44, 1809–1814, 1999.
Duboc, O., Dignac, M. F., Djukic, I., Zehetner, F., Gerzabek, M. H., and
Rumpel, C.: Lignin decomposition along an Alpine elevation gradient in
relation to physicochemical and soil microbial parameters, Glob. Change
Biol., 20, 2272–2285, https://doi.org/10.1111/gcb.12497, 2014.
Environment Canada: Canadian climate normals or averages 1981–2010, Fredericton, NB, Canada, Environment Canada, 2014.
Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D., and Simpson,
M. J.: Increased cuticular carbon sequestration and lignin oxidation in
response to soil warming, Nat. Geosci., 1, 836–839,
https://doi.org/10.1038/ngeo361, 2008.
Giardina, C. P., Litton, C. M., Crow, S. E., and Asner, G. P.:
Warming-related increases in soil CO2 effux are explained by increased
below-ground carbon flux, Nat. Clim. Change, 4, 822–827,
https://doi.org/10.1038/nclimate2322, 2014.
Guggenberger, G., Zech, W., Haumaier, L., and Christensen, B. T.: Land-use
effects on the composition of organic matter in particle-size separates of
soils: II. CPMAS and sloution 13C NMR analysis, Eur. J. Soil Sci., 46,
147–158, 1995.
Guggenberger, G., Bussemer, S., Karpov, G., and Baranovskij, E. L.: Soils
and soil organic matter along a transect from central taiga to forest
tundra, Siberia, in: Sustainable Management of Soil Organic Matter, edited by: Rees, R. M., Ball, B. C., and Campbell, C. D., CAB Publishing, Wallingford, UK,
330–336, ISBN 0 85199 465 2, 2001.
Hedges, J. I. and Ertel, J. R.: Characterization of lignin by gas capillary
chromatography of cupric oxide oxidation products, Anal. Chem., 54,
174–178, https://doi.org/10.1021/ac00239a007, 1982.
Hedges, J. I. and Oades, J. M.: Comparative organic geochemistries of soils
and marine sediments, Org. Geochem., 27, 319–361, https://doi.org/10.1016/S0146-6380(97)00056-9, 1997.
Hedges, J. I. and Prahl, F. G.: Early Diagenesis: Consequences for
Applications of Molecular Biomarkers, in: Organic Geochemistry, edited by:
Macko, S. A. and Engel, M. H., Plenum Press, New York, ISBN 978-0306443787, 1993.
Hedges, J. I., Blanchette, R. A., Weliky, K., and Devol, A. H.: Effecs of
fungal degradation on the CuO oxidation products of lignin: A controlled
laboratory study, Geochim. Cosmochim. Ac., 52, 2717–2726,
https://doi.org/10.1016/0016-7037(88)90040-3, 1988.
Hernes, P., Robinson, A. C., and Aufdenkampe, A. K.: Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”, Geophys. Res. Lett., 34, L17401, https://doi.org/10.1029/2007gl031017, 2007.
Hobbie, S. E., Schimel, J. P., Trumbore, S. E., and Randerson, J. R.:
Controls over carbon storage and turnover in high-latitude soils, Glob.
Change Biol., 6, 196–210, https://doi.org/10.1046/j.1365-2486.2000.06021.x,
2000.
Houlton, B. Z., Morford, S. L., and Dahlgren, R. A.: Convergent evidence for widespread rock nitrogen sources in Earth's surface environment, Science, 360, 58–62, https://doi.org/10.1126/science.aan4399, 2018.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.,
ISBN 978-1-107-05799-1, 2013.
Kaiser, K. and Benner, R.: Characterization of lignin by gas chromatography
and mass spectrometry using a simplified CuO oxidation method, Anal. Chem.,
84, 174–178, https://doi.org/10.1021/ac202004r, 2011.
Kane, E. S., Valentine, D. W., Schuur, E. A., and Dutta, K.: Soil carbon
stabilization along climate and stand productivity gradients in black spruce
forests of interior Alaska, Can. J. Forest Res., 35, 2118–2129,
https://doi.org/10.1139/x05-093, 2005.
Kögel-Knabner, I.: The macromolecular organic composition of plant and
microbial residues as inputs to soil organic matter, Soil Biol. Biochem.,
34, 139–162, 2002.
Kohl, L., Philben, M., Edwards, K. A., Podrebarac, F. A., Warren, J., and
Ziegler, S. E.: The origin of soil organic matter controls its composition
and bioreactivity across a mesic boreal forest latitudinal gradient, Glob.
Change Biol., 24, e458–e473, https://doi.org/10.1111/gcb.13887, 2018.
Lajtha, K., Bowden, R. D., and Nadelhoffer, K.: Litter and root manipulations provide insights into soil organic matter dynamics and stability, Soil Sci. Soc. Am. J., 78, S261–S269, 2014.
Louchouarn, P., Amon, R. M. W., Duan, S., Pondell, C., Seward, S. M., and
White, N.: Analysis of lignin-derived phenols in standard reference
materials and ocean dissolved organic matter by gas chromatography/tandem
mass spectrometry, Mar. Chem., 118, 85–97,
https://doi.org/10.1016/j.marchem.2009.11.003, 2010.
Mack, M., Schuur, E., Bret-Harte, M., Shaver, G., and Chapin, F.: Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440–443, https://doi.org/10.1038/nature02887, 2004.
Medlyn, B. E., McMurtrie, R. E., Dewar, R. C., and Jeffreys, M. P.: Soil
processes dominate the long-term response of forest net primary productivity
to increased temperature and atmospheric CO2 concentration, Canadian J. Forest Res., 30, 873–888, https://doi.org/10.1139/x00-026,
2000.
Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H.,
Burrows, E., Bowles, F., Smith, R., Scott, L., Vario, C., Hill, T., Burton,
A., Zhou, Y.-M., and Tang, J.: Soil warming, carbon–nitrogen interactions,
and forest carbon budgets, P. Natl. Acad. Sci. USA,
108, 9508–9512, https://doi.org/10.1073/pnas.1018189108, 2011.
Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M.
J., Bowles, F. P., Pold, G., Knorr, M. A., and Grandy, A. S.: Long-term
pattern and magnitude of soil carbon feedback to the climate system in a
warming world, Science, 358, 101–105,
https://doi.org/10.1126/science.aan2874, 2017.
Menzel, P., Anupama, K., Basavaiah, N., Brijraj, D., and Gaye, B.: The use of amino acid analyses in (palaeo-) limnological investigations: a comparative study of four Indian lakes in different climate regimes, Geochim. Cosmochim. Ac., 160, 25–37, https://doi.org/10.1016/j.gca.2015.03.028, 2015.
Meyer, A. H., Kaiser, C., Biasi, C., Hämmerle, R., Rusalimova, O., Lashchinsky, N., Baranyi, C., Daims, H., Barsukov, P., and Richter, A.: Soil carbon and nitrogen dynamics along a latitudinal transect in Western Siberia, Russia, Biogeochemistry, 81, 239–252, https://doi.org/10.1007/s10533-006-9039-1, 2006.
Meyerholt, J., Sickel, K., and Zaehle, S.: Ensemble projections elucidate
effects of uncertainty in terrestrial nitrogen limitation on future carbon
uptake, Glob. Change Biol., 19, 2986–2998, https://doi.org/10.1111/gcb.12281, 2020.
Myers-Pigg, A., Kaiser, K., Benner, R., and Ziegler, S. E.: Lignin Phenols NL-BELT Soils Datasets, figshare [data set], https://doi.org/10.6084/m9.figshare.19719220.v1, 2023.
Moingt, M., Lucotte, M., and Paquet, S.: Lignin biomarkers signatures of
common plants and soils of Eastern Canada, Biogeochemistry, 129, 133–148,
https://doi.org/10.1007/s10533-016-0223-7, 2016.
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie, R. E.: CO2 enhancement of forest productivity constrained by limited nitrogen availability, P. Natl. Acad. Sci. USA, 107, 19368–19373, https://doi.org/10.1073/pnas.1006463107, 2010.
Norris, C. E., Quideau, S. A., Bhatti, J. S., and Wasylishen, R. E.: Soil
carbon stabilization in jack pine stands along the Boreal Forest Transect
Case Study, Glob. Change Biol., 17, 480–494,
https://doi.org/10.1111/j.1365-2486.2010.02236.x, 2011.
Otto, A. and Simpson, M. J.: Degradation and preservation of vascular
plant-derived biomarkers in grassland and forest soils from Western Canada,
Biogeochemistry, 74, 377–409, https://doi.org/10.1007/s10533-004-5834-8, 2005.
Otto, A. and Simpson, M. J.: Sources and composition of hydrolysable aliphatic
lipids and phenols in soils from western Canada, Org. Geochem., 37, 385–407,
https://doi.org/10.1016/j.orggeochem.2005.12.011, 2006a.
Otto, A. and Simpson, M. J.: Evaluation of CuO oxidation parameters for
determining the source and stage of lignin degradation in soil,
Biogeochemistry, 80, 121–142, https://doi.org/10.1007/s10533-006-9014-x,
2006b.
Panetta, R. J. and Gélinas, Y.: Expressing biomarker data in
stoichiometric terms: shifts in distribution and biogeochemical
interpretation, Limnol. Oceanogr.-Meth., 7, 269–276,
https://doi.org/10.4319/lom.2009.7.269, 2009.
Patrick, M. E., Young, C. T., Zimmerman, A. R., and Ziegler, S. E.: Mineralogic controls are harbingers of hydrological controls on soil organic matter content in warmer boreal forests, Geoderma, 425, 116059, https://doi.org/10.1016/j.geoderma.2022.116059, 2022..
Pengerud, A., Dignac, M. F., Certini, G., Strand, L. T., Forte, C., and
Rasse, D. P.: Soil organic matter molecular composition and state of
decomposition in three locations of the European Arctic, Biogeochemistry,
135, 277–292, https://doi.org/10.1007/s10533-017-0373-2, 2017.
Philben, M., Ziegler, S. E., Edwards, K. A., Kahler, R., and Benner, R.:
Soil organic nitrogen cycling increases with temperature and precipitation
along a boreal forest latitudinal transect, Biogeochemistry, 127, 397–410,
https://doi.org/10.1007/s10533-016-0187-7, 2016.
Philben, M., Billings, S. A., Edwards, K. A., Podrebarac, F. A., van Biesen,
G., and Ziegler, S. E.: Amino acid δ15N indicates lack of N isotope
fractionation during soil organic nitrogen decomposition, Biogeochemistry, 138, 69–83,
https://doi.org/10.1007/s10533-018-0429-y, 2018a.
Philben, M., Butler, S., Billings, S. A., Benner, R., Edwards, K. A., and Ziegler, S. E.: Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues, Biogeosciences, 15, 6731–6746, https://doi.org/10.5194/bg-15-6731-2018, 2018b.
Pisani, O., Hills, K. M., Courtier-Murias, D., Haddix, M. L., Paul, E. A.,
Conant, R. T., Simpson, A. J., Arhonditsis, G. B., and Simpson, M. J.:
Accumulation of aliphatic compounds in soil with increasing mean annual
temperature, Org. Geochem., 76, 118–127,
https://doi.org/10.1016/j.orggeochem.2014.07.009, 2014.
Pisani, O., Lin, L. H., Lun, O. O. Y., Lajtha, K., Nadelhoffer, K. J.,
Simpson, A. J., and Simpson, M. J.: Long-term doubling of litter inputs
accelerates soil organic matter degradation and reduces soil carbon stocks,
Biogeochemistry, 127, 1–14, https://doi.org/10.1007/s10533-015-0171-7,
2016.
Podrebarac, F., Billings, S. A., Edwards, K. A., and Ziegler, S. E.: A
warmer climate reduces the bioreactivity of isolated boreal forest soil
horizons without increasing the temperature sensitivity of respiratory CO2
loss, Soil Biol. Biochem., 84, 177–188,
https://doi.org/10.1016/j.soilbio.2015.02.025, 2016.
Preston, C. M., Trofymow, J. A., Niu, J., and Fyfe, C. A.: 13CPMAS-NMR
spectroscopy and chemical analysis of coarse woody debris in coastal forests
of Vancouver Island, Forest Ecol. Manag., 111, 51–68,
https://doi.org/10.1016/S0378-1127(98)00307-7, 1998.
Preston, C. M., Nault, J. R., and Trofymow, J. A.: Chemical Changes During 6
Years of Decomposition of 11 Litters in Some Canadian Forest Sites. Part 2.
13C Abundance, Solid-State 13C NMR Spectroscopy and the Meaning of
“Lignin”, Ecosystems, 12, 1078–1102,
https://doi.org/10.1007/s10021-009-9267-z, 2009.
Quideau, S. A., Chadwick, O. A., Benesi, A., and Graham, R. C.: A direct
link between forest vegetation type and soil organic matter composition,
Geoderma, 104, 41–60, https://doi.org/10.1016/S0016-7061(01)00055-6, 2001.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/,
last access: 19 July 2018
RStudio Team: RStudio: Integrated Development Environment for R,
http://www.rstudio.com/ (last access: 19 July 2018), 2016.
Rumpel, C., Ko, I., Bruhn, F., Kogel-Knabner, I., and Bruhn, F.: Vertical
distribution, age, and chemical composition of organic carbon in two forest
soils of different pedogenesis, Org. Geochem., 33, 1131–1142,
https://doi.org/10.1016/s0146-6380(02)00088-8, 2002.
Sainte-Marie, J., Barrandon, M., Saint-André, L., Gelhaye, E., Martin, F., and Derrien, D.: C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter, Nat. Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-21079-6, 2021.
Scharlemann, J. P., Tanner, E. V., Hiederer, R., and Kapos, V.: Global soil
carbon: understanding and managing the largest terrestrial carbon pool,
Carbon Manag., 5, 81–91, https://doi.org/10.4155/cmt.13.77, 2014.
Simpson, M. J., Otto, A., and Feng, X.: Comparison of Solid-State Carbon-13
Nuclear Magnetic Resonance and Organic Matter Biomarkers for Assessing Soil
Organic Matter Degradation, Soil Sci. Soc. Am. J., 72, 268,
https://doi.org/10.2136/sssaj2007.0045, 2008.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and
Schimel, J. P.: Long-term warming restructures Arctic tundra without
changing net soil carbon storage, Nature, 497, 615–617,
https://doi.org/10.1038/nature12129, 2013.
Soja, A. J., Tchebakova, N. M., and French, N. H. F.: Climate-induced boreal
forest change: Predictions versus current observations, Global Planet. Change,
56, 274–296, https://doi.org/10.1016/j.gloplacha.2006.07.028, 2007.
Strömgren, M. and Linder, S.: Effects of nutrition and soil warming on
stemwood production in a boreal Norway spruce stand, Glob. Change Biol.,
8, 1194–1204, https://doi.org/10.1046/j.1365-2486.2002.00546.x, 2002.
Tamm, C. O.: Growth, yield and nutrition in carpets of a forest moss
(Hylocomium splendens), Medd. Statens Skogfors., 43, 1–140, 1953.
Tang, Y., Horikoshi, M., and Li, W.: ggfortify: Unified Interface to
Visualize Statistical Results of Popular R Packages, https://journal.r-project.org/archive/2016/RJ-2016-060/RJ-2016-060.pdf (last access: 19 July 2018),
2016.
Tarkhova, T. N. and Ipatov, V. S.: Effect of illumination and litter on the
development of some moss species, Sov. J. Ecol., 6, 43–48, 1975.
Thevenot, M., Dignac, M. F., and Rumpel, C.: Fate of lignins in soils: A
review, Soil Biol. Biochem., 42, 1200–1211,
https://doi.org/10.1016/j.soilbio.2010.03.017, 2010.
Thomas, R. Q., Zaehle, S., Templer, P. H., and Goodale, C. L.: Global patterns
of nitrogen limitation: confronting two global biogeochemical models with
observations, Glob. Change Biol., 19, 2986–2998, https://doi.org/10.1111/gcb.12281, 2013.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10, 1717–1736, https://doi.org/10.5194/bg-10-1717-2013, 2013.
Turetsky, M. R., Crow, S. E., Evans, R. J., Vitt, D. H., and Wieder, R. K.:
Trade-offs in resource allocation among moss species control decomposition
in boreal peatlands, J. Ecol., 96, 1297–1305,
https://doi.org/10.1111/j.1365-2745.2008.01438.x, 2008.
Vanhala, P., Bergström, I., Haaspuro, T., Kortelainen, P., Holmberg, M.,
and Forsius, M.: Boreal forests can have a remarkable role in reducing
greenhouse gas emissions locally: Land use-related and anthropogenic
greenhouse gas emissions and sinks at the municipal level, Sci. Total
Environ., 557–558, 51–57, https://doi.org/10.1016/j.scitotenv.2016.03.040,
2016.
Wickham, H., Averick, M., Bryan, J., Chang, W.,
D'Agostino McGowan, L., François, R., Grolemund, G.,
Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K.,
Ooms, J., Robinson, D., Seidel, D. P., Spinu, V.,
Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and
Yutani, H.: Welcome to the Tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686, 2019.
Williams, C. J., Yavitt, J. B., Wieder, R. K., and Cleavitt, N. L.: Cupric
oxide oxidation products of northern peat and peat-forming plants, Can. J.
Bot. Can. Bot., 76, 51–62, https://doi.org/10.1139/b97-150, 1998.
Xu, C. and Singh, V.: Evaluation and generalization of temperature based methods for calculating evaporation, Hydrol. Process., 319, 305–319, 2001.
Yan, G. and Kaiser, K.: A rapid and sensitive method for the analysis of
lignin phenols in environmental samples using ultra-high performance liquid
chromatography-electrospray ionization-tandem mass spectrometry with
multiple reaction monitoring, Anal. Chim. Acta, 1023, 74–80,
https://doi.org/10.1016/j.aca.2018.03.054, 2018.
Zech, W., Johansson, M.-B., Haumaier, L., and Malcolm, R. L.: CPMAS 13C NMR
and IR spectra of spruce and pine litter and of the Klason lignin fraction
at different stages of decomposition, Z.
Pflanz. Bodenkunde, 150, 262–265,
https://doi.org/10.1002/jpln.19871500413, 1987.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M.,
Zhu, X., and Laganière, J.: Climate Warming Can Accelerate Carbon Fluxes
without Changing Soil Carbon Stocks, Front. Earth Sci., 5, 1–12,
https://doi.org/10.3389/feart.2017.00002, 2017.
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil...
Altmetrics
Final-revised paper
Preprint