Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-575-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-21-575-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Huimin Sun
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200433, China
Department of Geography, University of Zurich, Zurich, Switzerland
Michael W. I. Schmidt
Department of Geography, University of Zurich, Zurich, Switzerland
Jintao Li
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200433, China
Jinquan Li
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200433, China
Xiang Liu
State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
Nicholas O. E. Ofiti
Department of Geography, University of Zurich, Zurich, Switzerland
Shurong Zhou
Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
Ming Nie
CORRESPONDING AUTHOR
Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200433, China
Related authors
No articles found.
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025, https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Short summary
This study shows that calcium (Ca) preserves soil organic carbon (SOC) in acidic soils, challenging beliefs that their interactions were limited to near-neutral or alkaline soils. Using spectromicroscopy, we found that Ca was co-located with a specific fraction of carbon, rich in aromatic and phenolic groups. This association was disrupted when Ca was removed but was reformed during decomposition with added Ca. Overall, this suggests that Ca amendments could enhance SOC stability.
Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, and Michael W. I. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-299, https://doi.org/10.5194/egusphere-2025-299, 2025
Short summary
Short summary
To understand how warming will change the dynamics of roots across soil profile, we took usage of a long-term field warming experiment and incubated 13C-labelled roots at three different depths. After 3 years of incubation, warming only accelerate the decomposition of root in topsoil (< 20 cm) but not in subsoil (> 20 cm). Hydrolysable lipids derived from root, which are considered as recalcitrant compounds and could be preserved for long time in the soil, are also decomposed faster in topsoil.
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021, https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Short summary
How subsoil microorganisms respond to warming is largely unknown, despite their crucial role in the soil organic carbon cycle. We observed that the subsoil microbial community composition was more responsive to warming compared to the topsoil community composition. Decreased microbial abundance in subsoils, as observed in this study, might reduce the magnitude of the respiration response over time, and a shift in the microbial community will likely affect the cycling of soil organic carbon.
Cited articles
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010.
Atanassova, I. and Doerr, S.: Changes in soil organic compound composition associated with heat-induced increases in soil water repellency, Eur. J. Soil Sci., 62, 516–532, https://doi.org/10.1111/j.1365-2389.2011.01350.x, 2011.
Bailey, V. L., Pries, C. H., and Lajtha, K.: What do we know about soil carbon destabilization?, Environ. Res. Lett., 14, 083004, https://doi.org/10.1088/1748-9326/ab2c11, 2019.
Baldock, J., Oades, J., Waters, A., Peng, X., Vassallo, A., and Wilson, M.: Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy, Biogeochemistry, 16, 1–42, https://doi.org/10.1007/BF00024251, 1992.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bonanomi, G., Incerti, G., Giannino, F., Mingo, A., Lanzotti, V., and Mazzoleni, S.: Litter quality assessed by solid state 13C NMR spectroscopy predicts decay rate better than and Lignin N ratios, Soil Biol. Biochem., 56, 40–48, https://doi.org/10.1016/j.soilbio.2012.03.003, 2013.
Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., and Crowther, T. W.: Managing uncertainty in soil carbon feedbacks to climate change, Nat. Clim. Change, 6, 751–758, https://doi.org/10.1038/nclimate3071, 2016.
Cao, Z. Y., Wang, Y., Li, J., Zhang, J. J., and He, N. P.: Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau, J. Mt. Sci., 13, 2015–2027, https://doi.org/10.1007/s11629-015-3744-y, 2016.
Carreiro, M., Sinsabaugh, R., Repert, D., and Parkhurst, D.: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition, Ecology, 81, 2359–2365, https://doi.org/10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2, 2000.
Chatterjee, S., Santos, F., Abiven, S., Itin, B., Stark, R. E., and Bird, J. A.: Elucidating the chemical structure of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and mass spectrometry, Org. Geochem., 51, 35–44, https://doi.org/10.1016/j.orggeochem.2012.07.006, 2012.
Chen, H., Yang, Z., Chu, R. K., Tolic, N., Liang, L., Graham, D. E., Wullschleger, S. D., and Gu, B.: Molecular insights into Arctic soil organic matter degradation under warming, Environ. Sci. Technol., 52, 4555–4564, https://doi.org/10.1021/acs.est.7b05469, 2018.
Chen, J., Luo, Y., Li, J., Zhou, X., Cao, J., Wang, R.-W., Wang, Y., Shelton, S., Jin, Z., Walker, L. M., Feng, Z., Niu, S., Feng, W., Jian, S., and Zhou, L.: Costimulation of soil glycosidase activity and soil respiration by nitrogen addition, Global Change Biol., 23, 1328–1337, https://doi.org/10.1111/gcb.13402, 2017.
Chen, J., Luo, Y., García-Palacios, P., Cao, J., Dacal, M., Zhou, X., Li, J., Xia, J., Niu, S., Yang, H., Shelton, S., Guo, W., and van Groenigen, K. J.: Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration, Global Change Biol., 24, 4816–4826, https://doi.org/10.1111/gcb.14394, 2018.
Chen, J., Elsgaard, L., van Groenigen, K. J., Olesen, J. E., Liang, Z., Jiang, Y., Laerke, P. E., Zhang, Y., Luo, Y., Hungate, B. A., Sinsabaugh, R. L., and Jorgensen, U.: Soil carbon loss with warming: New evidence from carbon-degrading enzymes, Global Change Biol., 26, 1944–1952, https://doi.org/10.1111/gcb.14986, 2020.
Chen, Y., Liu, X., Hou, Y., Zhou, S., and Zhu, B.: Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow, Plant Soil, 458, 1–11, https://doi.org/10.1007/s11104-019-04279-4, 2019.
Contosta, A. R., Frey, S. D., and Cooper, A. B.: Soil microbial communities vary as much over time as with chronic warming and nitrogen additions, Soil Biol. Biochem., 88, 19–24, https://doi.org/10.1016/j.soilbio.2015.04.013, 2015.
Craine, J., Morrow, C., and Fierer, N.: Microbial nitrogen limitation increase decomposition, Ecology, 88, 2105–2113, https://doi.org/10.1890/06-1847.1, 2007.
Crowther, T. W. and Bradford, M. A.: Thermal acclimation in widespread heterotrophic soil microbes, Ecol. Lett., 16, 469–477, https://doi.org/10.1111/ele.12069, 2013.
Crowther, T. W., Thomas, S. M., Maynard, D. S., Baldrian, P., Covey, K., Frey, S. D., van Diepen, L. T., and Bradford, M. A.: Biotic interactions mediate soil microbial feedbacks to climate change, P. Natl. Acad. Sci. USA, 112, 7033–7038, https://doi.org/10.1073/pnas.1502956112, 2015.
Dai, K. O. H., Johnson, C. E., and Driscoll, C. T.: Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems, Biogeochemistry, 54, 51–83, https://doi.org/10.1023/A:1010697518227, 2001.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, https://doi.org/10.1038/nature04514, 2006.
Day, T. A., Ruhland, C. T., and Xiong, F. S.: Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra, Global Change Biol., 14, 1827–1843, https://doi.org/10.1111/j.1365-2486.2008.01623.x, 2008.
Devaraju, N., Bala, G., Caldeira, K., and Nemani, R.: A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period, Clim. Dynam., 47, 173–190, https://doi.org/10.1007/s00382-015-2830-8, 2015.
Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., and Zhao, L.: The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region, Nat. Commun., 10, 4195, https://doi.org/10.1038/s41467-019-12214-5, 2019.
Ding, X., Chen, S., Zhang, B., Liang, C., He, H., and Horwath, W. R.: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow, Soil Biol. Biochem., 135, 13–19, https://doi.org/10.1016/j.soilbio.2019.04.004, 2019.
Dlamini, P., Chivenge, P., and Chaplot, V.: Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows, Agr. Ecosyst. Environ., 221, 258–269, https://doi.org/10.1016/j.agee.2016.01.026, 2016.
Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., and Zagal Venegas, E.: Soil carbon storage controlled by interactions between geochemistry and climate, Nat. Geosci., 8, 780–783, https://doi.org/10.1038/ngeo2516, 2015.
Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D., and Simpson, M. J.: Increased cuticular carbon sequestration and lignin oxidation in response to soil warming, Nat. Geosci., 1, 836–839, https://doi.org/10.1038/ngeo361, 2008.
Ferrari, E., Francioso, O., Nardi, S., Saladini, M., Ferro, N. D., and Morari, F.: DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers, J. Mol. Struct., 998, 216–224, https://doi.org/10.1016/j.molstruc.2011.05.035, 2011.
Francioso, O., Montecchio, D., Gioacchini, P., Cavani, L., Ciavatta, C., Trubetskoj, O., and Trubetskaya, O.: Structural differences of Chernozem soil humic acids SEC–PAGE fractions revealed by thermal (TG–DTA) and spectroscopic (DRIFT) analyses, Geoderma, 152, 264–268, https://doi.org/10.1016/j.geoderma.2009.06.011, 2009.
Franklin, O., Högberg, P., Ekblad, A., and Ågren, G. I.: Pine forest floor carbon accumulation in response to N and PK additions: bomb 14C modelling and respiration studies, Ecosystems, 6, 644–658, https://doi.org/10.1007/s10021-002-0149-x, 2003.
Gao, Y., Luo, P., Wu, N., Yi, S., and Chen, H.: Biomass and nitrogen responses to grazing intensity in an alpine meadow on the eastern Tibetan Plateau, Pol. J. Ecol., 55, 469–479, https://doi.org/10.1007/BF02557215, 2007.
García-Palacios, P., Crowther, T. W., Dacal, M., Hartley, I. P., Reinsch, S., Rinnan, R., Rousk, J., van den Hoogen, J., Ye, J.-S., and Bradford, M. A.: Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming, Nat. Rev. Earth Environ., 2, 507–517, https://doi.org/10.1038/s43017-021-00178-4, 2021.
Geisseler, D. and Scow, K.: Long-term effects of mineral fertilizers on soil microorganisms – A review, Soil Biol. Biochem., 75, 54–63, https://doi.org/10.1016/j.soilbio.2014.03.023, 2014.
Genxu, W., Ju, Q., Guodong, C., and Yuanmin, L.: Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication, Sci. Total Environ., 291, 207–217, https://doi.org/10.1016/S0048-9697(01)01100-7, 2002.
Golchin, A., Clarke, P., Baldock, J. A., Higashi, T., Skjemstad, J. O., and Oades, J. M.: The effects of vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil as shown by 13C NMR spectroscopy. I. Whole soil and humic acid fraction, Geoderma, 76, 155–174, https://doi.org/10.1016/S0016-7061(96)00104-8, 1997.
Guan, S., An, N., Zong, N., He, Y., Shi, P., Zhang, J., and He, N.: Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow, Soil Biol. Biochem., 116, 224–236, https://doi.org/10.1016/j.soilbio.2017.10.011, 2018.
He, Y., He, X., Xu, M., Zhang, W., Yang, X., and Huang, S.: Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and south China, Soil Till. Res., 177, 79–87, https://doi.org/10.1016/j.still.2017.11.018, 2018.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G., and Walsh, M. G.: SoilGrids1 km – global soil information based on automated mapping, PLoS ONE, 9, e105992, https://doi.org/10.1371/journal.pone.0105992, 2014.
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The whole-soil carbon flux in response to warming, Science, 355, 1420, https://doi.org/10.1126/science.aal1319, 2017.
Hobbie, S. E., Miley, T. A., and Weiss, M. S.: Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska, Ecosystems, 5, 0761–0774, https://doi.org/10.1007/s10021-002-0185-6, 2002.
Hou, Y., Chen, Y., Chen, X., He, K., and Zhu, B.: Changes in soil organic matter stability with depth in two alpine ecosystems on the Tibetan Plateau, Geoderma, 351, 153–162, https://doi.org/10.1016/j.geoderma.2019.05.034, 2019.
Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., and Law, B. E.: Reduction of forest soil respiration in response to nitrogen deposition, Nat. Geosci., 3, 315–322, https://doi.org/10.1038/ngeo844, 2010.
Jiang, C., Yu, G., Li, Y., Cao, G., Yang, Z., Sheng, W., and Yu, W.: Nutrient resorption of coexistence species in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor environment, Ecol. Eng., 44, 1–9, https://doi.org/10.1016/j.ecoleng.2012.04.006, 2012.
Keeler, B. L., Hobbie, S. E., and Kellogg, L. E. J. E.: Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition, Ecosystems, 12, 1–15, https://doi.org/10.1007/s10021-008-9199-z, 2009.
Kim, J. H., Jobbágy, E. G., Richter, D. D., Trumbore, S. E., and Jackson, R. B.: Agricultural acceleration of soil carbonate weathering, Global Change Biol., 26, 5988–6002, https://doi.org/10.1111/gcb.15207, 2020.
Kirschbaum, M. U.: Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?, Global Change Biol., 10, 1870–1877, https://doi.org/10.1111/j.1365-2486.2004.00852.x, 2004.
Komada, T., Anderson, M. R., and Dorfmeier, C. L.: Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid, Limnol. Oceanogr.-Meth., 6, 254–262, https://doi.org/10.4319/lom.2008.6.254, 2008.
Lehmann, J. and Kleber, M.: The contentious nature of soil organic matter, Nature, 528, 60–68, https://doi.org/10.1038/nature16069, 2015.
Leifeld, J.: Application of diffuse reflectance FT-IR spectroscopy and partial leastsquares regression to predict NMR properties of soil organic matter, Eur. J. Soil Sci., 57, 846–857, https://doi.org/10.1111/j.1365-2389.2005.00776.x, 2006.
Li, B., He, Y., Wang, Z., Luo, P., and Hong, Q.: Decomposition process and scientific management of yak dung on alpine meadow in the eastern Qinghai-Tibetan Plateau, Pratacultural Sci., 29, 1302–1306, 2012 (in Chinese abstract).
Li, J., Nie, M., Pendall, E., Reich, P. B., Pei, J., Noh, N. J., Zhu, T., Li, B., and Fang, C.: Biogeographic variation in temperature sensitivity of decomposition in forest soils, Global Change Biol., 26, 1873–1885, https://doi.org/10.1111/gcb.14838, 2020.
Li, Q., Tian, Y., Zhang, X., Xu, X., Wang, H., and Kuzyakov, Y.: Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature, Appl. Soil Ecol., 114, 152–160, https://doi.org/10.1016/j.apsoil.2017.01.009, 2017.
Liang, C. and Balser, T. C.: Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool, Nat. Commun., 3, 1222, https://doi.org/10.1016/j.apsoil.2017.01.009, 2012.
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen deposition over China, Nature, 494, 459–462, https://doi.org/10.1038/nature11917, 2013.
Liu, X., Lyu, S., Zhou, S., and Bradshaw, C. J.: Warming and fertilization alter the dilution effect of host diversity on disease severity, Ecology, 97, 1680–1689, https://doi.org/10.1890/15-1784.1, 2016.
Lü, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data, J. Geophys. Res., 112, D22S05, https://doi.org/10.1029/2006JD007990, 2007.
Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., and Li, B.: Responses of ecosystem carbon cycle to experimental warming: a meta-analysis, Ecology, 94, 726–738, https://doi.org/10.1890/12-0279.1, 2013.
Luo, R., Fan, J., Wang, W., Luo, J., Kuzyakov, Y., He, J.-S., Chu, H., and Ding, W.: Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau, Sci. Total Environ., 650, 303–312, https://doi.org/10.1016/j.scitotenv.2018.09.038, 2019.
Macias-Fauria, M., Forbes, B. C., Zetterberg, P., and Kumpula, T.: Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems, Nat. Clim. Change, 2, 613–618, https://doi.org/10.1038/nclimate1558, 2012.
Mack, M., Schuur, E., Bret-Harte, M., Shaver, G., and Chapin, F. J. N.: Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization, Nature, 431, 440–443, https://doi.org/10.1038/nature02887, 2004.
Mao, J., Yao, J., Wang, L., and Liu, W.: Easily prepared high-quantum-yield CdS quantum dots in water using hyperbranched polyethylenimine as modifier, J. Colloid Interf. Sci., 319, 353–356, https://doi.org/10.1016/j.jcis.2007.10.027, 2008.
Mathers, N. J., Xu, Z., Berners-Price, S. J., Perera, M. S., and Saffigna, P. G.: Hydrofluoric acid pre-treatment for improving 13C CPMAS NMR spectral quality of forest soils in south-east Queensland, Australia, Soil Res., 40, 665–674, https://doi.org/10.1071/SR01073, 2002.
Melillo, J. M., Steudler, P., Aber, J. D., Newkirk, K., Lux, H., Bowles, F., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.: Soil warming and carbon-cycle feedbacks to the climate system, Science, 298, 2173–2176, https://doi.org/10.1126/science.1074153, 2002.
Melillo, J. M., Frey, S. D., Deangelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G., Knorr, M. A., and Grandy, A. S.: Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world, Science, 358, 101–105, https://doi.org/10.1126/science.aan2874, 2017.
Meng, J. and Li, X.-A.: Effects of carbonate on the structure and properties of loess and the corresponding mechanism: an experimental study of the Malan loess, Xi'an area, China, B. Eng. Geol. Environ., 78, 4965–4976, https://doi.org/10.1007/s10064-018-01457-z, 2019.
Metcalfe, D. B.: Microbial change in warming soils, Science, 358, 41–42, https://doi.org/10.1126/science.aap7325, 2017.
Micks, P., Aber, J. D., Boone, R. D., and Davidson, E. A.: Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests, Forest Ecol. Manag., 196, 57–70, https://doi.org/10.1016/j.foreco.2004.03.012, 2004.
Mo, J., Zhang, W., Zhu, W., Gundersen, P., Fang, Y., Li, D., and Wang, H.: Nitrogen addition reduces soil respiration in a mature tropical forest in southern China, Global Change Biol., 14, 403–412, https://doi.org/10.1111/j.1365-2486.2007.01503.x, 2008.
Moscatelli, M. C., Lagomarsino, A., De Angelis, P., and Grego, S.: Short-and medium-term contrasting effects of nitrogen fertilization on C and N cycling in a poplar plantation soil, Forest Ecol. Manag., 255, 447–454, https://doi.org/10.1016/j.foreco.2007.09.012, 2008.
Nie, M., Pendall, E., Bell, C., Gasch, C. K., Raut, S., Tamang, S., and Wallenstein, M. D.: Positive climate feedbacks of soil microbial communities in a semi-arid grassland, Ecol. Lett., 16, 234–241, https://doi.org/10.1111/ele.12034, 2013.
Niemeyer, J., Chen, Y., and Bollag, J.-M.: Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy, Soil Sci. Soc. Am. J., 56, 135–140, https://doi.org/10.2136/sssaj1992.03615995005600010021x, 1992.
Ofiti, N. O. E., Zosso, C. U., Soong, J. L., Solly, E. F., Torn, M. S., Wiesenberg, G. L. B., and Schmidt, M. W. I.: Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter, Soil Biol. Biochem., 156, 108185, https://doi.org/10.1016/j.soilbio.2021.108185, 2021.
Olk, D. C., Brunetti, G., and Senesi, N.: Decrease in Humification of Organic Matter with Intensified Lowland Rice Cropping A Wet Chemical and Spectroscopic Investigation, Soil Sci. Soc. Am. J., 64, 1337–1347, https://doi.org/10.2136/sssaj2000.6441337x, 2000.
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., and Smith, P.: Climate-smart soils, Nature, 532, 49–57, https://doi.org/10.1038/nature17174, 2016.
Pendall, E., Bridgham, S., Hanson, P. J., Hungate, B., Kicklighter, D. W., Johnson, D. W., Law, B. E., Luo, Y. Q., Megonigal, J. P., Olsrud, M., Ryan, M. G., and Wan, S. Q.: Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models, New Phytol., 162, 311–322, https://doi.org/10.1111/j.1469-8137.2004.01053.x, 2004.
Piao, S., Fang, J., and He, J.: Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999, Climatic Change, 74, 253–267, https://doi.org/10.1007/s10584-005-6339-8, 2006.
Poeplau, C., Kätterer, T., Leblans, N. I. W., and Sigurdsson, B. D.: Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland, Global Change Biol., 23, 1316–1327, https://doi.org/10.1111/gcb.13491, 2017.
Pold, G., Grandy, A. S., Melillo, J. M., and DeAngelis, K. M.: Changes in substrate availability drive carbon cycle response to chronic warming, Soil Biol. Biochem., 110, 68–78, https://doi.org/10.1016/j.soilbio.2017.03.002, 2017.
Raza, S., Miao, N. A., Wang, P., Ju, X., Chen, Z., Zhou, J., and Kuzyakov, Y.: Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands, Global Change Biol., 26, 3738–3751, https://doi.org/10.1111/gcb.15101, 2020.
Raza, S., Zamanian, K., Ullah, S., Kuzyakov, Y., Virto, I., and Zhou, J.: Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation, J. Clean. Prod., 315, 128036, https://doi.org/10.1016/j.jclepro.2021.128036, 2021.
Riggs, C. E. and Hobbie, S. E.: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils, Soil Biol. Biochem., 99, 54–65, https://doi.org/10.1016/j.soilbio.2016.04.023, 2016.
Rinnan, R., Michelsen, A., Bååth, E., and Jonasson, S.: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem, Global Change Biol., 13, 28–39, https://doi.org/10.1111/j.1365-2486.2006.01263.x, 2007.
Romero-Olivares, A. L., Allison, S. D., and Treseder, K. K.: Soil microbes and their response to experimental warming over time: A meta-analysis of field studies, Soil Biol. Biochem., 107, 32–40, https://doi.org/10.1016/j.soilbio.2016.12.026, 2017.
Rowley, M. C., Grand, S., Adatte, T., and Verrecchia, E. P.: A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland, Geoderma, 361, 114065, https://doi.org/10.1016/j.geoderma.2019.114065, 2020.
Saiya-Cork, K., Sinsabaugh, R., and Zak, D.: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil, Soil Biol. Biochem., 34, 1309–1315, https://doi.org/10.1016/S0038-0717(02)00074-3, 2002.
Schermelleh-Engel, K., Moosbrugger, H., and Müller, H.: Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures, Methods of Psychological Research Online, 8, 23–74, 2003.
Schmidt, M., Knicker, H., Hatcher, P. G., and Kogel-Knabner, I.: Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10 % hydrofluoric acid, Eur. J. Soil Sci., 48, 319–328, https://doi.org/10.1111/j.1365-2389.1997.tb00552.x, 1997.
Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., and Manning, D. A.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49–56, https://doi.org/10.1038/nature10386, 2011.
Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., and Lawrence, D. M.: Climate change and the permafrost carbon feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Simpson, M. J. and Simpson, A. J.: The chemical ecology of soil organic matter molecular constituents, J. Chem. Ecol., 38, 768–784, https://doi.org/10.1007/s10886-012-0122-x, 2012.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and Schimel, J. P.: Long-term warming restructures Arctic tundra without changing net soil carbon storage, Nature, 497, 615–618, https://doi.org/10.1038/nature12129, 2013.
Skjemstad, J., Clarke, P., Taylor, J., Oades, J., and Newman, R.: The removal of magnetic materials from surface soils-a solid state 13C CP/MAS NMR study, Soil Res., 32, 1215–1229, https://doi.org/10.1071/SR9941215, 1994.
Song, Y., Song, C., Meng, H., Swarzenski, C. M., Wang, X., and Tan, W.: Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China, Ecol. Eng., 100, 175–185, https://doi.org/10.1016/j.ecoleng.2016.12.025, 2017.
Soong, J. L., Castanha, C., Hicks Pries, C. E., Ofiti, N., Porras, R. C., Riley, W. J., Schmidt, M. W., and Torn, M. S.: Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux, Sci. Adv., 7, eabd1343, https://doi.org/10.1126/sciadv.abd1343, 2021.
Spaccini, R., Mbagwu, J., Conte, P., and Piccolo, A.: Changes of humic substances characteristics from forested to cultivated soils in Ethiopia, Geoderma, 132, 9–19, https://doi.org/10.1016/j.geoderma.2005.04.015, 2006.
Sun, H., Jiang, J., Cui, L., Feng, W., Wang, Y., and Zhang, J.: Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems, Sci. Total Environ., 673, 502–510, https://doi.org/10.1016/j.scitotenv.2019.04.122, 2019.
Sun, H., Chen, H., Li, J., Zhang, Y., Liu, X., Li, J., and Nie, M.: Nitrogen enrichment enhances thermal acclimation of soil microbial respiration, Biogeochemistry, 162, 343–357, https://doi.org/10.1007/s10533-023-01014-1, 2023a.
Sun, H., Schmidt, M. W. I., Li, J., Li, J., Liu, X., Ofiti, N. O. E., Zhou, S., and Nie, M.: Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change of chemical structure, Zenodo [data set], https://doi.org/10.5281/zenodo.8289311, 2023.
Tian, D. and Niu, S.: A global analysis of soil acidification caused by nitrogen addition, Environ. Res. Lett., 10, 024019, https://doi.org/10.1088/1748-9326/10/2/024019, 2015.
Treseder, K. K.: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies, Ecol. Lett., 11, 1111–1120, https://doi.org/10.1111/j.1461-0248.2008.01230.x, 2008.
Tucker, C. L., Bell, J., Pendall, E., and Ogle, K.: Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?, Global Change Biol., 19, 252–263, https://doi.org/10.1111/gcb.12036, 2013.
Ussiri, D. A. and Johnson, C. E.: Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods, Geoderma, 111, 123–149, https://doi.org/10.1016/S0016-7061(02)00257-4, 2003.
Van Gestel, N., Shi, Z., Van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., Hovenden, M. J., Luo, Y., Michelsen, A., and Pendall, E.: Predicting soil carbon loss with warming, Nature, 554, E4–E5, https://doi.org/10.1038/nature20150, 2018.
Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 19, 703–707, https://doi.org/10.1016/0038-0717(87)90052-6, 1987.
Vaughn, L. J. and Torn, M. S.: 14C evidence that millennial and fast-cycling soil carbon are equally sensitive to warming, Nat. Clim. Change, 9, 467–471, https://doi.org/10.1038/s41558-019-0468-y, 2019.
von Lützow, M. and Kögel-Knabner, I.: Temperature sensitivity of soil organic matter decomposition – what do we know?, Biol. Fert. Soils, 46, 1–15, https://doi.org/10.1007/s00374-009-0413-8, 2009.
Walter, K., Don, A., Tiemeyer, B., and Freibauer, A.: Determining Soil Bulk Density for Carbon Stock Calculations: A Systematic Method Comparison, Soil Sci. Soc. Am. J., 80, 579–591, https://doi.org/10.2136/sssaj2015.11.0407, 2016.
Wang, C., He, N., Zhang, J., Lv, Y., and Wang, L.: Long-term grazing exclusion improves the composition and stability of soil organic matter in Inner Mongolian grasslands, PLoS ONE, 10, e0128837, https://doi.org/10.1371/journal.pone.0128837, 2015.
Wang, H., Liu, S.-R., Mo, J.-M., Wang, J.-X., Makeschin, F., and Wolff, M.: Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China, Ecol. Res., 25, 1071–1079, https://doi.org/10.1007/s11284-010-0730-2, 2010.
Wang, J., Song, B., Ma, F., Tian, D., Li, Y., Yan, T., Quan, Q., Zhang, F., Li, Z., Wang, B., Gao, Q., Chen, W., and Niu, S.: Nitrogen addition reduces soil respiration but increases the relative contribution of heterotrophic component in an alpine meadow, Funct. Ecol., 33, 2239–2253, https://doi.org/10.1111/1365-2435.13433, 2019.
Wang, J.-J., Bowden, R. D., Lajtha, K., Washko, S. E., Wurzbacher, S. J., and Simpson, M. J.: Long-term nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the molecular composition of soil organic matter, Biogeochemistry, 142, 299–313, https://doi.org/10.1007/s10533-018-00535-4, 2019.
Wu, J., Lin, H., Meng, C., Jiang, P., and Fu, W.: Effects of intercropping grasses on soil organic carbon and microbial community functional diversity under Chinese hickory (Carya cathayensis Sarg.) stands, Soil Res., 52, 575–583, https://doi.org/10.1071/SR14021, 2014.
Xiao, J., Dong, S., Zhao, Z., Han, Y., Li, S., Shen, H., and Ding, C.: Stabilization of soil organic carbon in the alpine meadow is dependent on the nitrogen deposition level on the Qinghai-Tibetan Plateau, Ecol. Eng., 170, 106348, https://doi.org/10.1016/j.ecoleng.2021.106348, 2021.
Xue, K., Yuan, M. M., Shi, Z. J., Qin, Y., Deng, Y., Cheng, L., Wu, L., He, Z., Van Nostrand, J. D., and Bracho, R.: Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming, Nat. Clim. Change, 6, 595–600, https://doi.org/10.1038/nclimate2940, 2016.
Yang, Y., Fang, J., Tang, Y., Ji, C., Zheng, C., He, J., and Zhu, B.: Storage, patterns and controls of soil organic carbon in the Tibetan grasslands, Global Change Biol., 14, 1592–1599, https://doi.org/10.1111/j.1365-2486.2008.01591.x, 2008.
Yu, G., Jia, Y., He, N., Zhu, J., Chen, Z., Wang, Q., Piao, S., Liu, X., He, H., Guo, X., Wen, Z., Li, P., Ding, G., and Goulding, K.: Stabilization of atmospheric nitrogen deposition in China over the past decade, Nat. Geosci., 12, 424–429, https://doi.org/10.1038/s41561-019-0352-4, 2019.
Zamanian, K., Zarebanadkouki, M., and Kuzyakov, Y.: Nitrogen fertilization raises CO2 efflux from inorganic carbon: a global assessment, Global Change Biol., 24, 2810–2817, https://doi.org/10.1111/gcb.14148, 2018.
Zhang, H. R. and Fu, G.: Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet, Land Degrad. Dev., 32, 1821–1832, https://doi.org/10.1002/ldr.3835, 2020.
Zhang, Q., Feng, J., Li, J., Huang, C.-Y., Shen, Y., Cheng, W., and Zhu, B.: A distinct sensitivity to priming effect between labile and stable soil organic carbon, New Phytol., 237, 88–99, https://doi.org/10.1111/nph.18458, 2022.
Zhang, T., Li, Y., Chang, S. X., Jiang, P., Zhou, G., Liu, J., and Lin, L.: Converting paddy fields to Lei bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic carbon pools, and organic carbon chemical compositions, Plant Soil, 367, 249–261, https://doi.org/10.1007/s11104-012-1551-6, 2013.
Zhou, L., Zhou, X., Zhang, B., Lu, M., Luo, Y., Liu, L., and Li, B.: Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis, Global Change Biol., 20, 2332–2343, https://doi.org/10.1111/gcb.12490, 2014.
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and...
Altmetrics
Final-revised paper
Preprint