Articles | Volume 21, issue 19
https://doi.org/10.5194/bg-21-4469-2024
https://doi.org/10.5194/bg-21-4469-2024
Research article
 | 
14 Oct 2024
Research article |  | 14 Oct 2024

Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model

Miriam Tivig, David P. Keller, and Andreas Oschlies

Related authors

Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021,https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
Long-term variations in pH in coastal waters along the Korean Peninsula
Yong-Woo Lee, Mi-Ok Park, Seong-Gil Kim, Tae-Hoon Kim, Yong Hwa Oh, Sang Heon Lee, and DongJoo Joung
Biogeosciences, 22, 675–690, https://doi.org/10.5194/bg-22-675-2025,https://doi.org/10.5194/bg-22-675-2025, 2025
Short summary
The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes
Kadir Biçe, Tristen Myers Stewart, George G. Waldbusser, and Christof Meile
Biogeosciences, 22, 641–657, https://doi.org/10.5194/bg-22-641-2025,https://doi.org/10.5194/bg-22-641-2025, 2025
Short summary
Assessing the impacts of simulated ocean alkalinity enhancement on viability and growth of nearshore species of phytoplankton
Jessica L. Oberlander, Mackenzie E. Burke, Cat A. London, and Hugh L. MacIntyre
Biogeosciences, 22, 499–512, https://doi.org/10.5194/bg-22-499-2025,https://doi.org/10.5194/bg-22-499-2025, 2025
Short summary
Responses of microbial metabolic rates to non-equilibrated silicate- versus calcium-based ocean alkalinity enhancement
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, and Ulf Riebesell
Biogeosciences, 21, 5707–5724, https://doi.org/10.5194/bg-21-5707-2024,https://doi.org/10.5194/bg-21-5707-2024, 2024
Short summary
High metabolic zinc demand within native Amundsen and Ross sea phytoplankton communities determined by stable isotope uptake rate measurements
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024,https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary

Cited articles

Altabet, M. A.: Constraints on oceanic N balance/imbalance from sedimentary 15N records, Biogeosciences, 4, 75–86, https://doi.org/10.5194/bg-4-75-2007, 2007. a
Bange, H., Naqvi, S., and Codispoti, L.: The nitrogen cycle in the Arabian Sea, Prog. Oceanogr., 65, 145–158, https://doi.org/10.1016/j.pocean.2005.03.002, 2005. a
Baturin, G. N.: Phosphorus Cycle in the Ocean, Lithol. Miner. Resour., 38, 101–119, 2003. a
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine systems, Earth-Sci. Rev., 51, 109–135, https://doi.org/10.1016/S0012-8252(00)00018-0, 2000. a, b, c
Beusen, A. H. W. and Bouwman, A. F.: Future projections of river nutrient export to the global coastal ocean show persisting nitrogen and phosphorus distortion, Frontiers:Water, 4, 893585, https://doi.org/10.3389/frwa.2022.893585, 2022. a, b, c, d
Download
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Share
Altmetrics
Final-revised paper
Preprint