Articles | Volume 21, issue 19
https://doi.org/10.5194/bg-21-4469-2024
https://doi.org/10.5194/bg-21-4469-2024
Research article
 | 
14 Oct 2024
Research article |  | 14 Oct 2024

Riverine nutrient impact on global ocean nitrogen cycle feedbacks and marine primary production in an Earth system model

Miriam Tivig, David P. Keller, and Andreas Oschlies

Related authors

Riverine nitrogen supply to the global ocean and its limited impact on global marine primary production: a feedback study using an Earth system model
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021,https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary

Related subject area

Biogeochemistry: Coastal Ocean
The Northeast Greenland Shelf as a potential late-summer CO2 source to the atmosphere
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024,https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Technical note: Ocean Alkalinity Enhancement Pelagic Impact Intercomparison Project (OAEPIIP)
Lennart Thomas Bach, Aaron James Ferderer, Julie LaRoche, and Kai Georg Schulz
Biogeosciences, 21, 3665–3676, https://doi.org/10.5194/bg-21-3665-2024,https://doi.org/10.5194/bg-21-3665-2024, 2024
Short summary
Estimates of carbon sequestration potential in an expanding Arctic fjord (Hornsund, Svalbard) affected by dark plumes of glacial meltwater
Marlena Szeligowska, Déborah Benkort, Anna Przyborska, Mateusz Moskalik, Bernabé Moreno, Emilia Trudnowska, and Katarzyna Błachowiak-Samołyk
Biogeosciences, 21, 3617–3639, https://doi.org/10.5194/bg-21-3617-2024,https://doi.org/10.5194/bg-21-3617-2024, 2024
Short summary
An assessment of ocean alkalinity enhancement using aqueous hydroxides: kinetics, efficiency, and precipitation thresholds
Mallory C. Ringham, Nathan Hirtle, Cody Shaw, Xi Lu, Julian Herndon, Brendan R. Carter, and Matthew D. Eisaman
Biogeosciences, 21, 3551–3570, https://doi.org/10.5194/bg-21-3551-2024,https://doi.org/10.5194/bg-21-3551-2024, 2024
Short summary
Dissolved nitric oxide in the lower Elbe Estuary and the Port of Hamburg area
Riel Carlo O. Ingeniero, Gesa Schulz, and Hermann W. Bange
Biogeosciences, 21, 3425–3440, https://doi.org/10.5194/bg-21-3425-2024,https://doi.org/10.5194/bg-21-3425-2024, 2024
Short summary

Cited articles

Altabet, M. A.: Constraints on oceanic N balance/imbalance from sedimentary 15N records, Biogeosciences, 4, 75–86, https://doi.org/10.5194/bg-4-75-2007, 2007. a
Bange, H., Naqvi, S., and Codispoti, L.: The nitrogen cycle in the Arabian Sea, Prog. Oceanogr., 65, 145–158, https://doi.org/10.1016/j.pocean.2005.03.002, 2005. a
Baturin, G. N.: Phosphorus Cycle in the Ocean, Lithol. Miner. Resour., 38, 101–119, 2003. a
Benitez-Nelson, C. R.: The biogeochemical cycling of phosphorus in marine systems, Earth-Sci. Rev., 51, 109–135, https://doi.org/10.1016/S0012-8252(00)00018-0, 2000. a, b, c
Beusen, A. H. W. and Bouwman, A. F.: Future projections of river nutrient export to the global coastal ocean show persisting nitrogen and phosphorus distortion, Frontiers:Water, 4, 893585, https://doi.org/10.3389/frwa.2022.893585, 2022. a, b, c, d
Download
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Altmetrics
Final-revised paper
Preprint