Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-575-2024
https://doi.org/10.5194/bg-21-575-2024
Research article
 | 
26 Jan 2024
Research article |  | 26 Jan 2024

Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure

Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie

Related authors

Calcium is associated with specific soil organic carbon decomposition products
Mike C. Rowley, Jasquelin Pena, Matthew A. Marcus, Rachel Porras, Elaine Pegoraro, Cyrill Zosso, Nicholas O. E. Ofiti, Guido L. B. Wiesenberg, Michael W. I. Schmidt, Margaret S. Torn, and Peter S. Nico
SOIL, 11, 381–388, https://doi.org/10.5194/soil-11-381-2025,https://doi.org/10.5194/soil-11-381-2025, 2025
Short summary
Warming accelerates the decomposition of root biomass in a temperate forest only in topsoil but not in subsoil
Binyan Sun, Cyrill U. Zosso, Guido L. B. Wiesenberg, Elaine Pegoraro, Margaret S. Torn, and Michael W. I. Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2025-299,https://doi.org/10.5194/egusphere-2025-299, 2025
Short summary
Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021,https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Is the content and potential preservation of soil organic carbon reflected by cation exchange capacity? A case study in Swiss forest soils
Emily F. Solly, Valentino Weber, Stephan Zimmermann, Lorenz Walthert, Frank Hagedorn, and Michael W. I. Schmidt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-33,https://doi.org/10.5194/bg-2019-33, 2019
Revised manuscript not accepted
Short summary
A call for international soil experiment networks for studying, predicting, and managing global change impacts
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015,https://doi.org/10.5194/soil-1-575-2015, 2015

Related subject area

Biogeochemistry: Soils
Distinct changes in carbon, nitrogen, and phosphorus cycling in the litter layer across two contrasting forest–tundra ecotones
Frank Hagedorn, Josephine Imboden, Pavel A. Moiseev, Decai Gao, Emmanuel Frossard, Patrick Schleppi, Daniel Christen, Konstantin Gavazov, and Jasmin Fetzer
Biogeosciences, 22, 2959–2977, https://doi.org/10.5194/bg-22-2959-2025,https://doi.org/10.5194/bg-22-2959-2025, 2025
Short summary
Effects of basalt, concrete fines, and steel slag on maize growth and toxic trace element accumulation in an enhanced weathering experiment
Jet Rijnders, Arthur Vienne, and Sara Vicca
Biogeosciences, 22, 2803–2829, https://doi.org/10.5194/bg-22-2803-2025,https://doi.org/10.5194/bg-22-2803-2025, 2025
Short summary
Depth effects of long-term organic residue application on soil organic carbon stocks in central Kenya
Claude Raoul Müller, Johan Six, Daniel Mugendi Njiru, Bernard Vanlauwe, and Marijn Van de Broek
Biogeosciences, 22, 2733–2747, https://doi.org/10.5194/bg-22-2733-2025,https://doi.org/10.5194/bg-22-2733-2025, 2025
Short summary
Validating laboratory predictions of soil rewetting respiration pulses using field data
Xiankun Li, Marleen Pallandt, Dilip Naidu, Johannes Rousk, Gustaf Hugelius, and Stefano Manzoni
Biogeosciences, 22, 2691–2705, https://doi.org/10.5194/bg-22-2691-2025,https://doi.org/10.5194/bg-22-2691-2025, 2025
Short summary
Modelling the effect of climate–substrate interactions on soil organic matter decomposition with the Jena Soil Model
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025,https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary

Cited articles

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. 
Atanassova, I. and Doerr, S.: Changes in soil organic compound composition associated with heat-induced increases in soil water repellency, Eur. J. Soil Sci., 62, 516–532, https://doi.org/10.1111/j.1365-2389.2011.01350.x, 2011. 
Bailey, V. L., Pries, C. H., and Lajtha, K.: What do we know about soil carbon destabilization?, Environ. Res. Lett., 14, 083004, https://doi.org/10.1088/1748-9326/ab2c11, 2019. 
Baldock, J., Oades, J., Waters, A., Peng, X., Vassallo, A., and Wilson, M.: Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy, Biogeochemistry, 16, 1–42, https://doi.org/10.1007/BF00024251, 1992. 
Download
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Share
Altmetrics
Final-revised paper
Preprint