Articles | Volume 20, issue 5
https://doi.org/10.5194/bg-20-997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-20-997-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Model estimates of metazoans' contributions to the biological carbon pump
Jérôme Pinti
CORRESPONDING AUTHOR
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE 19958, USA
Tim DeVries
Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Tommy Norin
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Camila Serra-Pompei
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA
Roland Proud
Pelagic Ecology Research Group, School of Biology, Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
David A. Siegel
Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
Thomas Kiørboe
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Colleen M. Petrik
Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92107, USA
Ken H. Andersen
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Andrew S. Brierley
Pelagic Ecology Research Group, School of Biology, Gatty Marine Laboratory, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
André W. Visser
VKR Centre for Ocean Life, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Related authors
No articles found.
Amalia Papapostolou, Anton Vergod Almgren, Trine Frisbæk Hansen, Athanasios Kandylas, Camila Serra-Pompei, Andre William Visser, and Ken Haste Andersen
EGUsphere, https://doi.org/10.5194/egusphere-2025-755, https://doi.org/10.5194/egusphere-2025-755, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Nutrient-Unicellular-Multicellular model library simulates marine plankton ecosystems, structuring predator-prey dynamics by body size. It integrates feeding strategies in single-cell plankton and copepod life stages, essential for understanding their growth, survival, and predator-prey interactions. Validated with real data, this user-friendly tool recreates ecosystems across scales, offering insights for marine ecology and biogeochemistry.
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Athanasios Kandylas and Andre William Visser
EGUsphere, https://doi.org/10.5194/egusphere-2025-2526, https://doi.org/10.5194/egusphere-2025-2526, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The ocean plays an important role in regulating the Earth's climate by storing excess atmospheric carbon in its interior mainly through the sinking of small organic particles originating from planktonic organisms. Once produced these particles are constantly being transformed (sticking together, breaking into smaller pieces and being consumed by microbes). Here, we try to understand the dynamics of these processes by testing a variety of factors, such as stickiness and water column mixing.
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025, https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary
Short summary
We describe and test the size-based Nutrient-Unicellular-Multicellular model, which defines unicellular plankton using a single set of parameters, on a eutrophic and oligotrophic ecosystem. The results demonstrate that both sites can be modeled with similar parameters and robust performance over a wide range of parameters. The study shows that the model is useful for non-experts and applicable for modeling ecosystems with limited data. It holds promise for evolutionary and deep-time climate models.
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024, https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Short summary
The Arctic Ocean experiences significant seasonal and year-to-year changes, impacting marine plankton populations. Using a plankton community model, we studied these effects on plankton communities and their influence on fish production. Our findings revealed earlier plankton blooms, shifts towards more carnivorous zooplankton, and increased fishery potential during summertime, especially in warmer years with less ice, highlighting the delicate balance of Arctic ecosystems.
Andre Visser, Anton Vergod Almgren, and Athanasios Kandylas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2520, https://doi.org/10.5194/egusphere-2024-2520, 2024
Short summary
Short summary
Global models largely rely on empirical estimates of the rate at which this material is produced and sinks. Here we propose a mechanistic model that tries to capture the most important processes regulating the size and density of particulate organic material from when it is produced by living organisms, through its aggregation and fragmentation into particles of different size and density, degradation by microbes and eventual sinking into the ocean’s interior.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Christian Rödenbeck, Tim DeVries, Judith Hauck, Corinne Le Quéré, and Ralph F. Keeling
Biogeosciences, 19, 2627–2652, https://doi.org/10.5194/bg-19-2627-2022, https://doi.org/10.5194/bg-19-2627-2022, 2022
Short summary
Short summary
The ocean is an important part of the global carbon cycle, taking up about a quarter of the anthropogenic CO2 emitted by burning of fossil fuels and thus slowing down climate change. However, the CO2 uptake by the ocean is, in turn, affected by variability and trends in climate. Here we use carbon measurements in the surface ocean to quantify the response of the oceanic CO2 exchange to environmental conditions and discuss possible mechanisms underlying this response.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Cited articles
Ariza, A., Garijo, J. C., Landeira, J. M., Bordes, F., and
Hernández-León, S.: Migrant biomass and respiratory carbon flux
by zooplankton and micronekton in the subtropical northeast Atlantic Ocean
(Canary Islands), Prog. Oceanogr., 134, 330–342,
https://doi.org/10.1016/j.pocean.2015.03.003, 2015. a
Ariza, A., Landeira, J. M., Escánez, A., Wienerroither, R., Aguilar de
Soto, N., Røstad, A., Kaartvedt, S., and Hernández-León, S.:
Vertical distribution, composition and migratory patterns of acoustic
scattering layers in the Canary Islands, J. Mar. Syst., 157,
82–91, https://doi.org/10.1016/j.jmarsys.2016.01.004, 2016. a
Aumont, O., Maury, O., Lefort, S., and Bopp, L.: Evaluating the Potential
Impacts of the Diurnal Vertical Migration by Marine Organisms on Marine
Biogeochemistry, Global Biogeochem. Cy., 32, 1–22,
https://doi.org/10.1029/2018GB005886, 2018. a, b, c
Bandara, K., Varpe, Ø., Søreide, J. E., Wallenschus, J., Berge, J., and
Eiane, K.: Seasonal vertical strategies in a high-Arctic coastal zooplankton
community, Mar. Ecol. Prog. Ser., 555, 49–64,
https://doi.org/10.3354/meps11831, 2016. a
Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V., and Eiane, K.: Two
hundred years of zooplankton vertical migration research, Biol.
Rev., 96, 1547–1589, https://doi.org/10.1111/brv.12715, 2021. a
Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J., and DeVries, T.:
Estimating global biomass and biogeochemical cycling of marine fish with and
without fishing, Sci. Adv., 7, 41, eabd7554, https://doi.org/10.1126/sciadv.abd7554, 2021. a, b
Bisson, K., Siegel, D. A., and DeVries, T.: Diagnosing Mechanisms of Ocean
Carbon Export in a Satellite-Based Food Web Model, Front. Mar. Sci., 7, 1–15, https://doi.org/10.3389/fmars.2020.00505, 2020. a, b, c
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control
particle export and flux attenuation in the twilight zone of the open ocean,
Limnol. Oceanogr., 54, 1210–1232, https://doi.org/10.4319/lo.2009.54.4.1210,
2009. a
Canadell, J., Monteiro, P., Costa, M., Cotrim da Cunha, L., Cox, P., Eliseev,
A., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P.,
Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global
Carbon and other Biogeochemical Cycles and Feedbacks, in: Climate Change
2021: The Physical Science Basis, Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University
Press, Cambrige, UK and New York, NY, USA, 673–816, 2021. a
Carter, B. R., Feely, R. A., Lauvset, S. K., Olsen, A., DeVries, T., and
Sonnerup, R.: Preformed Properties for Marine Organic Matter and Carbonate
Mineral Cycling Quantification, Global Biogeochem. Cy., 35, e2020GB006623,
https://doi.org/10.1029/2020GB006623, 2021. a, b, c
Choy, C. A., Portner, E., Iwane, M., and Drazen, J. C.: Diets of five
important predatory mesopelagic fishes of the central North Pacific, Mar.
Ecol. Prog. Ser., 492, 169–184, https://doi.org/10.3354/meps10518, 2013. a
Davison, P. C., Checkley, D. M., Koslow, J. A., and Barlow, J.: Carbon export
mediated by mesopelagic fishes in the northeast Pacific Ocean, Prog. Oceanogr., 116, 14–30, https://doi.org/10.1016/j.pocean.2013.05.013, 2013. a, b, c, d
Deutsch, C., Brix, H., Ito, T., and Thompson, L.: Climate-forced variability
of ocean hypoxia, Science, 333, 336–340, 2011. a
DeVries, T.: The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and
transports over the industrial era, Global Biogeochem. Cy., 28,
631–647, https://doi.org/10.1002/2013GB004739, 2014. a
DeVries, T. and Primeau, F.: Dynamically and observationally constrained
estimates of water-mass distributions and ages in the global ocean, J.
Phys. Ocean., 41, 2381–2401, https://doi.org/10.1175/JPO-D-10-05011.1,
2011. a
DeVries, T. and Weber, T.: The export and fate of organic matter in the ocean:
New constraints from combining satellite and oceanographic tracer
observations, Global Biogeochem. Cy., 31, 535–555,
https://doi.org/10.1002/2016GB005551, 2017. a, b
Dunne, J. P., Armstrong, R. A., Gnnadesikan, A., and Sarmiento, J. L.:
Empirical and mechanistic models for the particle export ratio, Global Biogeochem. Cy., 19, 1–16, https://doi.org/10.1029/2004GB002390, 2005. a, b
Garcia, H., Weathers, C., Paver, C., Smolyar, I., Boyer, T., Locarnini, R.,
Zweng, M., Mishonov, A., Baranova, O., Seidov, D., and Reagan, J.: WORLD
OCEAN ATLAS 2018 Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and
Dissolved Oxygen Saturation, Tech. Rep., Silver Spring, MD,
https://www.nodc.noaa.gov/OC5/woa18/pubwoa18.html (last access: 9 March 2021), 2019. a
Gorgues, T., Aumont, O., and Memery, L.: Simulated changes in the particulate
carbon export efficiency due to diel vertical migration of zooplankton in the
North Atlantic, Geophys. Res. Lett., 46, 2018GL081748,
https://doi.org/10.1029/2018GL081748, 2019. a
Hansell, D., Carlson, C., Repeta, D., and Schlitzer, R.: Dissolved organic
matter in the ocean: a controversy stimulates new insights, Oceanography, 22,
202–211, 2009. a
Hansen, A. N. and Visser, A. W.: Carbon export by vertically migrating
zooplankton: An optimal behavior model, Limnol. Oceanogr., 61,
701–710, https://doi.org/10.1002/lno.10249, 2016. a
Hernández-León, S., Olivar, M. P., Fernández de Puelles,
M. L., Bode, A., Castellón, A., López-Pérez, C., Tuset,
V. M., and González-Gordillo, J. I.: Zooplankton and Micronekton
Active Flux Across the Tropical and Subtropical Atlantic Ocean, Front. Mar. Sci., 6, 535, https://doi.org/10.3389/fmars.2019.00535, 2019. a
Hofbauer, J. and Sigmund, K.: Evolutionary Game Dynamics, Bulletin
(New Series) of the American mathematical society, 40, 479–519, 2003. a
Holland, K. N., Brill, R. W., Chang, R. K., Sibert, J. R., and Fournier, D. A.:
Physiological and behavioural thermoregulation in bigeye tuna (Thunnus
obesus), Nature, 358, 410–412, https://doi.org/10.1038/358410a0, 1992. a
Holling, C.: Some characteristics of simple types of predation and
parasitism, Can. Entomol., 91, 385–398, 1959. a
Holzer, M., DeVries, T., and de Lavergne, C.: Diffusion controls the
ventilation of a Pacific Shadow Zone above abyssal overturning, Nat.
Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-24648-x, 2021. a
Houston, A. I., McNamara, J. M., and Hutchinson, J. M. C.: General results
concerning the trade-off between gaining energy and avoiding predation,
Philos. T. Roy. Soc. B, 341, 375–397, 1993. a
Hudson, J. M., Steinberg, D. K., Sutton, T. T., Graves, J. E., and Latour,
R. J.: Myctophid feeding ecology and carbon transport along the northern
Mid-Atlantic Ridge, Deep-Sea Res. Pt. I,
93, 104–116, https://doi.org/10.1016/j.dsr.2014.07.002, 2014. a, b
Hugie, D. M. and Dill, L. M.: Fish and Game: a game theoretic approach to
habitat selection by predators and prey, J. Fish Biol., 45,
151–169, 1994. a
Irigoien, X., Klevjer, T. A., Røstad, A., Martinez, U., Boyra, G.,
Acuña, J. L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J. I.,
Hernandez-Leon, S., Agusti, S., Aksnes, D. L., Duarte, C. M., and Kaartvedt,
S.: Large mesopelagic fishes biomass and trophic efficiency in the open
ocean, Nat. Commun., 5, 3271, https://doi.org/10.1038/ncomms4271, 2014. a
Jónasdóttir, S. H., Visser, A. W., Richardson, K., and Heath,
M. R.: Seasonal copepod lipid pump promotes carbon sequestration in the deep
North Atlantic, P. Natl. Acad. Sci. USA, 112,
12122–12126, https://doi.org/10.1073/pnas.1512110112, 2015. a
Klevjer, T. A., Irigoien, X., Røstad, A., Fraile-Nuez, E.,
Benítez-Barrios, V. M., and Kaartvedt, S.: Large scale patterns in
vertical distribution and behaviour of mesopelagic scattering layers,
Sci. Rep., 6, 19873, https://doi.org/10.1038/srep19873, 2016. a, b, c, d
Koeve, W., Kähler, P., and Oschlies, A.: Does Export Production Measure
Transient Changes of the Biological Carbon Pump's Feedback to the Atmosphere
Under Global Warming?, Geophys. Res. Lett., 47, e2020GL089928,
https://doi.org/10.1029/2020GL089928, 2020. a
Lampert, W.: Ultimate causes of diel vertical migration of zooplankton: New
evidence for the predator-avoidance hypothesis, Archiv her Hydrobiologie,
Beiheft Ergebnisse der Limnologie, 39, 79–88,
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_1508686 (last access: 9 March 2021), 1993. a
Locarnini, R., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H.,
Reagan, J., Seidov, D., Weathers, K., Paver, C., and Smolyar, I.: World
Ocean Atlas, Volume 1: Temperature,
http://www.nodc.noaa.gov/OC5/indprod.html (last access: 9 March 2021), 2019. a
Longhurst, A., Bedo, A., Harrison, W., Head, E., and Sameoto, D.: Vertical
flux of respiratory carbon by oceanic diel migrant biota, Deep Sea Res., 37, 685–694,
https://doi.org/10.1016/0198-0149(90)90098-G, 1990. a
Lucas, C. H., Jones, D. O., Hollyhead, C. J., Condon, R. H., Duarte, C. M.,
Graham, W. M., Robinson, K. L., Pitt, K. A., Schildhauer, M., and Regetz, J.:
Gelatinous zooplankton biomass in the global oceans: Geographic variation
and environmental drivers, Global Ecol. Biogeo., 23, 701–714,
https://doi.org/10.1111/geb.12169, 2014. a
Luo, J. Y., Condon, R. H., Stock, C. A., Duarte, C. M., Lucas, C. H., Pitt,
K. A., and Cowen, R.: Gelatinous zooplankton-mediated carbon flows in the
global oceans: a data-driven modeling study, Global Biogeochem. Cy., 34, e2020GB006704, https://doi.org/10.1029/2020GB006704,
2020. a
Lutz, M. J., Caldeira, K., Dunbar, R. B., and Behrenfeld, M. J.: Seasonal
rhythms of net primary production and particulate organic carbon flux to
depth describe the efficiency of biological pump in the global ocean,
J. Geophys. Res.-Oceans, 112, C10011, https://doi.org/10.1029/2006JC003706,
2007. a
Mariani, G., Cheung, W. W., Lyet, A., Sala, E., Mayorga, J., Velez, L., Gaines,
S. D., Dejean, T., Troussellier, M., and Mouillot, D.: Let more big fish
sink: Fisheries prevent blue carbon sequestration-half in unprofitable
areas, Sci. Adv., 6, 1–9, https://doi.org/10.1126/sciadv.abb4848, 2020. a
McLaren, I. A.: Effects of Temperature on Growth of Zooplankton, and the
Adaptive Value of Vertical Migration, J. Fish. Res., 20, 685–727, https://doi.org/10.1139/f63-046, 1963. a
Nash, J.: Non-Cooperative Games, Ann. Math., 54, 286,
https://doi.org/10.2307/1969529, 1951. a
Petrik, C. M., Stock, C. A., Andersen, K. H., van Denderen, P. D., and Watson,
J. R.: Bottom-up drivers of global patterns of demersal, forage, and pelagic
fishes, Prog. Oceanogr., 176, 102124,
https://doi.org/10.1016/j.pocean.2019.102124, 2019. a, b
Pinti, J.: MATLAB code of a global diel vertical model for several pelagic trophic levels, [code], https://gitlab.gbar.dtu.dk/jppi/global-fish-biological-carbon-pump, last access: 9 March 2021. a
Pinti, J., Kiørboe, T., Thygesen, U. H., and Visser, A. W.: Trophic
interactions drive the emergence of diel vertical migration patterns: a
game-theoretic model of copepod communities, P. Roy. Soc. B-Biol Sci., 286, 20191645, https://doi.org/10.1098/rspb.2019.1645, 2019. a, b
Pinti, J., Andersen, K. H., and Visser, A. W.: Co-adaptive behavior of
interacting populations in a habitat selection game significantly impacts
ecosystem functions, J. Theor. Biol., 523, 110663,
https://doi.org/10.1016/j.jtbi.2021.110663, 2021. a
Pinti, J., Visser, A. W., Serra‐Pompei, C., Andersen, K. H., Ohman, M. D.,
and Kiørboe, T.: Fear and loathing in the pelagic: How the seascape of
fear impacts the biological carbon pump, Limnol. Oceanogr., 67,
1238–1256, https://doi.org/10.1002/lno.12073, 2022. a
Polar Data Centre British Antarctic Survey: British Antarctic Survey, Raw
acoustic data collected by ship-borne EK60 echosounder in the Atlantic Ocean
(AMT24, AMT25, AMT26, AMT29), https://doi.org/10.5285/69f4b59d-4674-455c-88cc-e8b8634d2cb5, 2020. a, b
Preston, C. M., Durkin, C. A., and Yamahara, K. M.: DNA metabarcoding reveals
organisms contributing to particulate matter flux to abyssal depths in the
North East Pacific ocean, Deep-Sea Res. Pt. II, 173, 104708, https://doi.org/10.1016/j.dsr2.2019.104708, 2020. a
Prihartato, P. K., Aksnes, D. L., and Kaartvedt, S.: Seasonal patterns in the
nocturnal distributionand behavior of the mesopelagic fish Maurolicus
muelleri at high latitudes, Mar. Ecol. Prog. Ser., 521, 189–200,
2015. a
Proud, R., Cox, M. J., and Brierley, A. S.: Biogeography of the Global Ocean's
Mesopelagic Zone, Curr. Biol., 27, 113–119,
https://doi.org/10.1016/j.cub.2016.11.003, 2017. a
Proud, R., Handegard, N. O., Kloser, R. J., Cox, M. J., and Brierley, A. S.:
From siphonophores to deep scattering layers: uncertainty ranges for the
estimation of global mesopelagic fish biomass, ICES J. Mar. Sci., 76, 718–733, https://doi.org/10.1093/icesjms/fsy037, 2019. a, b, c, d
Rodhouse, P. G.: Role of squid in the Southern Ocean pelagic ecosystem and the
possible consequences of climate change, Deep-Sea Res. Pt. II, 95, 129–138, https://doi.org/10.1016/j.dsr2.2012.07.001,
2013. a
Roshan, S. and DeVries, T.: Efficient dissolved organic carbon production and
export in the oligotrophic ocean, Nat. Commun., 8, 1–8,
https://doi.org/10.1038/s41467-017-02227-3, 2017. a
Saba, G. K. and Steinberg, D. K.: Abundance, composition, and sinking rates of
fish fecal pellets in the santa barbara channel, Sci. Rep., 2,
1–6, https://doi.org/10.1038/srep00716, 2012. a
Saba, G. K., Burd, A. B., Dunne, J. P., Hernández-león, S., Martin,
A. H., Rose, K. A., Salisbury, J., Steinberg, D. K., Trueman, C. N., Wilson,
R. W., and Wilson, S. E.: Toward a better understanding of fish-based
contribution to ocean carbon flux, Limnol. Oceanogr., 66, 1639–1664,
https://doi.org/10.1002/lno.11709, 2021. a, b, c, d, e
Sainmont, J., Thygesen, U. H., and Visser, A. W.: Diel vertical migration
arising in a habitat selection game, Theor. Ecol., 6, 241–251,
https://doi.org/10.1007/s12080-012-0174-0, 2013. a
Sainmont, J., Andersen, K. H., Thygesen, U. H., Fiksen, Ø., and Visser,
A. W.: An effective algorithm for approximating adaptive behavior in
seasonal environments, Ecol. Modell., 311, 20–30, 2015. a
Schlitzer, R.: Carbon export fluxes in the Southern Ocean: Results from
inverse modeling and comparison with satellite-based estimates, Deep-Sea
Res. Pt. II, 49, 1623–1644,
https://doi.org/10.1016/S0967-0645(02)00004-8, 2002. a, b
Schlitzer, R., Usbeck, R., and Fischer, G.: Inverse modeling of particulate
organic carbon fluxes in the South Atlantic, in: The South Atlantic in the
Late Quaternary: Reconstruction of material budgets and current systems,
edited by: Wefer, G., Mulitza, S., and Ratmeyer, V.,
Springer-Verlag, 1–19, https://doi.org/10.1007/978-3-642-18917-3, 2003. a
Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld,
M. J., and Boyd, P. W.: Global assessment of ocean carbon export by
combining satellite observations and food-web models, Global Biogeochem. Cy., 28, 181–196, https://doi.org/10.1002/2013GB004743, 2014. a
Siegel, D. A., DeVries, T., Cetinić, I., and Bisson, K. M.: Quantifying the
Ocean's Biological Pump and Its Carbon Cycle Impacts on Global Scales, Annual
Rev. Mar. Sci., 15, 36070554, https://doi.org/10.1146/annurev-marine-040722-115226, 2023. a
Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M., and Kahru, M.:
Episodic organic carbon fluxes from surface ocean to abyssal depths during
long-term monitoring in NE Pacific, P. Natl. Acad. Sci. USA, 115, 12235–12240,
https://doi.org/10.1073/pnas.1814559115, 2018. a
St. John, M. A., Borja, A., Chust, G., Heath, M. R., Grigorov, I., Mariani,
P., Martin, A. P., and Santos, R. S.: A Dark Hole in Our Understanding of
Marine Ecosystems and Their Services: Perspectives from the Mesopelagic
Community, Front. Mar. Sci., 3, 1–6,
https://doi.org/10.3389/fmars.2016.00031, 2016. a, b
Steinberg, D. K., Carlson, C. A., Bates, N. R., Goldthwait, S. A., Madin,
L. P., and Michaels, A. F.: Zooplankton vertical migration and the active
transport of dissolved organic and inorganic carbon in the Sargasso Sea,
Deep-Sea Res. Pt. I, 47, 137–158, https://doi.org/10.1016/S0967-0637(99)00052-7,
2000. a
Stock, C. A., Dunne, J. P., and John, J. G.: Global-scale carbon and energy
flows through the marine planktonic food web: An analysis with a coupled
physical-biological model, Prog. Oceanogr., 120, 1–28,
https://doi.org/10.1016/j.pocean.2013.07.001, 2014.
a, b
Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W.,
Dunne, J. P., Friedland, K. D., Lam, V. W., Sarmiento, J. L., and Watson,
R. A.: Reconciling fisheries catch and ocean productivity, P. Natl. Acad. Sci. USA, 114,
1441–1449, https://doi.org/10.1073/pnas.1610238114, 2017. a, b
Thygesen, U. H., Sommer, L., Evans, K., and Patterson, T. A.: Dynamic optimal
foraging theory explains vertical migrations of Bigeye tuna, Ecology, 97,
1852–1861, 2016. a
Titelman, J. and Hansson, L. J.: Feeding rates of the jellyfish Aurelia aurita
on fish larvae, Mar. Biol., 149, 297–306,
https://doi.org/10.1007/s00227-005-0200-5, 2006. a
Zaret, T. M. and Suffern, S.: Vertical migration in zooplankton as a predator
avoidance mechanism, Limnol. Oceanogr., 21, 804–813,
https://doi.org/10.4319/lo.1976.21.6.0804, 1976. a
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration...
Altmetrics
Final-revised paper
Preprint