Articles | Volume 20, issue 3
https://doi.org/10.5194/bg-20-619-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-619-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variation of mercury concentration of ancient olive groves of Lebanon
Nagham Tabaja
University of Montpellier, UMR 5554 CNRS/IRD/EPHE, CC061 Montpellier, France
Faculty of Agronomy, Plant Production Department, The Lebanese
University, Dekwaneh, Lebanon
Plateforme de Recherche et d'Analyses en Sciences de
l'Environnement (PRASE), Ecole Doctorale de Sciences et Technologie,
Université Libanaise, Hadath, Lebanon
David Amouroux
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour, E2S/UPPA, CNRS, PAU, France
Lamis Chalak
Faculty of Agronomy, Plant Production Department, The Lebanese
University, Dekwaneh, Lebanon
François Fourel
UMR CNRS 5023 LEHNA, Université Claude Bernard Lyon 1,
Villeubanne, France
Emmanuel Tessier
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Université de Pau et des Pays de l'Adour, E2S/UPPA, CNRS, PAU, France
Ihab Jomaa
Department of Irrigation and Agrometeorology, Lebanese Agricultural
Research Institute (LARI), P.O. Box 287, Zahle, Lebanon
Milad El Riachy
Department of Olive and Olive Oil, Lebanese Agricultural Research
Institute (LARI), P.O. Box 287, Zahle, Lebanon
Ilham Bentaleb
CORRESPONDING AUTHOR
University of Montpellier, UMR 5554 CNRS/IRD/EPHE, CC061 Montpellier, France
Related authors
No articles found.
Nicolas Séon, Romain Amiot, Guillaume Suan, Christophe Lécuyer, François Fourel, Fabien Demaret, Arnauld Vinçon-Laugier, Sylvain Charbonnier, and Peggy Vincent
Biogeosciences, 19, 2671–2681, https://doi.org/10.5194/bg-19-2671-2022, https://doi.org/10.5194/bg-19-2671-2022, 2022
Short summary
Short summary
We analysed the oxygen isotope composition of bones and teeth of four marine species possessing regional heterothermies. We observed a consistent link between oxygen isotope composition and temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of extant marine vertebrates where conventional methods are difficult to apply, but also allows us to investigate thermophysiologies of extinct vertebrates.
Christoph Lécuyer, François Atrops, François Fourel, Jean-Pierre Flandrois, Gilles Pinay, and Philippe Davy
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-132, https://doi.org/10.5194/hess-2022-132, 2022
Manuscript not accepted for further review
Short summary
Short summary
Located in the French Southern Alps, the Cerveyrette valley constitutes a watershed of about 100 km2. Cyclicality in the stable isotope compositions of the river waters recorded over two years allowed us to estimate a time lag of three to four months between precipitations and their sampling at the discharge point of the watershed. We thus show that the transfer time from mountain-accumulated snow toward the low-altitude areas is a sensitive variable responding to the current climate warming.
Cited articles
Abou Habib, N., Taleb, M., and Khoury, R.: Environmental and social
safeguard studies for lake qaraoun pollution prevention project, V1(E4749), https://www.cdr.gov.lb/getmedia/6de7234e-c929-4625-887c-d8dfff87bea3/2015-01-29-Qaraoun-ESMF_issued-for-distribution.pdf.aspx (last access: 11 October 2021), 2015.
Alcaras, L. M. A., Rousseaux, M. C., and Searles, P. S.: Responses of
several soil and plant indicators to post-harvest regulated deficit
irrigation in olive trees and their potential for irrigation scheduling,
Agr. Water Manage., 171, 10–20,
https://doi.org/10.1016/j.agwat.2016.03.006, 2016.
Alloway, B. J.: Heavy Metals in Soils, Trace Metals and Metalloids in Soils and their Bioavailability, in: Environmental Pollution, Springer Science & Business Media, Blackie Academic & Professional, an imprint of Chapman & Hall, Glasgow, UK, ISBN 0751401986,
https://link.springer.com/book/10.1007/978-94-007-4470-7 (last access: 30 November 2022), 1995.
Al-Zubaidi, A., Yanni, S., and Bashour, I.: Potassium status in some
Lebanese soils, Lebanese Science Journal, 9, 81–97, 2008.
Assad, M.: Transfert des éléments traces métalliques vers les végétaux: mécanismes et évaluations des risques dans des environnements exposés à des activités anthropiques, Sciences agricoles, Université Bourgogne Franche-Comté, France, 218, NNT: 2017UBFCD006, 2017.
Baayoun, A., Itani, W., El Helou, J., Halabi, L., Medlej, S., El Malki, M.,
Moukhadder, A., Aboujaoude, L. K., Kabakian, V., Mounajed, H., Mokalled, T.,
Shihadeh, A., Lakkis, I., and Saliba, N. A.: Emission inventory of key
sources of air pollution in Lebanon, Atmos. Environ., 215, 116871,
https://doi.org/10.1016/j.atmosenv.2019.116871, 2019.
Badr, R., Holail, H., and Olama, Z.: Water quality assessment of hasbani
river in south lebanon: microbiological and chemical characteristics and
their impact on the ecosystem, J. Global Biosci., 3, 536–551, https://www.mutagens.co.in/jgb/vol.03/2/19.pdf,
(last access: 11 October 2021), 2014.
Barber, S. A.: Soil Nutrient Bioavailability: A Mechanistic Approach, John
Wiley and Sons, 432 pp., ISBN 9780471587477, 1995.
Bargagli, R.: The elemental composition of vegetation and the possible
incidence of soil contamination of samples, Sci. Total
Environ., 176, 121–128,
https://doi.org/10.1016/0048-9697(95)04838-3, 1995.
Barre, J. P. G., Deletraz, G., Sola-Larrañaga, C., Santamaria, J. M.,
Bérail, S., Donard, O. F. X., and Amouroux, D.: Multi-element isotopic
signature (C, N, Pb, Hg) in epiphytic lichens to discriminate atmospheric
contamination as a function of land-use characteristics
(Pyrénées-Atlantiques, SW France), Environ. Pollut., 243,
961–971, https://doi.org/10.1016/j.envpol.2018.09.003, 2018.
Beauford, W., Barber, J., and Barringer, A. R.: Uptake and Distribution of
Mercury within Higher Plants, Physiologia Plantarum, 39, 261–265,
https://doi.org/10.1111/j.1399-3054.1977.tb01880.x, 1977.
Besnard, G., Khadari, B., Navascues, M., Fernandez-Mazuecos, M., Bakkali, A.
E., Arrigo, N., Baali-Cherif, D., de Caraffa, V. B.-B., Santoni, S., Vargas,
P., and Savolainen, V.: The complex history of the olive tree: From Late
Quaternary diversification of Mediterranean lineages to primary
domestication in the northern Levant, P. Roy. Soc. B-Biol. Sci., 280, 1593, https://doi.org/10.1098/rspb.2012.2833, 2013.
Bishop, K. H., Lee, Y.-H., Munthe, J., and Dambrine, E.: Xylem sap as a
pathway for total mercury and methylmercury transport from soils to tree
canopy in the boreal forest, Biogeochemistry, 40, 101–113,
https://doi.org/10.1023/A:1005983932240, 1998.
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K.,
Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and
Zhu, W.: Recent advances in understanding and measurement of mercury in the
environment: Terrestrial Hg cycling, Sci. Total Environ., 721,
137647, https://doi.org/10.1016/j.scitotenv.2020.137647, 2020.
Blackwell, B. D. and Driscoll, C. T.: Using foliar and forest floor mercury
concentrations to assess spatial patterns of mercury deposition,
Environ. Pollut., 202, 126–134,
https://doi.org/10.1016/j.envpol.2015.02.036, 2015.
Boening, D. W.: Ecological effects, transport, and fate of mercury: A
general review, Chemosphere, 40, 1335–1351, https://doi.org/10.1016/s0045-6535(99)00283-0, 2000.
Borjac, J., El Joumaa, M., Kawach, R., Youssef, L., and Blake, D. A.: Heavy
metals and organic compounds contamination in leachates collected from Deir
Kanoun Ras El Ain dump and its adjacent canal in South Lebanon, Heliyon,
5, e02212, https://doi.org/10.1016/j.heliyon.2019.e02212, 2019.
Borjac, J., El Joumaa, M., Youssef, L., Kawach, R., and Blake, D. A.:
Quantitative Analysis of Heavy Metals and Organic Compounds in Soil from
Deir Kanoun Ras El Ain Dump, Lebanon, Sci. World J., 2020,
1–10, https://doi.org/10.1155/2020/8151676, 2020.
Briffa, J., Sinagra, E., and Blundell, R.: Heavy metal pollution in the
environment and their toxicological effects on humans, Heliyon, 6,
e04691, https://doi.org/10.1016/j.heliyon.2020.e04691, 2020.
Carrasco-Gil, S., Estebaranz-Yuberob, M., Medel-Cuestab, D., Millán, R.,
and Hernández, L. E.: Influence of nitrate fertilization on Hg uptake
and oxidative stress parameters in alfalfa plants cultivated in a
Hg-polluted soil, Environ. Exp. Bot., 75, 16–24,
https://doi.org/10.1016/j.envexpbot.2011.08.013, 2012.
Cavallini, A., Natali, L., Durante, M., and Maserti, B.: Mercury uptake,
distribution and DNA affinity in durum wheat (Triticum durum Desf.) plants,
Sci. Total Environ., 243–244, 119–127,
https://doi.org/10.1016/S0048-9697(99)00367-8, 1999.
Chen, X., Ji, H., Yang, W., Zhu, B., and Ding, H.: Speciation and
distribution of mercury in soils around gold mines located upstream of Miyun
Reservoir, Beijing, China, J. Geochem. Explor., 163, 1–9,
https://doi.org/10.1016/j.gexplo.2016.01.015, 2016.
Clarkson, T. W. and Magos, L.: The Toxicology of Mercury and Its Chemical
Compounds, Crit. Rev. Toxicol., 36, 609–662,
https://doi.org/10.1080/10408440600845619, 2006.
Dastoor, A., Angot, H., Bieser, J., Christensen, J. H., Douglas, T. A.,
Heimbürger-Boavida, L.-E., Jiskra, M., Mason, R. P., McLagan, D. S.,
Obrist, D., Outridge, P. M., Petrova, M. V., Ryjkov, A., St. Pierre, K. A.,
Schartup, A. T., Soerensen, A. L., Toyota, K., Travnikov, O., Wilson, S. J.,
and Zdanowicz, C.: Arctic mercury cycling, Nat. Rev. Earth Environ., 3, 4, https://doi.org/10.1038/s43017-022-00269-w,
2022.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle: Mercury isotopes in a forested ecosystem, Global
Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/gbc.20021,
2013.
Du, S.-H. and Fang, S. C.: Catalase activity of C3 and C4 species and its
relationship to mercury vapor uptake Environ. Exp. Bot.,
23, 347–353, https://doi.org/10.1016/0098-8472(83)90009-6, 1983.
Duval, B., Gredilla, A., Fdez-Ortiz de Vallejuelo, S., Tessier, E.,
Amouroux, D., and De Diego, A.: A simple determination of trace mercury
concentrations in natural waters using dispersive Micro-Solid phase
extraction preconcentration based on functionalized graphene nanosheets,
Microchem. J., 154, 104549,
https://doi.org/10.1016/j.microc.2019.104549, 2020.
EJOLT: Cimenterie Nationale Factory in Chekaa, Lebanon, EJAtlas,
Environmental Justice Atlas, ejatlas [data set], https://ejatlas.org/conflict/chekaa, last access: 11 September 2019.
Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg,
S. E., and Coleman, J. S.: Accumulation of atmospheric mercury in forest
foliage, Atmos. Environ., 37, 1613–1622,
https://doi.org/10.1016/S1352-2310(03)00008-6, 2003.
Ermolin, M. S., Fedotov, P. S., Malik, N. A., and Karandashev, V. K.:
Nanoparticles of volcanic ash as a carrier for toxic elements on the global
scale, Chemosphere, 200, 16–22,
https://doi.org/10.1016/j.chemosphere.2018.02.089, 2018.
Friedli, H. R., Arellano, A. F., Cinnirella, S., and Pirrone, N.: Initial
Estimates of Mercury Emissions to the Atmosphere from Global Biomass
Burning, Environ. Sci. Technol., 43, 3507–3513,
https://doi.org/10.1021/es802703g, 2009.
Galatali, S., A., N. and Kaya, E.: Characterization of Olive (Olea Europaea
L.) Genetic Resources via PCR-Based Molecular Marker Systems, European Journal of Biology & Biotechnology, 2, 26–33,
https://doi.org/10.24018/ejbio.2021.2.1.146, 2021.
Gårdfeldt, K., Sommar, J., Ferrara, R., Ceccarini, C., Lanzillotta, E.,
Munthe, J., Wängberg, I., Lindqvist, O., Pirrone, N., Sprovieri, F.,
Pesenti, E., and Strömberg, D.: Evasion of mercury from coastal and open
waters of the Atlantic Ocean and the Mediterranean Sea, Atmos. Environ., 37, 73–84, https://doi.org/10.1016/S1352-2310(03)00238-3,
2003.
Gérard, J. and Nehmé, C.: Lebanon, Méditerranée, Revue
Géographique Des Pays Méditerranéens, Journal of Mediterranean
Geography, 131, 131,
https://doi.org/10.4000/mediterranee.11018, 2020.
Giesler, R., Clemmensen, K. E., Wardle, D. A., Klaminder, J., and Bindler,
R.: Boreal Forests Sequester Large Amounts of Mercury over Millennial Time
Scales in the Absence of Wildfire, Environ. Sci. Technol.,
51, 2621–2627, https://doi.org/10.1021/acs.est.6b06369, 2017.
Grigal, D.: Mercury Sequestration in Forests and Peatlands: A Review, J. Environ. Qual., 32, 393–405,
https://doi.org/10.2134/jeq2003.0393, 2003.
Guarino, F., Improta, G., Triassi, M., Castiglione, S., and Cicatelli, A.:
Air quality biomonitoring through Olea europaea L.: The study case of “Land
of pyres”, Chemosphere, 282, 131052,
https://doi.org/10.1016/j.chemosphere.2021.131052, 2021.
Gworek, B., Dmuchowski, W., and Baczewska-Dąbrowska, A. H.: Mercury in
the terrestrial environment: A review, Environmental Sciences Europe, 32,
128, https://doi.org/10.1186/s12302-020-00401-x, 2020.
Hanson, P. J., Lindberg, S. E., Tabberer, T. A., Owens, J. G., and Kim,
K.-H.: Foliar exchange of mercury vapor: Evidence for a compensation point,
Water Air Soil Pollut., 80, 373–382,
https://doi.org/10.1007/BF01189687, 1995.
Higueras, P., Amorós, J. A., Esbrí, J. M., García-Navarro, F.
J., Pérez de los Reyes, C., and Moreno, G.: Time and space variations in
mercury and other trace element contents in olive tree leaves from the
Almadén Hg-mining district, J. Geochem. Explor., 123,
143–151, https://doi.org/10.1016/j.gexplo.2012.04.012, 2012.
Higueras, P. L., Amorós, J. Á., Esbrí, J. M.,
Pérez-de-los-Reyes, C., López-Berdonces, M. A., and
García-Navarro, F. J.: Mercury transfer from soil to olive trees, A
comparison of three different contaminated sites, Environ. Sci.
Pollut. Res., 23, 6055–6061,
https://doi.org/10.1007/s11356-015-4357-2, 2016.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D.,
Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and
Dommergue, A.: A vegetation control on seasonal variations in global
atmospheric mercury concentrations, Nat. Geosci., 11, 244–250,
https://doi.org/10.1038/s41561-018-0078-8, 2018.
Johnson, and Lindberg: The biogeochemical cycling of Hg in forests:
Alternative methods for quantifying total deposition and soil emission, Water Air Soil Pollut., 80, 1069–1077, 1995.
Jurdi, M., Korfali, S. I., Karahagopian, Y., and Davies, B. E.: Evaluation
of Water Quality of the Qaraaoun Reservoir, Lebanon: Suitability for
Multipurpose Usage, Kluwer Academic Publishers, The Netherlands, Environmental Monitoring and Assessment, 77, 11–30, 2002.
Kabata-Pendias, A. and Pendias, H.: Trace elements in soils and plants (3rd
edn.), CRC Press, ISBN 0849315751, 2000.
Khadari, B., El Bakkali, A., Essalouh, L., Tollon, C., Pinatel, C., and
Besnard, G.: Cultivated Olive Diversification at Local and Regional Scales:
Evidence From the Genetic Characterization of French Genetic Resources,
Front. Plant Sci., 10, 1593, https://doi.org/10.3389/fpls.2019.01593, 2019.
Khatib, J. M., Baydoun, S., and ElKordi, A. A.: Water Pollution and Urbanisation Trends in Lebanon: Litani River Basin Case Study, in: Urban Pollution: Science and Management, edited by: Charlesworth, S. M. and Booth, C. A., John Wiley & Sons Ltd., 397–415, https://doi.org/10.1002/9781119260493.ch30, 2018.
Kobrossi, R., Nuwayhid, I., Sibai, A. M., El-Fadel, M., and Khogali, M.:
Respiratory health effects of industrial air pollution on children in North
Lebanon, Int. J. Environ. Heal. R., 12,
205–220, https://doi.org/10.1080/09603/202/000000970, 2002.
Kotnik, J., Sprovieri, F., Ogrinc, N., Horvat, M., and Pirrone, N.: Mercury
in the Mediterranean, part I: Spatial and temporal trends, Environ.
Sci. Pollut. Res., 21, 4063–4080,
https://doi.org/10.1007/s11356-013-2378-2, 2014.
Labdaoui, D., Lotmani, B., and Aguedal, H.: Assessment of Metal Pollution on
the Cultivation of Olive Trees in the Petrochemical Industrial Zone of Arzew
(Algeria), South Asian Journal of Experimental Biology, 11, 3,
https://doi.org/10.38150/sajeb.11(3).p227-233, 2021.
Li, D., Fang, K., Li, Y., Chen, D., Liu, X., Dong, Z., Zhou, F., Guo, G.,
Shi, F., Xu, C., and Li, Y.: Climate, intrinsic water-use efficiency and
tree growth over the past 150 years in humid subtropical China, PLOS ONE,
12, e0172045, https://doi.org/10.1371/journal.pone.0172045, 2017.
Li, R., Wu, H., Ding, J., Fu, W., Gan, L., and Li, Y.: Mercury pollution in
vegetables, grains and soils from areas surrounding coal-fired power plants,
Sci. Rep., 7, 46545, https://doi.org/10.1038/srep46545, 2017.
Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X.,
Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C.: A Synthesis of
Progress and Uncertainties in Attributing the Sources of Mercury in
Deposition, Ambio, 36, 19–32, 2007.
Lindberg, S. E., Jackson, D. R., Huckabee, J. W., Janzen, S. A., Levin, M.
J., and Lund, J. R.: Atmospheric Emission and Plant Uptake of Mercury from
Agricultural Soils near the Almadén Mercury Mine, J.
Environ. Qual., 8, 572–578,
https://doi.org/10.2134/jeq1979.00472425000800040026x, 1979.
Lodenius, M., Tulisalo, E., and Soltanpour-Gargari, A.: Exchange of mercury
between atmosphere and vegetation under contaminated conditions, Sci. Total Environ., 304, 169–174,
https://doi.org/10.1016/S0048-9697(02)00566-1, 2003.
Luo, Y., Duan, L., Driscoll, C. T., Xu, G., Shao, M., Taylor, M., Wang, S.,
and Hao, J.: Foliage/atmosphere exchange of mercury in a subtropical
coniferous forest in south China, J. Geophys. Res.-Biogeosci., 121, 2006–2016, https://doi.org/10.1002/2016JG003388,
2016.
Maillard, F., Girardclos, O., Assad, M., Zappelini, C., Pérez Mena, J.
M., Yung, L., Guyeux, C., Chrétien, S., Bigham, G., Cosio, C., and
Chalot, M.: Dendrochemical assessment of mercury releases from a pond and
dredged-sediment landfill impacted by a chlor-alkali plant, Environ.
Res., 148, 122–126, https://doi.org/10.1016/j.envres.2016.03.034, 2016.
Martino, M., Tassone, A., Angiuli, L., Naccarato, A., Dambruoso, P. R., Mazzone, F., Trizio, L., Leonardi, C., Petracchini, F., Sprovieri, F., Pirrone, N., D’Amore, F., and Bencardino, M.: First atmospheric mercury measurements at a coastal site in the Apulia region: Seasonal variability and source analysis, Environ. Sci. Pollut. Res., 29, 68460–68475, https://doi.org/10.1007/s11356-022-20505-6, 2022.
McLagan, D. S., Stupple, G. W., Darlington, A., Hayden, K., and Steffen, A.: Where there is smoke there is mercury: Assessing boreal forest fire mercury emissions using aircraft and highlighting uncertainties associated with upscaling emissions estimates, Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, 2021.
McLagan, D. S., Biester, H., Navrátil, T., Kraemer, S. M., and Schwab, L.: Internal tree cycling and atmospheric archiving of mercury: examination with concentration and stable isotope analyses, Biogeosciences, 19, 4415–4429, https://doi.org/10.5194/bg-19-4415-2022, 2022.
Naharro, R., Esbri, J., Amorós, J., and Higueras, P.: Atmospheric
mercury uptake and desorption from olive-tree leaves, EGU General Assembly Conference Abstracts, Proceedings from the conference, EGU General Assembly 2018, 4–13 April 2018, Vienna, Austria, Geophysical Research Abstracts, 20, 2982, https://www.researchgate.net/publication/324169906 (last access: 11 June 2021), 2018.
Nassif, N., Jaoude, L. A., El Hage, M., and Robinson, C. A.: Data
Exploration and Reconnaissance to Identify Ocean Phenomena: A Guide for In
Situ Data Collection, J. Water Res. Protect., 8,
929–943, https://doi.org/10.4236/jwarp.2016.810076, 2016.
Niu, Z., Zhang, X., Wang, Z., and Ci, Z.: Field controlled experiments of
mercury accumulation in crops from air and soil, Environ. Pollut.,
159, 2684–2689, https://doi.org/10.1016/j.envpol.2011.05.029, 2011.
Obrist, D.: Atmospheric mercury pollution due to losses of terrestrial
carbon pools?, Biogeochemistry, 85, 119–123,
https://doi.org/10.1007/s10533-007-9108-0, 2007.
Obrist, D., Johnson, D. W., and Lindberg, S. E.: Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen, Biogeosciences, 6, 765–777, https://doi.org/10.5194/bg-6-765-2009, 2009.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9,
2018.
Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho,
R., Battles, J. J., Dail, D. B., Edmonds, R. L., Monson, R. K., Ollinger, S.
V., Pallardy, S. G., Pregitzer, K. S., and Todd, D. E.: Mercury Distribution
Across 14 U.S. Forests, Part I: Spatial Patterns of Concentrations in
Biomass, Litter, and Soils, Environ. Sci. Technol., 45,
3974–3981, https://doi.org/10.1021/es104384m, 2011.
O'Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S.,
Tack, F. M. G., and Rinklebe, J.: Mercury speciation, transformation, and
transportation in soils, atmospheric flux, and implications for risk
management: A critical review, Environ. Int., 126, 747–761,
https://doi.org/10.1016/j.envint.2019.03.019, 2019.
Ozturk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R.,
Akçiçek, E., and Bukhari, A.: An Overview of Olive Cultivation in
Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects,
Agronomy, 11, 295, https://doi.org/10.3390/agronomy11020295, 2021.
Patra, M. and Sharma, A.: Mercury toxicity in plants, The Botanical Review,
66, 379–422, https://doi.org/10.1007/BF02868923, 2000.
Petrlik, J., Kodeih, N., IndyACT, Arnika Association, and IPEN WG.: Mercury in Fish and Hair Samples from Batroun, Lebanon, https://doi.org/10.13140/RG.2.2.12052.40327, 2013.
Pleijel, H., Klingberg, J., Nerentorp, M., Broberg, M. C., Nyirambangutse, B., Munthe, J., and Wallin, G.: Mercury accumulation in leaves of different plant types – the significance of tissue age and specific leaf area, Biogeosciences, 18, 6313–6328, https://doi.org/10.5194/bg-18-6313-2021, 2021.
Pokharel, A. K. and Obrist, D.: Fate of mercury in tree litter during decomposition, Biogeosciences, 8, 2507–2521, https://doi.org/10.5194/bg-8-2507-2011, 2011.
Rea, A. W., Keeler, G. J., and Scherbatskoy, T.: The deposition of mercury
in throughfall and litterfall in the lake champlain watershed: A short-term
study, Atmos. Environ., 30, 3257–3263,
https://doi.org/10.1016/1352-2310(96)00087-8, 1996.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury
Accumulation in Foliage over Time in Two Northern Mixed-Hardwood Forests, Water Air Soil Pollut., 133, 49–67, https://doi.org/10.1023/A:1012919731598, 2002.
Richardson, J. B., Friedland, A. J., Engerbretson, T. R., Kaste, J. M., and
Jackson, B. P.: Spatial and vertical distribution of mercury in upland
forest soils across the northeastern United States, Environ. Pollut., 182, 127–134,
https://doi.org/10.1016/j.envpol.2013.07.011, 2013.
Sanz-Cortés, F., Martinez-Calvo, J., Badenes, M. L., Bleiholder, H.,
Hack, H., Llacer, G., and Meier, U.: Phenological growth stages of olive
trees (Olea europaea), Ann. Appl. Biol., 140, 151–157,
https://doi.org/10.1111/j.1744-7348.2002.tb00167.x, 2002.
Schaefer, K., Elshorbany, Y., Jafarov, E., Schuster, P. F., Striegl, R. G.,
Wickland, K. P., and Sunderland, E. M.: Potential impacts of mercury
released from thawing permafrost, Nat. Commun., 11, 1,
https://doi.org/10.1038/s41467-020-18398-5, 2020.
Schneider, L., Allen, K., Walker, M., Morgan, C., and Haberle, S.: Using
Tree Rings to Track Atmospheric Mercury Pollution in Australia: The Legacy
of Mining in Tasmania, Environ. Sci. Technol., 53,
5697–5706, https://doi.org/10.1021/acs.est.8b06712, 2019.
Schwesig, D. and Krebs, O.: The role of ground vegetation in the uptake of
mercury and methylmercury in a forest ecosystem, Plant and Soil, 11, 445–455, https://doi.org/10.1023/A:1024891014028, 2003.
Senesil, G. S., Baldassarre, G., Senesi, N., and Radina, B.: Trace element
inputs into soils by anthropogenic activities and implications for human
health, Chemosphere, 39, 343–377,
https://doi.org/10.1016/S0045-6535(99)00115-0, 1999.
Sghaier, A., Perttunen, J., Sievaènen, R., Boujnah, D., Ouessar, M., Ben
Ayed, R., and Naggaz, K.: Photosynthetical activity modelisation of olive
trees growing under drought conditions, Sci. Rep., 9, 15536,
https://doi.org/10.1038/s41598-019-52094-9, 2019.
Teixeira, D. C., Lacerda, L. D., and Silva-Filho, E. V.: Mercury
sequestration by rainforests: The influence of microclimate and different
successional stages, Chemosphere, 168, 1186–1193,
https://doi.org/10.1016/j.chemosphere.2016.10.081, 2017.
Terral, J.-F., Alonso, N., Capdevila, R. B. i, Chatti, N., Fabre, L.,
Fiorentino, G., Marinval, P., Jordá, G. P., Pradat, B., Rovira, N., and
Alibert, P.: Historical biogeography of olive domestication (Olea europaea
L.) as revealed by geometrical morphometry applied to biological and
archaeological material: Historical biogeography of olive domestication
(Olea europaea L.), J. Biogeogr., 31, 63–77,
https://doi.org/10.1046/j.0305-0270.2003.01019.x, 2004.
Tomiyasu, T., Matsuo, T., Miyamoto, J., Imura, R., Anazawa, K., and
Sakamoto, H.: Low level mercury uptake by plants from natural
environments – Mercury distribution in Solidago altissima L., Environmental
Sciences: An International Journal of Environmental Physiology and
Toxicology, 12, 231–238, 2005.
UNEP: Technical Background Report to the Global Mercury Assessment 2018, IVL
Svenska Miljöinstitutet, Arctic Monitoring
and Assessment Programme, Oslo, Norway/UN Environment
Programme, Chemicals and Health Branch, Geneva, Switzerland, viii, 426 pp., ISBN 9788279711087, 2019.
Wang, X., Lin, C.-J., Lu, Z., Zhang, H., Zhang, Y., and Feng, X.: Enhanced
accumulation and storage of mercury on subtropical evergreen forest floor:
Implications on mercury budget in global forest ecosystems: Hg storage on
subtropical forest floor, J. Geophys. Res.-Biogeosci.,
121, 2096–2109, https://doi.org/10.1002/2016JG003446, 2016.
Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S.-M., Bakwin, P. S.,
Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: Net Exchange of CO2 in
a Mid-Latitude Forest, Science, 260, 1314–1317,
https://doi.org/10.1126/science.260.5112.1314, 1993.
Wohlgemuth, L., Rautio, P., Ahrends, B., Russ, A., Vesterdal, L., Waldner, P., Timmermann, V., Eickenscheidt, N., Fürst, A., Greve, M., Roskams, P., Thimonier, A., Nicolas, M., Kowalska, A., Ingerslev, M., Merilä, P., Benham, S., Iacoban, C., Hoch, G., Alewell, C., and Jiskra, M.: Physiological and climate controls on foliar mercury uptake by European tree species, Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, 2022.
Wright, L. P., Zhang, L., and Marsik, F. J.: Overview of mercury dry deposition, litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, 2016.
Yammine, P., Kfoury, A., El-Khoury, B., Nouali, H., El-Nakat, H., Ledoux,
F., Courcot, D., and Aboukaïs, A.: A preliminary evaluation of the
inorganic chemical composition of atmospheric tsp in the selaata region,
north lebanon, Lebanese Science Journal, 11, 18, 2010.
Yanai, R. D., Yang, Y., Wild, A. D., Smith, K. T., and Driscoll, C. T.: New
Approaches to Understand Mercury in Trees: Radial and Longitudinal Patterns
of Mercury in Tree Rings and Genetic Control of Mercury in Maple Sap, Water
Air Soil Pollut., 231, 248,
https://doi.org/10.1007/s11270-020-04601-2, 2020.
Yang, Y., Yanai, R. D., Driscoll, C. T., Montesdeoca, M., and Smith, K. T.:
Concentrations and content of mercury in bark, wood, and leaves in hardwoods
and conifers in four forested sites in the northeastern USA, PLOS ONE,
13, e0196293, https://doi.org/10.1371/journal.pone.0196293, 2018.
Yazbeck, E. B., Rizk, G. A., Hassoun, G., El-Khoury, R., and Geagea, L.:
Ecological characterization of ancient olive trees in Lebanon – Bshaaleh area
and their age estimation, J. Agr. Vet. Sci., 11, 35–44, 2018.
Zhao, X. and Wang, D.: Mercury in some chemical fertilizers and the effect
of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.),
J. Environ. Sci., 22, 1184–1188,
https://doi.org/10.1016/S1001-0742(09)60236-9, 2010
Zhou, J., Obrist, D., Dastoor, A., Jiskra, M., and Ryjkov, A.: Vegetation
uptake of mercury and impacts on global cycling, Nat. Rev. Earth
Environ., 2, 269–284, https://doi.org/10.1038/s43017-021-00146-y,
2021.
Zhou, J., Wang, Z., and Zhang, X.: Deposition and Fate of Mercury in
Litterfall, Litter, and Soil in Coniferous and Broad-Leaved Forests, J. Geophys. Res.-Biogeosci., 123, 2590–2603,
https://doi.org/10.1029/2018JG004415, 2018.
Short summary
This study investigates the seasonality of the mercury (Hg) concentration of olive trees. Hg concentrations of foliage, stems, soil surface, and litter were analyzed on a monthly basis in ancient olive trees growing in two groves in Lebanon. Our study draws an adequate baseline for the eastern Mediterranean and for the region with similar climatic inventories on Hg vegetation uptake in addition to being a baseline for new studies on olive trees in the Mediterranean.
This study investigates the seasonality of the mercury (Hg) concentration of olive trees. Hg...
Altmetrics
Final-revised paper
Preprint