Articles | Volume 21, issue 2
https://doi.org/10.5194/bg-21-575-2024
https://doi.org/10.5194/bg-21-575-2024
Research article
 | 
26 Jan 2024
Research article |  | 26 Jan 2024

Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure

Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie

Related authors

Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil
Cyrill U. Zosso, Nicholas O. E. Ofiti, Jennifer L. Soong, Emily F. Solly, Margaret S. Torn, Arnaud Huguet, Guido L. B. Wiesenberg, and Michael W. I. Schmidt
SOIL, 7, 477–494, https://doi.org/10.5194/soil-7-477-2021,https://doi.org/10.5194/soil-7-477-2021, 2021
Short summary
Is the content and potential preservation of soil organic carbon reflected by cation exchange capacity? A case study in Swiss forest soils
Emily F. Solly, Valentino Weber, Stephan Zimmermann, Lorenz Walthert, Frank Hagedorn, and Michael W. I. Schmidt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-33,https://doi.org/10.5194/bg-2019-33, 2019
Revised manuscript not accepted
Short summary
A call for international soil experiment networks for studying, predicting, and managing global change impacts
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015,https://doi.org/10.5194/soil-1-575-2015, 2015
Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition
B. Maestrini, S. Abiven, N. Singh, J. Bird, M. S. Torn, and M. W. I. Schmidt
Biogeosciences, 11, 5199–5213, https://doi.org/10.5194/bg-11-5199-2014,https://doi.org/10.5194/bg-11-5199-2014, 2014

Related subject area

Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024,https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024,https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024,https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024,https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024,https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary

Cited articles

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming dependent on microbial physiology, Nat. Geosci., 3, 336–340, https://doi.org/10.1038/ngeo846, 2010. 
Atanassova, I. and Doerr, S.: Changes in soil organic compound composition associated with heat-induced increases in soil water repellency, Eur. J. Soil Sci., 62, 516–532, https://doi.org/10.1111/j.1365-2389.2011.01350.x, 2011. 
Bailey, V. L., Pries, C. H., and Lajtha, K.: What do we know about soil carbon destabilization?, Environ. Res. Lett., 14, 083004, https://doi.org/10.1088/1748-9326/ab2c11, 2019. 
Baldock, J., Oades, J., Waters, A., Peng, X., Vassallo, A., and Wilson, M.: Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy, Biogeochemistry, 16, 1–42, https://doi.org/10.1007/BF00024251, 1992. 
Download
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Altmetrics
Final-revised paper
Preprint