Articles | Volume 22, issue 10
https://doi.org/10.5194/bg-22-2425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Current perspectives on biosphere research 2024–2025 – eight findings from ecology, sociology, and economics
Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
BAM Nachhaltigkeit Beratung Medien, Berlin, Germany
Ana Bastos
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany
Romina Martin
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
Anja Rammig
TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
Niak Sian Koh
Department of Biology, University of Oxford, Oxford, UK
Giles B. Sioen
Future Earth Global Secretariat, Tokyo, Japan
Sustainable Society Design Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Japan
Bram Buscher
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Louise Carver
Lancaster Institute for the Contemporary Arts, Lancaster University, Lancaster, UK
Fabrice DeClerck
Alliance of Bioversity and CIAT, Montpellier, France
Moritz Drupp
Department of Management, Technology, and Economics, ETH Zurich, Switzerland
Department of Economics, University of Gothenburg, Gothenburg, Sweden
Robert Fletcher
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Matthew Forrest
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Alexandros Gasparatos
Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
Alex Godoy-Faúndez
Sustainability Research Center, Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
Gregor Hagedorn
Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung (MfN), Berlin, Germany
Martin C. Hänsel
Institute for Infrastructure and Resource Management, Leipzig University, Leipzig, Germany
Jessica Hetzer
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Thomas Hickler
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Institute of Physical Geography, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
Cornelia B. Krug
Faculty of Economics and Management Science, Leipzig University, Leipzig, Germany
Stasja Koot
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, South Africa
Xiuzhen Li
Synthesis and Solutions Labs, Senckenberg Society for Nature Research, Frankfurt am Main, Germany
Amy Luers
Microsoft, Redmond, Washington, USA
Shelby Matevich
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
H. Damon Matthews
Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
Ina C. Meier
Functional Forest Ecology, Universität Hamburg, Barsbüttel, Germany
Mirco Migliavacca
European Commission, Joint Research Centre, Ispra (VA), Italy
Awaz Mohamed
Functional Forest Ecology, Universität Hamburg, Barsbüttel, Germany
Sungmin O
Department of AI Software, Kangwon National University, Samcheok, South Korea
David Obura
CORDIO East Africa, Mombasa, Kenya
Ben Orlove
School of International and Public Affairs, Columbia University, New York, New York, USA
Rene Orth
Modelling of Biogeochemical Systems, University of Freiburg, Freiburg, Germany
Laura Pereira
Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
Markus Reichstein
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
Lerato Thakholi
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Peter H. Verburg
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Yuki Yoshida
Center for Climate Change Adaptation, National Institute for Environmental Studies, Ibaraki, Japan
Related authors
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Friedrich J. Bohn, Felix May, and Andreas Huth
Biogeosciences, 15, 1795–1813, https://doi.org/10.5194/bg-15-1795-2018, https://doi.org/10.5194/bg-15-1795-2018, 2018
Short summary
Short summary
Rising temperature affect the wood production of forests. However, in some cases, we observe positive and in others negative changes. In this study, we used a new simulation approach to generate ~ 400 000 forest stands, which cover various types of temperate forests (low to high divers; young to old; even aged to uneven aged). We treated each forest with different temperature scenarios and analysed, which forest characteristics triggered the different reaction of forest to temperature change.
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025, https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
Short summary
We use an innovative approach to studying the Earth's water cycle by integrating advanced machine learning techniques with a traditional water cycle model. Our model is designed to learn from observational data, with a particular emphasis on understanding the influence of vegetation on water movement. By closely aligning with real-world observations, our model offers new possibilities for enhancing our understanding of the water cycle and its interactions with vegetation.
Na Li, Sebastian Sippel, Nora Linscheid, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-1924, https://doi.org/10.5194/egusphere-2025-1924, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
The global land carbon sink has increased since the pre-industrial period, mainly caused by increasing atmospheric CO2 emissions and climate change. However, the large year-to-year variations can mask or amplify this trend. Here, we detect the time for the anthropogenic signal to emerge over natural variations in land carbon sink. We removed the circulation-induced variations in the global land carbon sink and effectively reduced the detection time of anthropogenic signal.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-250, https://doi.org/10.5194/essd-2025-250, 2025
Preprint under review for ESSD
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policy makers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Rebecca Chloe Evans and H. Damon Matthews
Biogeosciences, 22, 1969–1984, https://doi.org/10.5194/bg-22-1969-2025, https://doi.org/10.5194/bg-22-1969-2025, 2025
Short summary
Short summary
To mitigate our impact on the climate, we must both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated agriculture as a form of CDR under three future climate scenarios to find out how the climate responds to CDR when the carbon is not permanently stored. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low-emissions scenario and at a high rate, and it becomes less effective as removal continues.
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025, https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary
Short summary
As soils warm due to climate change, soil organic carbon (SOC) decomposes faster due to increased microbial activity, given sufficient available moisture. We modelled the microbial decomposition of plant litter and residue at different depths and found that deep soil layers are more sensitive than topsoils. Warming causes SOC loss, but its extent depends on the litter type and its temperature sensitivity, which can either counteract or amplify losses. Droughts may also counteract warming-induced SOC losses.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025, https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
Short summary
Air pollutants such as particulate matter with diameters of 10 µm and 2.5 µm or less (PM10 and PM2.5) can cause adverse public health and environment effects; therefore their regular monitoring is crucial to keep pollutant concentrations under control. Our study demonstrates the potential of high-resolution aerosol optical depth (AOD) data from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate ground-level PM concentrations using machine learning models.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025, https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) are related to photosynthesis, growth, and respiration and thus to vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species, and climate. Changes therein will affect tissue nitrogen concentrations and thus also vegetation carbon uptake.
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365, https://doi.org/10.5194/egusphere-2025-365, 2025
Preprint archived
Short summary
Short summary
We developed a machine learning model that accounts for the memory effects of soil moisture and vegetation to predict Evaporative Fraction (EF) without relying on soil moisture as a direct input. The model accurately predicts EF during dry periods for the unseen sites, highlighting the key of meteorological memory effects. The learned memory effect related to rooting depth and soil water holding capacity could potentially serve as proxies for assessing the plant water stress.
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-556, https://doi.org/10.5194/essd-2024-556, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
To address the limitations of short time spans in satellite data and spatiotemporal discontinuity in site records, we reconstructed global monthly burned area maps at a half-degree resolution for 1901–2020 using machine learning models. The global burned area is predicted at 3.46–4.58 million km² per year, showing a decline from 1901 to 1978, an increase from 1978 to 2008, and a sharper decrease from 2008 to 2020. This dataset provides a benchmark for studies on fire ecology and carbon cycle.
Javier Pacheco-Labrador, Ulisse Gomarasca, Daniel E. Pabon-Moreno, Wantong Li, Mirco Migliavacca, Martin Jung, and Gregory Duveiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-318, https://doi.org/10.5194/egusphere-2025-318, 2025
Short summary
Short summary
Measuring biodiversity is necessary to assess its loss, evolution, and role in ecosystem functions. Satellites image the whole terrestrial surface and could cost-efficiently map plant diversity globally. However, developing the necessary methods lacks consistent and sufficient field measurements. Thus, we propose using a simulation tool that generates virtual ecosystems, with species properties and functions varying in response to meteorology and the respective remote sensing imagery.
István Dunkl, Ana Bastos, and Tatiana Ilyina
Earth Syst. Dynam., 16, 151–167, https://doi.org/10.5194/esd-16-151-2025, https://doi.org/10.5194/esd-16-151-2025, 2025
Short summary
Short summary
While the El Niño–Southern Oscillation, a climate mode, has a similar impact on CO2 growth rates across Earth system models, there is significant uncertainty in the processes behind this relationship. We found a compensatory effect that masks differences in the sensitivity of carbon fluxes to climate anomalies and observed that the carbon fluxes contributing to global CO2 anomalies originate from different regions and are caused by different drivers.
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Blessing Kavhu, Matthew Forrest, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3595, https://doi.org/10.5194/egusphere-2024-3595, 2024
Short summary
Short summary
We developed a model to predict global wildfire patterns by examining weather, vegetation, and human activities. This tool helps forecast seasonal fire risks across diverse regions and focuses on seasonal changes, unlike existing models. Its simplicity makes it valuable for climate and fire management planning, as well as for use in global climate studies, helping communities better prepare for and adapt to rising wildfire threats.
Laura Eifler, Franziska Müller, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2024-3534, https://doi.org/10.5194/egusphere-2024-3534, 2024
Short summary
Short summary
Forests provide ecosystem services and biodiversity, but they are increasingly affected by disturbances. Consistent global data on forest disturbances are lacking, impeding effective assessment. We compare four forest disturbance datasets for the continental USA, finding moderate agreement overall, with ground-based inventories more consistent than satellite data. This emphasizes the need for enhanced data quality assessment, integration, and accuracy to better understand forest disturbances.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Benjamin Franklin Meyer, João Paulo Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-3352, https://doi.org/10.5194/egusphere-2024-3352, 2024
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show it's capability at capturing species-specific evapotranspiration responses to drought and reproducing flux observations of both gross primary production and evapotranspiration.
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
Laura Dénise Nadolski, Tarek Sebastian El Madany, Jacob Allen Nelson, Arnaud Carrara, Gerardo Moreno, Richard K. F. Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3190, https://doi.org/10.5194/egusphere-2024-3190, 2024
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. Adding N and N+P are increasing carbon exchange variability, driven by grass greenness.
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Mahmoud Hamdi, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2896, https://doi.org/10.5194/egusphere-2024-2896, 2024
Short summary
Short summary
Global evapotranspiration (ET) can be estimated using machine learning (ML) models optimized on local data and applied to global data. This study explores whether sequential neural networks, which consider past data, perform better than models that do not. The findings show that sequential models struggle with global upscaling, likely due to their sensitivity to data shifts from local to global scales. To improve ML-based upscaling, additional data or integration of physical knowledge is needed.
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Yigit Uckan, Melissa Ruiz-Vásquez, Kelley De Polt, and René Orth
EGUsphere, https://doi.org/10.5194/egusphere-2024-2540, https://doi.org/10.5194/egusphere-2024-2540, 2024
Short summary
Short summary
Drivers of hot extremes are not well known on a global scale. Here, we show the global distribution and relevance of these drivers. Our results show that atmospheric circulation is the most critical driver of hot extremes, particularly in the mid-latitudes. Land surface factors, such as vegetation and radiation, are important in tropical and semi-arid regions. Understanding the relative contributions of atmospheric and land surface drivers of hot extremes can help improve predictions.
Theertha Kariyathan, Ana Bastos, Markus Reichstein, Wouter Peters, and Julia Marshall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1382, https://doi.org/10.5194/egusphere-2024-1382, 2024
Short summary
Short summary
The carbon uptake period (CUP) refers to the time of the year when there is net absorption of CO2 from the atmosphere to the land. Several studies have assessed changes in CUP based on seasonal metrics from CO2 mole fraction measurements to understand the response of terrestrial biosphere to climate variations. However, we find that the CUP derived from CO2 mole fraction measurements are not likely to provide an accurate magnitude of the actual changes occurring over the surface.
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Ben F. Meyer, Tom A. M. Pugh, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1028, https://doi.org/10.5194/egusphere-2024-1028, 2024
Short summary
Short summary
Disturbances (e.g. fire) can change which species grow in a forest, affecting water, carbon, energy flows, and the climate. They are expected to increase with climate change, but it is uncertain by how much. We studied how future climate and disturbances might impact vegetation with a simulation model. Our findings highlight the importance of considering both factors, with future disturbance patterns posing significant uncertainty. More research is needed to understand their future development.
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
Laura M. Pereira, Ignacio Gianelli, Therezah Achieng, Diva Amon, Sally Archibald, Suchinta Arif, Azucena Castro, Tapiwa Prosper Chimbadzwa, Kaera Coetzer, Tracy-Lynn Field, Odirilwe Selomane, Nadia Sitas, Nicola Stevens, Sebastian Villasante, Mohammed Armani, Duncan M. Kimuyu, Ibukun J. Adewumi, David M. Lapola, David Obura, Patricia Pinho, Felipe Roa-Clavijo, Juan Rocha, and U. Rashid Sumaila
Earth Syst. Dynam., 15, 341–366, https://doi.org/10.5194/esd-15-341-2024, https://doi.org/10.5194/esd-15-341-2024, 2024
Short summary
Short summary
Narratives around tipping points, such as the need for
positivetipping points in energy transitions to avoid
negativeEarth system tipping points, do not take into account the entire spectrum of impacts the proposed interventions could have or still rely on narratives that maintain current unsustainable behaviours and marginalize many people. We unpack these ideas in the context of what they mean for the concept of tipping points, using a critical decolonial view from the Global South.
Prajwal Khanal, Anne J. Hoek Van Dijke, Timo Schaffhauser, Wantong Li, Sinikka J. Paulus, Chunhui Zhan, and René Orth
Biogeosciences, 21, 1533–1547, https://doi.org/10.5194/bg-21-1533-2024, https://doi.org/10.5194/bg-21-1533-2024, 2024
Short summary
Short summary
Water availability is essential for vegetation functioning, but the depth of vegetation water uptake is largely unknown due to sparse ground measurements. This study correlates vegetation growth with soil moisture availability globally to infer vegetation water uptake depth using only satellite-based data. We find that the vegetation water uptake depth varies across climate regimes and vegetation types and also changes during dry months at a global scale.
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024, https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Short summary
Data-driven eddy-covariance upscaled estimates of the global land–atmosphere net CO2 exchange (NEE) show important mismatches with regional and global estimates based on atmospheric information. To address this, we create a model with a dual constraint based on bottom-up eddy-covariance data and top-down atmospheric inversion data. Our model overcomes shortcomings of each approach, producing improved NEE estimates from local to global scale, helping to reduce uncertainty in the carbon budget.
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Chenwei Xiao, Sönke Zaehle, Hui Yang, Jean-Pierre Wigneron, Christiane Schmullius, and Ana Bastos
Earth Syst. Dynam., 14, 1211–1237, https://doi.org/10.5194/esd-14-1211-2023, https://doi.org/10.5194/esd-14-1211-2023, 2023
Short summary
Short summary
Ecosystem resistance reflects their susceptibility during adverse conditions and can be changed by land management. We estimate ecosystem resistance to drought and temperature globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests or they are harvested. Old-growth trees tend to be more resistant in some forests and crops benefit from irrigation during drought periods.
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
Laura M. Pereira, Steven R. Smith, Lauren Gifford, Peter Newell, Ben Smith, Sebastian Villasante, Therezah Achieng, Azucena Castro, Sara M. Constantino, Ashish Ghadiali, Coleen Vogel, and Caroline Zimm
EGUsphere, https://doi.org/10.5194/egusphere-2023-1454, https://doi.org/10.5194/egusphere-2023-1454, 2023
Short summary
Short summary
Earth system tipping points pose existential threats and so there is an urgent need to act. However, this imperative cannot increase risks nor perpetuate injustices. We argue that considerations of what needs to change, who is asked to change and where the impacts will be felt and by whom, are fundamental questions that need to be addressed in decision-making. Everyone has a role to play in ensuring that justice and equity are incorporated into every action towards a more sustainable future.
Franziska Gaupp, Sara Constantino, and Laura Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2023-1533, https://doi.org/10.5194/egusphere-2023-1533, 2023
Preprint archived
Short summary
Short summary
Large-scale, accelerated societal transformation is required to address today's global challenges and to improve long-term sustainability. Human agency, the capacity to influence the outside world, is key in achieving societal change. We present a framework that examines the determinants of agency, the relationship between individual and collective agency and how collective agency can trigger large-scale transformation. We use the case of dietary change to exemplify our framework.
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023, https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Short summary
The timing and duration of the carbon uptake period (CUP) are sensitive to the occurrence of major phenological events, which are influenced by recent climate change. This study presents an ensemble-based approach for quantifying the timing and duration of the CUP and their uncertainty when derived from atmospheric CO2 measurements with noise and gaps. The CUP metrics derived with the approach are more robust and have less uncertainty than when estimated with the conventional methods.
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
Manal Lam'barki, Wantong Li, Sungmin O, Chunhui Zhan, and Rene Orth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-404, https://doi.org/10.5194/hess-2022-404, 2022
Manuscript not accepted for further review
Short summary
Short summary
We investigate the main drivers of high river flows in near-natural European catchments. While there are a lot of previous research in this area, the understanding of the relative relevance of high flow drivers other than precipitation is understudied. We find that the secondary drivers of high river flows are very diverse and become more relevant for more extreme events. This illustrates the necessity of flood management by considering a multitude of drivers in the context of climate change.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
Étienne Guertin and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2022-961, https://doi.org/10.5194/egusphere-2022-961, 2022
Preprint archived
Short summary
Short summary
In this research project we add a wildfire model to a model that simulates global vegetation and climate. Our model is simpler and faster than most models. The model simulates wildfire with moderate accuracy but in some areas, the model is very far from reality. This shows that wildfires are highly influenced by climate and vegetation and that these need to be simulated with more accuracy to simulate wildfire. We suggest using a method that compromises between accuracy and speed of simulation.
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Anita D. Bayer, Richard Fuchs, Reinhard Mey, Andreas Krause, Peter H. Verburg, Peter Anthoni, and Almut Arneth
Earth Syst. Dynam., 12, 327–351, https://doi.org/10.5194/esd-12-327-2021, https://doi.org/10.5194/esd-12-327-2021, 2021
Short summary
Short summary
Many projections of future land-use/-cover exist. We evaluate a number of these and determine the variability they cause in ecosystems and their services. We found that projections differ a lot in regional patterns, with some patterns being at least questionable in a historical context. Across ecosystem service indicators, resulting variability until 2040 was highest in crop production. Results emphasize that such variability should be acknowledged in assessments of future ecosystem provisions.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Short summary
The turnover time of terrestrial carbon (τ) controls the global carbon cycle–climate feedback. In this study, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ which could contribute to uncertainty reductions in future projections of the carbon cycle–climate feedback.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
B. Kraft, M. Jung, M. Körner, and M. Reichstein
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1537–1544, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1537-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1537-2020, 2020
Daniel E. Pabon-Moreno, Talie Musavi, Mirco Migliavacca, Markus Reichstein, Christine Römermann, and Miguel D. Mahecha
Biogeosciences, 17, 3991–4006, https://doi.org/10.5194/bg-17-3991-2020, https://doi.org/10.5194/bg-17-3991-2020, 2020
Short summary
Short summary
Ecosystem CO2 uptake changes in time depending on climate conditions. In this study, we analyze how different climate variables affect the timing when CO2 uptake is at a maximum (DOYGPPmax). We found that the joint effects of radiation, temperature, and vapor pressure deficit are the most relevant controlling factors of DOYGPPmax and that if they increase, DOYGPPmax will happen earlier. These results help us to better understand how CO2 uptake could be affected by climate change.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Ali Fallah, Sungmin O, and Rene Orth
Hydrol. Earth Syst. Sci., 24, 3725–3735, https://doi.org/10.5194/hess-24-3725-2020, https://doi.org/10.5194/hess-24-3725-2020, 2020
Short summary
Short summary
We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs. In contrast, simulated evapotranspiration is generally much less influenced in our comparatively wet study region. We also find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Nadine Mengis, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences, 17, 2987–3016, https://doi.org/10.5194/bg-17-2987-2020, https://doi.org/10.5194/bg-17-2987-2020, 2020
Short summary
Short summary
The Zero Emissions Commitment (ZEC) is the change in global temperature expected to occur following the complete cessation of CO2 emissions. Here we use 18 climate models to assess the value of ZEC. For our experiment we find that ZEC 50 years after emissions cease is between −0.36 to +0.29 °C. The most likely value of ZEC is assessed to be close to zero. However, substantial continued warming for decades or centuries following cessation of CO2 emission cannot be ruled out.
Christopher P. O. Reyer, Ramiro Silveyra Gonzalez, Klara Dolos, Florian Hartig, Ylva Hauf, Matthias Noack, Petra Lasch-Born, Thomas Rötzer, Hans Pretzsch, Henning Meesenburg, Stefan Fleck, Markus Wagner, Andreas Bolte, Tanja G. M. Sanders, Pasi Kolari, Annikki Mäkelä, Timo Vesala, Ivan Mammarella, Jukka Pumpanen, Alessio Collalti, Carlo Trotta, Giorgio Matteucci, Ettore D'Andrea, Lenka Foltýnová, Jan Krejza, Andreas Ibrom, Kim Pilegaard, Denis Loustau, Jean-Marc Bonnefond, Paul Berbigier, Delphine Picart, Sébastien Lafont, Michael Dietze, David Cameron, Massimo Vieno, Hanqin Tian, Alicia Palacios-Orueta, Victor Cicuendez, Laura Recuero, Klaus Wiese, Matthias Büchner, Stefan Lange, Jan Volkholz, Hyungjun Kim, Joanna A. Horemans, Friedrich Bohn, Jörg Steinkamp, Alexander Chikalanov, Graham P. Weedon, Justin Sheffield, Flurin Babst, Iliusi Vega del Valle, Felicitas Suckow, Simon Martel, Mats Mahnken, Martin Gutsch, and Katja Frieler
Earth Syst. Sci. Data, 12, 1295–1320, https://doi.org/10.5194/essd-12-1295-2020, https://doi.org/10.5194/essd-12-1295-2020, 2020
Short summary
Short summary
Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database provides a wide range of empirical data to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale to support systematic model intercomparisons and model development in Europe.
Thomas Wutzler, Oscar Perez-Priego, Kendalynn Morris, Tarek S. El-Madany, and Mirco Migliavacca
Geosci. Instrum. Method. Data Syst., 9, 239–254, https://doi.org/10.5194/gi-9-239-2020, https://doi.org/10.5194/gi-9-239-2020, 2020
Short summary
Short summary
Continuous data of soil CO2 efflux can improve model prediction of climate warming, and automated data are becoming increasingly available. However, aggregating chamber-based data to plot scale pose challenges. Therefore, we showed, using 1 year of half-hourly data, how using the lognormal assumption tackles several challenges. We propose that plot-scale SO2 efflux observations should be reported together with lognormally based uncertainties and enter model constraining frameworks at log scale.
René Orth, Georgia Destouni, Martin Jung, and Markus Reichstein
Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, https://doi.org/10.5194/bg-17-2647-2020, 2020
Short summary
Short summary
Drought duration is a key control of the large-scale biospheric drought response.
Thereby, the vegetation responds linearly to drought duration at large spatial scales.
The slope of the linear relationship between the vegetation drought response and drought duration is steeper in drier climates.
Guido Kraemer, Gustau Camps-Valls, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 17, 2397–2424, https://doi.org/10.5194/bg-17-2397-2020, https://doi.org/10.5194/bg-17-2397-2020, 2020
Short summary
Short summary
To closely monitor the state of our planet, we require systems that can monitor
the observation of many different properties at the same time. We create
indicators that resemble the behavior of many different simultaneous
observations. We apply the method to create indicators representing the
Earth's biosphere. The indicators show a productivity gradient and a water
gradient. The resulting indicators can detect a large number of changes and
extremes in the Earth system.
Ana Maria Roxana Petrescu, Glen P. Peters, Greet Janssens-Maenhout, Philippe Ciais, Francesco N. Tubiello, Giacomo Grassi, Gert-Jan Nabuurs, Adrian Leip, Gema Carmona-Garcia, Wilfried Winiwarter, Lena Höglund-Isaksson, Dirk Günther, Efisio Solazzo, Anja Kiesow, Ana Bastos, Julia Pongratz, Julia E. M. S. Nabel, Giulia Conchedda, Roberto Pilli, Robbie M. Andrew, Mart-Jan Schelhaas, and Albertus J. Dolman
Earth Syst. Sci. Data, 12, 961–1001, https://doi.org/10.5194/essd-12-961-2020, https://doi.org/10.5194/essd-12-961-2020, 2020
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up GHG anthropogenic emissions from agriculture, forestry and other land use (AFOLU) in the EU28. The data integrate recent AFOLU emission inventories with ecosystem data and land carbon models, aiming at reconciling GHG budgets with official country-level UNFCCC inventories. We provide comprehensive emission assessments in support to policy, facilitating real-time verification procedures.
Barbara Marcolla, Mirco Migliavacca, Christian Rödenbeck, and Alessandro Cescatti
Biogeosciences, 17, 2365–2379, https://doi.org/10.5194/bg-17-2365-2020, https://doi.org/10.5194/bg-17-2365-2020, 2020
Short summary
Short summary
This work investigates the sensitivity of terrestrial CO2 fluxes to climate drivers. We observed that CO2 flux is mostly controlled by temperature during the growing season and by radiation off season. We also observe that radiation importance is increasing over time while sensitivity to temperature is decreasing in Eurasia. Ultimately this analysis shows that ecosystem response to climate is changing, with potential repercussions for future terrestrial sink and land role in climate mitigation.
Allan Buras, Anja Rammig, and Christian S. Zang
Biogeosciences, 17, 1655–1672, https://doi.org/10.5194/bg-17-1655-2020, https://doi.org/10.5194/bg-17-1655-2020, 2020
Short summary
Short summary
This study compares the climatic conditions and ecosystem response of the extreme European drought of 2018 with the previous extreme drought of 2003. Using gridded climate data and satellite-based remote sensing information, our analyses qualify 2018 as the new European record drought with wide-ranging negative impacts on European ecosystems. Given the observation of forest-legacy effects in 2019 we call for Europe-wide forest monitoring to assess forest vulnerability to climate change.
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
Short summary
We have integrated the LPJ-GUESS dynamic global vegetation model into the EMAC atmospheric chemistry-enabled GCM (general circulation model). This combined framework will enable the investigation of many land–atmosphere interactions and feedbacks with state-of-the-art simulation models. Initial results show that using the climate produced by EMAC together with LPJ-GUESS produces an acceptable representation of the global vegetation.
Martin Jung, Christopher Schwalm, Mirco Migliavacca, Sophia Walther, Gustau Camps-Valls, Sujan Koirala, Peter Anthoni, Simon Besnard, Paul Bodesheim, Nuno Carvalhais, Frédéric Chevallier, Fabian Gans, Daniel S. Goll, Vanessa Haverd, Philipp Köhler, Kazuhito Ichii, Atul K. Jain, Junzhi Liu, Danica Lombardozzi, Julia E. M. S. Nabel, Jacob A. Nelson, Michael O'Sullivan, Martijn Pallandt, Dario Papale, Wouter Peters, Julia Pongratz, Christian Rödenbeck, Stephen Sitch, Gianluca Tramontana, Anthony Walker, Ulrich Weber, and Markus Reichstein
Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-2020, https://doi.org/10.5194/bg-17-1343-2020, 2020
Short summary
Short summary
We test the approach of producing global gridded carbon fluxes based on combining machine learning with local measurements, remote sensing and climate data. We show that we can reproduce seasonal variations in carbon assimilated by plants via photosynthesis and in ecosystem net carbon balance. The ecosystem’s mean carbon balance and carbon flux trends require cautious interpretation. The analysis paves the way for future improvements of the data-driven assessment of carbon fluxes.
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Nora Linscheid, Lina M. Estupinan-Suarez, Alexander Brenning, Nuno Carvalhais, Felix Cremer, Fabian Gans, Anja Rammig, Markus Reichstein, Carlos A. Sierra, and Miguel D. Mahecha
Biogeosciences, 17, 945–962, https://doi.org/10.5194/bg-17-945-2020, https://doi.org/10.5194/bg-17-945-2020, 2020
Short summary
Short summary
Vegetation typically responds to variation in temperature and rainfall within days. Yet seasonal changes in meteorological conditions, as well as decadal climate variability, additionally shape the state of ecosystems. It remains unclear how vegetation responds to climate variability on these different timescales. We find that the vegetation response to climate variability depends on the timescale considered. This scale dependency should be considered for modeling land–atmosphere interactions.
Javier Pacheco-Labrador, Tarek S. El-Madany, M. Pilar Martin, Rosario Gonzalez-Cascon, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Tiana Hammer, Heiko Moossen, Kathrin Henkel, Olaf Kolle, David Martini, Vicente Burchard, Christiaan van der Tol, Karl Segl, Markus Reichstein, and Mirco Migliavacca
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-501, https://doi.org/10.5194/bg-2019-501, 2020
Revised manuscript not accepted
Short summary
Short summary
The new generation of sensors on-board satellites have the potential to provide richer information about the function of vegetation than before. This information, nowadays missing, is fundamental to improve our understanding and prediction of carbon and water cycles, and therefore to anticipate effects and responses to Climate Change. In this manuscript we propose a method to exploit the data provided by these satellites to successfully obtain this information key to face Climate Change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Chris D. Jones, Thomas L. Frölicher, Charles Koven, Andrew H. MacDougall, H. Damon Matthews, Kirsten Zickfeld, Joeri Rogelj, Katarzyna B. Tokarska, Nathan P. Gillett, Tatiana Ilyina, Malte Meinshausen, Nadine Mengis, Roland Séférian, Michael Eby, and Friedrich A. Burger
Geosci. Model Dev., 12, 4375–4385, https://doi.org/10.5194/gmd-12-4375-2019, https://doi.org/10.5194/gmd-12-4375-2019, 2019
Short summary
Short summary
Global warming is simply related to the total emission of CO2 allowing us to define a carbon budget. However, information on the Zero Emissions Commitment is a key missing link to assess remaining carbon budgets to achieve the climate targets of the Paris Agreement. It was therefore decided that a small targeted MIP activity to fill this knowledge gap would be extremely valuable. This article formalises the experimental design alongside the other CMIP6 documentation papers.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Martin Lasser, Sungmin O, and Ulrich Foelsche
Atmos. Meas. Tech., 12, 5055–5070, https://doi.org/10.5194/amt-12-5055-2019, https://doi.org/10.5194/amt-12-5055-2019, 2019
Short summary
Short summary
This paper evaluates the rain rate estimates from the Global Precipitation Measurement (GPM) mission's radar instrument by comparing them to the data of the WegenerNet, a local-scale high-resolution network of meteorological stations. Our results show that the GPM-DPR estimates basically match with the WegenerNet measurements, but absolute quantities are biased.
Vicente Burchard-Levine, Héctor Nieto, David Riaño, Mirco Migliavacca, Tarek S. El-Madany, Oscar Perez-Priego, Arnaud Carrara, and M. Pilar Martín
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-354, https://doi.org/10.5194/hess-2019-354, 2019
Manuscript not accepted for further review
Short summary
Short summary
Models are increasingly being used to understand surface water fluxes, which are of high use to manage crop irrigation, and to understand the earth system´s response to environmental change. However, often these models have higher uncertainty in complex ecosystems with multiple layers of vegetation. This manuscript adapts and analyzes a well known model to better simulate water fluxes for a savanna-like ecosystem and to understand the influence that vegetation has on their predictions.
Sungmin O and Ulrich Foelsche
Hydrol. Earth Syst. Sci., 23, 2863–2875, https://doi.org/10.5194/hess-23-2863-2019, https://doi.org/10.5194/hess-23-2863-2019, 2019
Short summary
Short summary
We analyze heavy local rainfall to address questions regarding the spatial uncertainty due to the approximation of areal rainfall using point measurements. Ten years of rainfall data from a dense network of 150 rain gauges in southeastern Austria are employed, which permits robust examination of small-scale rainfall at various horizontal resolutions. Quantitative uncertainty information from the study can guide both data users and producers to estimate uncertainty in their own rainfall dataset.
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences, 16, 2557–2572, https://doi.org/10.5194/bg-16-2557-2019, https://doi.org/10.5194/bg-16-2557-2019, 2019
Short summary
Short summary
This study examines how limited water availability during droughts affects water-use efficiency. This metric describes how much carbon an ecosystem can assimilate for each unit of water lost by transpiration. We test how well different water-use efficiency models can capture the dynamics of transpiration decrease due to increased soil-water limitation. Accounting for the interacting effects of radiation and water limitation is necessary to accurately predict transpiration during these periods.
Emmanuel Arzoumanian, Felix R. Vogel, Ana Bastos, Bakhram Gaynullin, Olivier Laurent, Michel Ramonet, and Philippe Ciais
Atmos. Meas. Tech., 12, 2665–2677, https://doi.org/10.5194/amt-12-2665-2019, https://doi.org/10.5194/amt-12-2665-2019, 2019
Short summary
Short summary
We tested commercial lower-cost CO2 sensors in laboratory and field studies to see if they can measure atmospheric CO2 mole fractions with less than 1 ppm bias (with monthly calibration), to allow continuous urban CO2 monitoring.
We find that the sensors' CO2 readings are influenced by temperature, atmospheric pressure and water vapour content, but this can be corrected for by adding sensors (T, p, RH) and carefully calibrating each sensor against a high-precision instrument.
Richard K. F. Nair, Kendalynn A. Morris, Martin Hertel, Yunpeng Luo, Gerardo Moreno, Markus Reichstein, Marion Schrumpf, and Mirco Migliavacca
Biogeosciences, 16, 1883–1901, https://doi.org/10.5194/bg-16-1883-2019, https://doi.org/10.5194/bg-16-1883-2019, 2019
Short summary
Short summary
We investigated how nutrient availability affects seasonal timing of root growth and death in a Spanish savanna, adapted to a long summer drought. We found that nitrogen (N) additions led to more root biomass but number of roots was higher with N and phosphorus together. These effects were strongly affected by the time of year. In autumn root growth occurred after leaf production. This has implications for how we understand biomass production and carbon uptake in these systems.
Biagio Di Mauro, Roberto Garzonio, Micol Rossini, Gianluca Filippa, Paolo Pogliotti, Marta Galvagno, Umberto Morra di Cella, Mirco Migliavacca, Giovanni Baccolo, Massimiliano Clemenza, Barbara Delmonte, Valter Maggi, Marie Dumont, François Tuzet, Matthieu Lafaysse, Samuel Morin, Edoardo Cremonese, and Roberto Colombo
The Cryosphere, 13, 1147–1165, https://doi.org/10.5194/tc-13-1147-2019, https://doi.org/10.5194/tc-13-1147-2019, 2019
Short summary
Short summary
The snow albedo reduction due to dust from arid regions alters the melting dynamics of the snowpack, resulting in earlier snowmelt. We estimate up to 38 days of anticipated snow disappearance for a season that was characterized by a strong dust deposition event. This process has a series of further impacts. For example, earlier snowmelts may alter the hydrological cycle in the Alps, induce higher sensitivity to late summer drought, and finally impact vegetation and animal phenology.
Xiaolu Tang, Nuno Carvalhais, Catarina Moura, Bernhard Ahrens, Sujan Koirala, Shaohui Fan, Fengying Guan, Wenjie Zhang, Sicong Gao, Vincenzo Magliulo, Pauline Buysse, Shibin Liu, Guo Chen, Wunian Yang, Zhen Yu, Jingjing Liang, Leilei Shi, Shenyan Pu, and Markus Reichstein
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-37, https://doi.org/10.5194/bg-2019-37, 2019
Preprint withdrawn
Short summary
Short summary
Vegetation CUE is a key measure of carbon transfer from the atmosphere to terrestrial biomass. This study modelled global CUE with published observations using random forest. CUE varied with ecosystem types and spatially decreased with latitude, challenging the previous conclusion that CUE was independent of environmental controls. Our results emphasize a better understanding of environmental controls on CUE to reduce uncertainties in prognostic land-process model simulations.
Boaz Hilman, Jan Muhr, Susan E. Trumbore, Norbert Kunert, Mariah S. Carbone, Päivi Yuval, S. Joseph Wright, Gerardo Moreno, Oscar Pérez-Priego, Mirco Migliavacca, Arnaud Carrara, José M. Grünzweig, Yagil Osem, Tal Weiner, and Alon Angert
Biogeosciences, 16, 177–191, https://doi.org/10.5194/bg-16-177-2019, https://doi.org/10.5194/bg-16-177-2019, 2019
Short summary
Short summary
Combined measurement of CO2 / O2 fluxes in tree stems suggested that on average 41 % of the respired CO2 was not emitted locally to the atmosphere. This finding strengthens the recognition that CO2 efflux from tree stems is not an accurate measure of respiration. The CO2 / O2 fluxes did not vary as expected if CO2 dissolution in the xylem sap was the main driver for the CO2 retention. We suggest the examination of refixation of respired CO2 as a possible mechanism for CO2 retention.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Milan Flach, Sebastian Sippel, Fabian Gans, Ana Bastos, Alexander Brenning, Markus Reichstein, and Miguel D. Mahecha
Biogeosciences, 15, 6067–6085, https://doi.org/10.5194/bg-15-6067-2018, https://doi.org/10.5194/bg-15-6067-2018, 2018
Short summary
Short summary
Northern forests enhanced their productivity during and before the 2010 Russian mega heatwave. We scrutinize this issue with a novel type of multivariate extreme event detection approach. Forests compensate for 54 % of the carbon losses in agricultural ecosystems due to vulnerable conditions in spring and better water management in summer. The findings highlight the importance of forests in mitigating climate change, while not alleviating the consequences of extreme events for food security.
Manuel Schmid, Todd A. Ehlers, Christian Werner, Thomas Hickler, and Juan-Pablo Fuentes-Espoz
Earth Surf. Dynam., 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, https://doi.org/10.5194/esurf-6-859-2018, 2018
Short summary
Short summary
We present a numerical modeling study into the interactions between transient climate and vegetation cover with hillslope and fluvial processes. We use a state-of-the-art landscape evolution model library (Landlab) and design model experiments to investigate the effect of climate change and the associated changes in surface vegetation cover on main basin metrics. This paper is a companion paper to Part 1 (this journal), which investigates the effect of climate change on surface vegetation cover.
Christian Werner, Manuel Schmid, Todd A. Ehlers, Juan Pablo Fuentes-Espoz, Jörg Steinkamp, Matthew Forrest, Johan Liakka, Antonio Maldonado, and Thomas Hickler
Earth Surf. Dynam., 6, 829–858, https://doi.org/10.5194/esurf-6-829-2018, https://doi.org/10.5194/esurf-6-829-2018, 2018
Short summary
Short summary
Vegetation is crucial for modulating rates of denudation and landscape evolution, and is directly influenced by climate conditions and atmospheric CO2 concentrations. Using transient climate data and a state-of-the-art dynamic vegetation model we simulate the vegetation composition and cover from the Last Glacial Maximum to present along the Coastal Cordillera of Chile. In part 2 we assess the landscape response to transient climate and vegetation cover using a landscape evolution model.
Thomas Wutzler, Antje Lucas-Moffat, Mirco Migliavacca, Jürgen Knauer, Kerstin Sickel, Ladislav Šigut, Olaf Menzer, and Markus Reichstein
Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, https://doi.org/10.5194/bg-15-5015-2018, 2018
Short summary
Short summary
Net fluxes of carbon dioxide at the ecosystem level measured by eddy covariance are a main source for understanding biosphere–atmosphere interactions. However, there is a need for more usable and extensible tools for post-processing steps of the half-hourly flux data. Therefore, we developed the REddyProc package, providing data filtering, gap filling, and flux partitioning. The extensible functions are compatible with state-of-the-art tools but allow easier integration in extended analysis.
Paul Bodesheim, Martin Jung, Fabian Gans, Miguel D. Mahecha, and Markus Reichstein
Earth Syst. Sci. Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, https://doi.org/10.5194/essd-10-1327-2018, 2018
Short summary
Short summary
We provide continuous half-hourly carbon and energy fluxes for 2001 to 2014 at 0.5° spatial resolution, which allows for analyzing diurnal cycles globally. The data set contains four fluxes: gross primary production (GPP), net ecosystem exchange (NEE), latent heat (LE), and sensible heat (H). In addition, we provide a derived product that only contains monthly average diurnal cycles but which also enables us to study the important characteristics of subdaily patterns at a global scale.
Claudio Cassardo, Seon Ki Park, Marco Galli, and Sungmin O
Hydrol. Earth Syst. Sci., 22, 3331–3350, https://doi.org/10.5194/hess-22-3331-2018, https://doi.org/10.5194/hess-22-3331-2018, 2018
Short summary
Short summary
Temperature and precipitation can have abnormal states due to climate change and exert a significant impact on the regional hydrologic cycle. We assess the hydrologic component changes in the Alps and northern Italy, on the basis of regional future climate (FC) conditions, using the UTOPIA land surface model. The annual mean number of dry (wet) days increase remarkably (slightly) in FCs, thus increasing the risk of severe droughts and slightly increasing the risk of floods coincidently.
Jacob A. Nelson, Nuno Carvalhais, Mirco Migliavacca, Markus Reichstein, and Martin Jung
Biogeosciences, 15, 2433–2447, https://doi.org/10.5194/bg-15-2433-2018, https://doi.org/10.5194/bg-15-2433-2018, 2018
Short summary
Short summary
Plants have typical daily carbon uptake and water loss cycles. However, these cycles may change under periods of duress, such as water limitation. Here we identify two types of patterns in response to water limitations: a tendency to lose more water in the morning than afternoon and a decoupling of the carbon and water cycles. The findings show differences in responses by trees and grasses and suggest that morning shifts may be more efficient at gaining carbon per unit water used.
Sibyll Schaphoff, Werner von Bloh, Anja Rammig, Kirsten Thonicke, Hester Biemans, Matthias Forkel, Dieter Gerten, Jens Heinke, Jonas Jägermeyr, Jürgen Knauer, Fanny Langerwisch, Wolfgang Lucht, Christoph Müller, Susanne Rolinski, and Katharina Waha
Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, https://doi.org/10.5194/gmd-11-1343-2018, 2018
Short summary
Short summary
Here we provide a comprehensive model description of a global terrestrial biosphere model, named LPJmL4, incorporating the carbon and water cycle and the quantification of agricultural production. The model allows for the consistent and joint quantification of climate and land use change impacts on the biosphere. The model represents the key ecosystem functions, but also the influence of humans on the biosphere. It comes with an evaluation paper to demonstrate the credibility of LPJmL4.
Sibyll Schaphoff, Matthias Forkel, Christoph Müller, Jürgen Knauer, Werner von Bloh, Dieter Gerten, Jonas Jägermeyr, Wolfgang Lucht, Anja Rammig, Kirsten Thonicke, and Katharina Waha
Geosci. Model Dev., 11, 1377–1403, https://doi.org/10.5194/gmd-11-1377-2018, https://doi.org/10.5194/gmd-11-1377-2018, 2018
Short summary
Short summary
Here we provide a comprehensive evaluation of the now launched version 4.0 of the LPJmL biosphere, water, and agricultural model. The article is the second part to a comprehensive description of the LPJmL4 model. We have evaluated the model against various datasets of satellite observations, agricultural statistics, and in situ measurements by applying a range of metrics. We are able to show that the LPJmL4 model simulates many parameters and relations reasonably.
Friedrich J. Bohn, Felix May, and Andreas Huth
Biogeosciences, 15, 1795–1813, https://doi.org/10.5194/bg-15-1795-2018, https://doi.org/10.5194/bg-15-1795-2018, 2018
Short summary
Short summary
Rising temperature affect the wood production of forests. However, in some cases, we observe positive and in others negative changes. In this study, we used a new simulation approach to generate ~ 400 000 forest stands, which cover various types of temperate forests (low to high divers; young to old; even aged to uneven aged). We treated each forest with different temperature scenarios and analysed, which forest characteristics triggered the different reaction of forest to temperature change.
Jannis von Buttlar, Jakob Zscheischler, Anja Rammig, Sebastian Sippel, Markus Reichstein, Alexander Knohl, Martin Jung, Olaf Menzer, M. Altaf Arain, Nina Buchmann, Alessandro Cescatti, Damiano Gianelle, Gerard Kiely, Beverly E. Law, Vincenzo Magliulo, Hank Margolis, Harry McCaughey, Lutz Merbold, Mirco Migliavacca, Leonardo Montagnani, Walter Oechel, Marian Pavelka, Matthias Peichl, Serge Rambal, Antonio Raschi, Russell L. Scott, Francesco P. Vaccari, Eva van Gorsel, Andrej Varlagin, Georg Wohlfahrt, and Miguel D. Mahecha
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, https://doi.org/10.5194/bg-15-1293-2018, 2018
Short summary
Short summary
Our work systematically quantifies extreme heat and drought event impacts on gross primary productivity (GPP) and ecosystem respiration globally across a wide range of ecosystems. We show that heat extremes typically increased mainly respiration whereas drought decreased both fluxes. Combined heat and drought extremes had opposing effects offsetting each other for respiration, but there were also strong reductions in GPP and hence the strongest reductions in the ecosystems carbon sink capacity.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Iulia Ilie, Peter Dittrich, Nuno Carvalhais, Martin Jung, Andreas Heinemeyer, Mirco Migliavacca, James I. L. Morison, Sebastian Sippel, Jens-Arne Subke, Matthew Wilkinson, and Miguel D. Mahecha
Geosci. Model Dev., 10, 3519–3545, https://doi.org/10.5194/gmd-10-3519-2017, https://doi.org/10.5194/gmd-10-3519-2017, 2017
Short summary
Short summary
Accurate representation of land-atmosphere carbon fluxes is essential for future climate projections, although some of the responses of CO2 fluxes to climate often remain uncertain. The increase in available data allows for new approaches in their modelling. We automatically developed models for ecosystem and soil carbon respiration using a machine learning approach. When compared with established respiration models, we found that they are better in prediction as well as offering new insights.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017, https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Short summary
Anomalies and extremes are often detected using univariate peak-over-threshold approaches in the geoscience community. The Earth system is highly multivariate. We compare eight multivariate anomaly detection algorithms and combinations of data preprocessing. We identify three anomaly detection algorithms that outperform univariate extreme event detection approaches. The workflows have the potential to reveal novelties in data. Remarks on their application to real Earth observations are provided.
Jakob Zscheischler, Rene Orth, and Sonia I. Seneviratne
Biogeosciences, 14, 3309–3320, https://doi.org/10.5194/bg-14-3309-2017, https://doi.org/10.5194/bg-14-3309-2017, 2017
Short summary
Short summary
We use newly established methods to compute bivariate return periods of temperature and precipitation and relate those to crop yield variability in Europe. Most often, crop yields are lower when it is hot and dry and higher when it is cold and wet. The variability in crop yields along a specific climate gradient can be captured well by return periods aligned with these gradients. This study provides new possibilities for investigating the relationship between crop yield variability and climate.
Ana Bastos, Anna Peregon, Érico A. Gani, Sergey Khudyaev, Chao Yue, Wei Li, Célia Gouveia, and Philippe Ciais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-267, https://doi.org/10.5194/bg-2017-267, 2017
Revised manuscript not accepted
Short summary
Short summary
The ice-core record indicates a stabilization of atmospheric CO2 in the 1940s, which is not captured by the state-of-the-art reconstructions of CO2 sources and sinks.
The 1940s where marked by major socio-economic disruptions due to war. At the same time, very strong warming was registered in the high-latitudes. Here we evaluate the contributions of these two factors to a possible increase in the terrestrial sink not captured in other datasets, using the Former Soviet Union as a case study.
Jaap Schellekens, Emanuel Dutra, Alberto Martínez-de la Torre, Gianpaolo Balsamo, Albert van Dijk, Frederiek Sperna Weiland, Marie Minvielle, Jean-Christophe Calvet, Bertrand Decharme, Stephanie Eisner, Gabriel Fink, Martina Flörke, Stefanie Peßenteiner, Rens van Beek, Jan Polcher, Hylke Beck, René Orth, Ben Calton, Sophia Burke, Wouter Dorigo, and Graham P. Weedon
Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, https://doi.org/10.5194/essd-9-389-2017, 2017
Short summary
Short summary
The dataset combines the results of 10 global models that describe the global continental water cycle. The data can be used as input for water resources studies, flood frequency studies etc. at different scales from continental to medium-scale catchments. We compared the results with earth observation data and conclude that most uncertainties are found in snow-dominated regions and tropical rainforest and monsoon regions.
Marc-Olivier Brault, H. Damon Matthews, and Lawrence A. Mysak
Earth Syst. Dynam., 8, 455–475, https://doi.org/10.5194/esd-8-455-2017, https://doi.org/10.5194/esd-8-455-2017, 2017
Short summary
Short summary
In this paper we describe the development and application of a new spatially explicit weathering scheme within the University of Victoria Earth System Climate Model (UVic ESCM). We integrated a dataset of modern-day lithology with a number of previously devised parameterizations for weathering dependency on temperature, primary productivity, and runoff. We tested the model with simulations of future carbon cycle perturbations and confirmed the importance of silicate weathering in the long term.
Sven Boese, Martin Jung, Nuno Carvalhais, and Markus Reichstein
Biogeosciences, 14, 3015–3026, https://doi.org/10.5194/bg-14-3015-2017, https://doi.org/10.5194/bg-14-3015-2017, 2017
Short summary
Short summary
For plants, the ratio of carbon uptake to water loss by transpiration is usually thought to depend on characteristic properties (their adaption to water scarcity) and the dryness of the atmosphere at any given moment. We show that, on the ecosystem scale, radiation has an independent effect on this ratio that had not been previously considered. When including this variable in models, predictions of transpiration improve considerably.
Hylke E. Beck, Albert I. J. M. van Dijk, Ad de Roo, Emanuel Dutra, Gabriel Fink, Rene Orth, and Jaap Schellekens
Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, https://doi.org/10.5194/hess-21-2881-2017, 2017
Short summary
Short summary
Runoff measurements for 966 catchments around the globe were used to assess the quality of the daily runoff estimates of 10 hydrological models run as part of tier-1 of the eartH2Observe project. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty.
Sebastian Sippel, Jakob Zscheischler, Miguel D. Mahecha, Rene Orth, Markus Reichstein, Martha Vogel, and Sonia I. Seneviratne
Earth Syst. Dynam., 8, 387–403, https://doi.org/10.5194/esd-8-387-2017, https://doi.org/10.5194/esd-8-387-2017, 2017
Short summary
Short summary
The present study (1) evaluates land–atmosphere coupling in the CMIP5 multi-model ensemble against an ensemble of benchmarking datasets and (2) refines the model ensemble using a land–atmosphere coupling diagnostic as constraint. Our study demonstrates that a considerable fraction of coupled climate models overemphasize warm-season
moisture-limitedclimate regimes in midlatitude regions. This leads to biases in daily-scale temperature extremes, which are alleviated in a constrained ensemble.
Rene Orth, Emanuel Dutra, Isabel F. Trigo, and Gianpaolo Balsamo
Hydrol. Earth Syst. Sci., 21, 2483–2495, https://doi.org/10.5194/hess-21-2483-2017, https://doi.org/10.5194/hess-21-2483-2017, 2017
Short summary
Short summary
State-of-the-art land surface models (LSMs) rely on poorly constrained parameters. To enhance LSM configuration, new satellite-based Earth observations are essential. This is because multiple observational datasets allow us to assess and validate the representation of coupled processes in LSMs. The resulting improved LSM configuration is beneficial for coupled weather forecasts, and hence valuable to society.
Mathias Hauser, René Orth, and Sonia I. Seneviratne
Geosci. Model Dev., 10, 1665–1677, https://doi.org/10.5194/gmd-10-1665-2017, https://doi.org/10.5194/gmd-10-1665-2017, 2017
Short summary
Short summary
Water in the soil can influence temperature and precipitation of the atmosphere. However, the atmosphere also alters the soil moisture content. Climate model simulations prescribing soil moisture are a means to decouple these relationships. We find that the atmospheric response depends strongly on the method used to fix the soil moisture, as well as on the employed soil moisture data set.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Sebastian Sippel, Jakob Zscheischler, Martin Heimann, Holger Lange, Miguel D. Mahecha, Geert Jan van Oldenborgh, Friederike E. L. Otto, and Markus Reichstein
Hydrol. Earth Syst. Sci., 21, 441–458, https://doi.org/10.5194/hess-21-441-2017, https://doi.org/10.5194/hess-21-441-2017, 2017
Short summary
Short summary
The paper re-investigates the question whether observed precipitation extremes and annual totals have been increasing in the world's dry regions over the last 60 years. Despite recently postulated increasing trends, we demonstrate that large uncertainties prevail due to (1) the choice of dryness definition and (2) statistical data processing. In fact, we find only minor (and only some significant) increases if (1) dryness is based on aridity and (2) statistical artefacts are accounted for.
Fanny Langerwisch, Ariane Walz, Anja Rammig, Britta Tietjen, Kirsten Thonicke, and Wolfgang Cramer
Earth Syst. Dynam., 7, 953–968, https://doi.org/10.5194/esd-7-953-2016, https://doi.org/10.5194/esd-7-953-2016, 2016
Short summary
Short summary
Amazonia is heavily impacted by climate change and deforestation. During annual flooding terrigenous material is imported to the river, converted and finally exported to the ocean or the atmosphere. Changes in the vegetation alter therefore riverine carbon dynamics. Our results show that due to deforestation organic carbon amount will strongly decrease both in the river and exported to the ocean, while inorganic carbon amounts will increase, in the river as well as exported to the atmosphere.
Jean-Sébastien Landry, Lael Parrott, David T. Price, Navin Ramankutty, and H. Damon Matthews
Biogeosciences, 13, 5277–5295, https://doi.org/10.5194/bg-13-5277-2016, https://doi.org/10.5194/bg-13-5277-2016, 2016
Short summary
Short summary
We simulated mountain pine beetle (MPB) outbreaks under four scenarios for the presence and growth release strength of non-attacked vegetation, and found that: (1) impacts on ecosystem carbon and radiative forcing varied greatly across the four scenarios; (2) the global climatic impact from the current outbreak in British Columbia, Canada, seemed smaller than one month of anthropogenic CO2 emissions; and (3) MPB-killed dead standing trees might hasten post-outbreak vegetation recovery.
Ana Bastos, Philippe Ciais, Jonathan Barichivich, Laurent Bopp, Victor Brovkin, Thomas Gasser, Shushi Peng, Julia Pongratz, Nicolas Viovy, and Cathy M. Trudinger
Biogeosciences, 13, 4877–4897, https://doi.org/10.5194/bg-13-4877-2016, https://doi.org/10.5194/bg-13-4877-2016, 2016
Short summary
Short summary
The ice-core record shows a stabilisation of atmospheric CO2 in the 1940s, despite continued emissions from fossil fuel burning and land-use change (LUC). We use up-to-date reconstructions of the CO2 sources and sinks over the 20th century to evaluate whether these capture the CO2 plateau and to test the previously proposed hypothesis. Both strong terrestrial sink, possibly due to LUC not fully accounted for in the records, and enhanced oceanic uptake are necessary to explain this stall.
Gianluca Tramontana, Martin Jung, Christopher R. Schwalm, Kazuhito Ichii, Gustau Camps-Valls, Botond Ráduly, Markus Reichstein, M. Altaf Arain, Alessandro Cescatti, Gerard Kiely, Lutz Merbold, Penelope Serrano-Ortiz, Sven Sickert, Sebastian Wolf, and Dario Papale
Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, https://doi.org/10.5194/bg-13-4291-2016, 2016
Short summary
Short summary
We have evaluated 11 machine learning (ML) methods and two complementary drivers' setup to estimate the carbon dioxide (CO2) and energy exchanges between land ecosystems and atmosphere. Obtained results have shown high consistency among ML and high capability to estimate the spatial and seasonal variability of the target fluxes. The results were good for all the ecosystems, with limitations to the ones in the extreme environments (cold, hot) or less represented in the training data (tropics).
F. Langerwisch, A. Walz, A. Rammig, B. Tietjen, K. Thonicke, and W. Cramer
Earth Syst. Dynam., 7, 559–582, https://doi.org/10.5194/esd-7-559-2016, https://doi.org/10.5194/esd-7-559-2016, 2016
Short summary
Short summary
In Amazonia, carbon fluxes are considerably influenced by annual flooding. We applied the newly developed model RivCM to several climate change scenarios to estimate potential changes in riverine carbon. We find that climate change causes substantial changes in riverine organic and inorganic carbon, as well as changes in carbon exported to the atmosphere and ocean. Such changes could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Jean-Sébastien Landry and H. Damon Matthews
Biogeosciences, 13, 2137–2149, https://doi.org/10.5194/bg-13-2137-2016, https://doi.org/10.5194/bg-13-2137-2016, 2016
Short summary
Short summary
We simulated both fire pulses and stable fire regimes and found the resulting climatic impacts to be irreconcilable with equivalent amounts of CO2 emissions produced by fossil fuel combustion. Consequently, side-by-side comparisons of fire and fossil fuel CO2 emissions—implicitly implying that they have similar effects—should be avoided. Our study calls for the explicit representation of fire in climate models in order to improve our understanding of its impacts in the Earth system.
Jean-Sébastien Landry, David T. Price, Navin Ramankutty, Lael Parrott, and H. Damon Matthews
Geosci. Model Dev., 9, 1243–1261, https://doi.org/10.5194/gmd-9-1243-2016, https://doi.org/10.5194/gmd-9-1243-2016, 2016
Short summary
Short summary
Insect-induced plant damage affects the land-atmosphere exchanges of carbon, energy, and water. We developed a module to quantify such effects in process-based models suitable for climate studies. The module can simulate damage from broadleaf defoliators, needleleaf defoliators, and bark beetles. When coupled to an existing terrestrial vegetation model, the module produced reasonable results for vegetation dynamics and land-atmosphere exchanges, from daily to centennial timescales.
C. T. Simmons, L. A. Mysak, and H. D. Matthews
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-24, https://doi.org/10.5194/cp-2016-24, 2016
Preprint withdrawn
S. Sippel, F. E. L. Otto, M. Forkel, M. R. Allen, B. P. Guillod, M. Heimann, M. Reichstein, S. I. Seneviratne, K. Thonicke, and M. D. Mahecha
Earth Syst. Dynam., 7, 71–88, https://doi.org/10.5194/esd-7-71-2016, https://doi.org/10.5194/esd-7-71-2016, 2016
Short summary
Short summary
We introduce a novel technique to bias correct climate model output for impact simulations that preserves its physical consistency and multivariate structure. The methodology considerably improves the representation of extremes in climatic variables relative to conventional bias correction strategies. Illustrative simulations of biosphere–atmosphere carbon and water fluxes with a biosphere model (LPJmL) show that the novel technique can be usefully applied to drive climate impact models.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
B. Di Mauro, F. Fava, P. Frattini, A. Camia, R. Colombo, and M. Migliavacca
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-2-1553-2015, https://doi.org/10.5194/npgd-2-1553-2015, 2015
Preprint withdrawn
Short summary
Short summary
In this paper, we analyse the probability distribution of wildfires burned area at European scale. We evaluate the performance of a land surface model using power law scaling as a benchmark. Our analysis suggests that only high latitude biomes are described by a power law distribution, and we relate this feature with the less impact of antrhopogenic activity. The benchmarking analysis showed that some refinements are needed in the model structure for reproducing emerging properties of wildfires
O. Perez-Priego, J. Guan, M. Rossini, F. Fava, T. Wutzler, G. Moreno, N. Carvalhais, A. Carrara, O. Kolle, T. Julitta, M. Schrumpf, M. Reichstein, and M. Migliavacca
Biogeosciences, 12, 6351–6367, https://doi.org/10.5194/bg-12-6351-2015, https://doi.org/10.5194/bg-12-6351-2015, 2015
Short summary
Short summary
Sun-induced chlorophyll fluorescence and photochemical reflectance index revealed controls of climate and nutrient availability on photosynthesis (gross primary production, GPP). Meteo-driven models (MMs) were unable to describe nutrient-induced effects on GPP. Important implications can be derived from these results, and uncertainties in the prediction of global GPP still remain when MMs do not account for plant nutrient availability.
L. Wingate, J. Ogée, E. Cremonese, G. Filippa, T. Mizunuma, M. Migliavacca, C. Moisy, M. Wilkinson, C. Moureaux, G. Wohlfahrt, A. Hammerle, L. Hörtnagl, C. Gimeno, A. Porcar-Castell, M. Galvagno, T. Nakaji, J. Morison, O. Kolle, A. Knohl, W. Kutsch, P. Kolari, E. Nikinmaa, A. Ibrom, B. Gielen, W. Eugster, M. Balzarolo, D. Papale, K. Klumpp, B. Köstner, T. Grünwald, R. Joffre, J.-M. Ourcival, M. Hellstrom, A. Lindroth, C. George, B. Longdoz, B. Genty, J. Levula, B. Heinesch, M. Sprintsin, D. Yakir, T. Manise, D. Guyon, H. Ahrends, A. Plaza-Aguilar, J. H. Guan, and J. Grace
Biogeosciences, 12, 5995–6015, https://doi.org/10.5194/bg-12-5995-2015, https://doi.org/10.5194/bg-12-5995-2015, 2015
Short summary
Short summary
The timing of plant development stages and their response to climate and management were investigated using a network of digital cameras installed across different European ecosystems. Using the relative red, green and blue content of images we showed that the green signal could be used to estimate the length of the growing season in broadleaf forests. We also developed a model that predicted the seasonal variations of camera RGB signals and how they relate to leaf pigment content and area well.
M. H. Vermeulen, B. J. Kruijt, T. Hickler, and P. Kabat
Earth Syst. Dynam., 6, 485–503, https://doi.org/10.5194/esd-6-485-2015, https://doi.org/10.5194/esd-6-485-2015, 2015
Short summary
Short summary
We compared a process-based ecosystem model (LPJ-GUESS) with EC measurements to test whether observed interannual variability (IAV) in carbon and water fluxes can be reproduced because it is important to understand the driving mechanisms of IAV. We show that the model's mechanistic process representation for photosynthesis at low temperatures and during drought could be improved, but other process representations are still lacking in order to fully reproduce the observed IAV.
S. Hashimoto, N. Carvalhais, A. Ito, M. Migliavacca, K. Nishina, and M. Reichstein
Biogeosciences, 12, 4121–4132, https://doi.org/10.5194/bg-12-4121-2015, https://doi.org/10.5194/bg-12-4121-2015, 2015
S. Rolinski, A. Rammig, A. Walz, W. von Bloh, M. van Oijen, and K. Thonicke
Biogeosciences, 12, 1813–1831, https://doi.org/10.5194/bg-12-1813-2015, https://doi.org/10.5194/bg-12-1813-2015, 2015
Short summary
Short summary
Extreme weather events can but do not have to cause extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions.
We use a simple probabilistic risk assessment and apply it to terrestrial ecosystems, defining a hazard as negative net biome productivity. In Europe, ecosystems are vulnerable to drought in the Mediterranean and temperate region, whereas vulnerability in Scandinavia is not caused by water shortages.
A. Rammig, M. Wiedermann, J. F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, and M. D. Mahecha
Biogeosciences, 12, 373–385, https://doi.org/10.5194/bg-12-373-2015, https://doi.org/10.5194/bg-12-373-2015, 2015
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, R. J. van der Ent, J. F. Donges, J. Heinke, G. Sampaio, and A. Rammig
Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, https://doi.org/10.5194/acp-14-13337-2014, 2014
M. Forkel, N. Carvalhais, S. Schaphoff, W. v. Bloh, M. Migliavacca, M. Thurner, and K. Thonicke
Biogeosciences, 11, 7025–7050, https://doi.org/10.5194/bg-11-7025-2014, https://doi.org/10.5194/bg-11-7025-2014, 2014
M. Van Oijen, J. Balkovi, C. Beer, D. R. Cameron, P. Ciais, W. Cramer, T. Kato, M. Kuhnert, R. Martin, R. Myneni, A. Rammig, S. Rolinski, J.-F. Soussana, K. Thonicke, M. Van der Velde, and L. Xu
Biogeosciences, 11, 6357–6375, https://doi.org/10.5194/bg-11-6357-2014, https://doi.org/10.5194/bg-11-6357-2014, 2014
Short summary
Short summary
We use a new risk analysis method, and six vegetation models, to analyse how climate change may alter drought risks in European ecosystems. The conclusions are (1) drought will pose increasing risks to productivity in the Mediterranean area; (2) this is because severe droughts will become more frequent, not because ecosystems will become more vulnerable; (3) future C sequestration will be at risk because carbon gain in primary productivity will be more affected than carbon loss in respiration.
D. Wårlind, B. Smith, T. Hickler, and A. Arneth
Biogeosciences, 11, 6131–6146, https://doi.org/10.5194/bg-11-6131-2014, https://doi.org/10.5194/bg-11-6131-2014, 2014
C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon
Biogeosciences, 11, 3661–3683, https://doi.org/10.5194/bg-11-3661-2014, https://doi.org/10.5194/bg-11-3661-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
A. Bastos, C. M. Gouveia, R. M. Trigo, and S. W. Running
Biogeosciences, 11, 3421–3435, https://doi.org/10.5194/bg-11-3421-2014, https://doi.org/10.5194/bg-11-3421-2014, 2014
X. Wu, F. Babst, P. Ciais, D. Frank, M. Reichstein, M. Wattenbach, C. Zang, and M. D. Mahecha
Biogeosciences, 11, 3057–3068, https://doi.org/10.5194/bg-11-3057-2014, https://doi.org/10.5194/bg-11-3057-2014, 2014
J. Zscheischler, M. Reichstein, S. Harmeling, A. Rammig, E. Tomelleri, and M. D. Mahecha
Biogeosciences, 11, 2909–2924, https://doi.org/10.5194/bg-11-2909-2014, https://doi.org/10.5194/bg-11-2909-2014, 2014
B. Ahrens, M. Reichstein, W. Borken, J. Muhr, S. E. Trumbore, and T. Wutzler
Biogeosciences, 11, 2147–2168, https://doi.org/10.5194/bg-11-2147-2014, https://doi.org/10.5194/bg-11-2147-2014, 2014
B. Smith, D. Wårlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle
Biogeosciences, 11, 2027–2054, https://doi.org/10.5194/bg-11-2027-2014, https://doi.org/10.5194/bg-11-2027-2014, 2014
B. Badawy, C. Rödenbeck, M. Reichstein, N. Carvalhais, and M. Heimann
Biogeosciences, 10, 6485–6508, https://doi.org/10.5194/bg-10-6485-2013, https://doi.org/10.5194/bg-10-6485-2013, 2013
R. Orth and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3895–3911, https://doi.org/10.5194/hess-17-3895-2013, https://doi.org/10.5194/hess-17-3895-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
M.-O. Brault, L. A. Mysak, H. D. Matthews, and C. T. Simmons
Clim. Past, 9, 1761–1771, https://doi.org/10.5194/cp-9-1761-2013, https://doi.org/10.5194/cp-9-1761-2013, 2013
M. C. Braakhekke, T. Wutzler, C. Beer, J. Kattge, M. Schrumpf, B. Ahrens, I. Schöning, M. R. Hoosbeek, B. Kruijt, P. Kabat, and M. Reichstein
Biogeosciences, 10, 399–420, https://doi.org/10.5194/bg-10-399-2013, https://doi.org/10.5194/bg-10-399-2013, 2013
G. Lasslop, M. Migliavacca, G. Bohrer, M. Reichstein, M. Bahn, A. Ibrom, C. Jacobs, P. Kolari, D. Papale, T. Vesala, G. Wohlfahrt, and A. Cescatti
Biogeosciences, 9, 5243–5259, https://doi.org/10.5194/bg-9-5243-2012, https://doi.org/10.5194/bg-9-5243-2012, 2012
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
Role of air–soil temperature in the leaf area index (LAI) course and role of height–diameter at breast height (DBH) in the maximum LAI during foliation of Platanus orientalis L. in an urban–rural greenway system
Ecosystem leaf area, gross primary production, and evapotranspiration responses to wildfire in the Columbia River basin
Optimal set of leaf and aboveground tree elements for predicting forest functioning
Water usage of old-growth oak at elevated CO2 in the FACE (Free-Air CO2 Enrichment) of climate change
Elephant megacarcasses increase local nutrient pools in African savanna soils and plants
Narrowing down dune establishment drivers on the beach
Combined effects of topography, soil moisture, and snow cover regimes on growth responses of grasslands in a low- mountain range (Vosges, France)
Soil smoldering in temperate forests: a neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
The fungal collaboration gradient drives root trait distribution and ecosystem processes in a tropical montane forest
Measuring and modeling waterlogging tolerance to predict the future for threatened lowland ash forests
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Soil and Biomass Carbon Storage is Much Higher in Central American than Andean Montane Forests
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Evaluating state-of-the-art process-based and data-driven models in simulating CO2 fluxes and their relationship with climate in western European temperate forests
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Melih Öztürk, Turgay Biricik, and Rıdvan Koruyan
Biogeosciences, 22, 2351–2362, https://doi.org/10.5194/bg-22-2351-2025, https://doi.org/10.5194/bg-22-2351-2025, 2025
Short summary
Short summary
Oriental plane leaf area index (LAI) values changed with a definite pattern compatible with phenological periods. Air–soil temperatures were significantly definitive regarding the course of mean LAIs, particularly during foliation. Tree height and diameter at breast height (DBH) were not correlated with point-based maximum LAIs. Point-based mean LAIs increased from 0.80 to 2.76 m2 m−2 during foliation. Mean tree height and DBH for point-based canopies ranged between 17.0–26.7 m and 26.5–38.2 cm, respectively.
Mingjie Shi, Nate McDowell, Huilin Huang, Faria Zahura, Lingcheng Li, and Xingyuan Chen
Biogeosciences, 22, 2225–2238, https://doi.org/10.5194/bg-22-2225-2025, https://doi.org/10.5194/bg-22-2225-2025, 2025
Short summary
Short summary
Using Moderate Resolution Imaging Spectroradiometer data products, we quantitatively estimate the resistance and resilience of ecosystem functions to wildfires that occurred in the Columbia River basin in 2015. The carbon state exhibits lower resistance and resilience than the ecosystem fluxes. The random forest feature importance analysis indicates that burn severity plays a minor role in the resilience of grassland and a relatively major role in the resilience of forest and savanna.
Écio Souza Diniz, Eladio Rodríguez-Penedo, Roger Grau-Andrés, Jordi Vayreda, and Marcos Fernández-Martínez
Biogeosciences, 22, 2115–2132, https://doi.org/10.5194/bg-22-2115-2025, https://doi.org/10.5194/bg-22-2115-2025, 2025
Short summary
Short summary
In this study, we found that the accumulation of nutrients (e.g., carbon, nitrogen, phosphorus, calcium) in leaves is an important factor in explaining tree growth in forest ecosystems. This result provides evidence for forest growth studies aimed at forest conservation and restoration to better direct their resources to data collection and measurement. Collecting data on nutrient stocks in tree leaves can also provide valuable information to broaden our understanding of forest functioning.
Susan E. Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and A. Robert MacKenzie
Biogeosciences, 22, 1557–1581, https://doi.org/10.5194/bg-22-1557-2025, https://doi.org/10.5194/bg-22-1557-2025, 2025
Short summary
Short summary
To study the effects of rising CO2 levels on water usage of old-growth temperate oak forest, we monitored trees in an open-air elevated CO2 experiment for 5 years. We found 4 %–16 % leaf-on season reduction in daylight water usage for ~35% increase in atmospheric CO2. July-only reduction varied more widely. Tree water usage depended on tree size, i.e. stem size and projected canopy area, across all treatments. Experimental infrastructure increased the water usage of the trees in leaf-on season.
Courtney G. Reed, Michelle L. Budny, Johan T. du Toit, Ryan Helcoski, Joshua P. Schimel, Izak P. J. Smit, Tercia Strydom, Aimee Tallian, Dave I. Thompson, Helga van Coller, Nathan P. Lemoine, and Deron E. Burkepile
Biogeosciences, 22, 1583–1596, https://doi.org/10.5194/bg-22-1583-2025, https://doi.org/10.5194/bg-22-1583-2025, 2025
Short summary
Short summary
We seek to understand the ecological legacies of elephants after death. We sampled soil and leaves at elephant carcass sites in South Africa and found that elephant carcasses release nutrients into soil, which plants take up and make available for consumption by herbivores. This research reveals a key way that elephants contribute to nutrient cycling in savannas after death. It also highlights an important process that may be lost in areas where elephant populations are in decline.
Jan-Markus Homberger, Sasja van Rosmalen, Michel Riksen, and Juul Limpens
Biogeosciences, 22, 1301–1320, https://doi.org/10.5194/bg-22-1301-2025, https://doi.org/10.5194/bg-22-1301-2025, 2025
Short summary
Short summary
Understanding what determines the establishment of dune-building vegetation could help to better predict coastal dune initiation and development. We monitored the establishment of dune-building grasses and dune initiation in a large field experiment. Our results show that dune initiation takes place during peaks in dune-building grass establishment, which depend on favorable environmental conditions. Our findings can potentially be integrated into beach restoration and management strategies.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
Biogeosciences, 22, 705–724, https://doi.org/10.5194/bg-22-705-2025, https://doi.org/10.5194/bg-22-705-2025, 2025
Short summary
Short summary
Mountain grasslands are impacted by climate change and need to adapt. Low-mountain grasslands are poorly understood compared to high-mountain massifs. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, with a reverse signal observed in high-mountain massifs. We also noted a high responsiveness in their growth strategy to soil moisture, snow regime, and topography.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025, https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary
Short summary
The 2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 Mteq CO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of France's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Albert Olioso, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
Biogeosciences, 22, 1–18, https://doi.org/10.5194/bg-22-1-2025, https://doi.org/10.5194/bg-22-1-2025, 2025
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem functions and dynamics. Traditional large-scale data lack the precision needed for complex terrain. This study introduces a new model, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features, to enhance the radiation data resolution using elevation maps. Tested on a mountainous area, this method significantly improved radiation estimates, benefiting predictions of forest functions.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Mateus Dantas de Paula, Tatiana Reichert, Laynara Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3259, https://doi.org/10.5194/egusphere-2024-3259, 2024
Short summary
Short summary
This study explores how plant roots, with different forms and functions, rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root-fungal interactions should be considered in vegetation models.
Eric Gustafson, Dustin Bronson, Marcella Windmuller-Campione, Robert A. Slesak, and Deahn Donner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3332, https://doi.org/10.5194/egusphere-2024-3332, 2024
Short summary
Short summary
Black ash forests provide many ecological and tribal cultural benefits but may soon be killed by invasive insects. Black ash trees maintain forests on very wet sites by removing enough water to allow other species to survive. We combined results from physical experiments and a simulation model to project the ecological outcome of strategies to replace ash with species not killed by the insect. We found that this should work if ways can be found to ensure that planted trees survive to maturity.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Cecilia M. Prada, Katherine D. Heineman, Maria J. Pardo, Camille Piponiot, and James W. Dalling
EGUsphere, https://doi.org/10.5194/egusphere-2024-2738, https://doi.org/10.5194/egusphere-2024-2738, 2024
Short summary
Short summary
The influence of elevation and soil nutrient availability on carbon stocks has not been evaluated for ectomycorrhizal forests in the tropics. In western Panama we calculated C pools in ten plots in an elevational gradient varying in relative abundance of EM-trees. We found exceptionally high aboveground soil C in high elevation EM-forest, in contrast to arbuscular mycorrhizal-dominated Andean forests.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Gaïa Michel, Julien Crétat, Olivier Mathieu, Mathieu Thévenot, Andrey Dara, Robert Granat, Zhendong Wu, Clément Bonnefoy-Claudet, Julianne Capelle, Jean Cacot, and John S. Kimball
EGUsphere, https://doi.org/10.5194/egusphere-2024-1758, https://doi.org/10.5194/egusphere-2024-1758, 2024
Short summary
Short summary
This study questions the usefulness of state-ot-the-art models to characterize the temporal variability of atmosphere-ecosystem CO2 exchanges in western European forests. Their mean annual cycle and annual budget are better captured by statistical than physical models, while their interannual variability and long-term trend are better captured by models forced by climate variability. Accounting for both forest stands and climate variability is thus key for properly assessing CO2 fluxes.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Cited articles
Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global Emergence of Anthropogenic Climate Change in Fire Weather Indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. a
Allan, J. R., Possingham, H. P., Atkinson, S. C., Waldron, A., Di Marco, M., Butchart, S. H. M., Adams, V. M., Kissling, W. D., Worsdell, T., Sandbrook, C., Gibbon, G., Kumar, K., Mehta, P., Maron, M., Williams, B. A., Jones, K. R., Wintle, B. A., Reside, A. E., and Watson, J. E. M.: The minimum land area requiring conservation attention to safeguard biodiversity, Science, 376, 1094–1101, https://doi.org/10.1126/science.abl9127, 2022. a
Alongi, D. M.: Carbon sequestration in mangrove forests, Carbon Manag., 3, 313–322, https://doi.org/10.4155/cmt.12.20, 2012. a
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a
Andela, N., Morton, D. C., Schroeder, W., Chen, Y., Brando, P. M., and Randerson, J. T.: Tracking and classifying Amazon fire events in near real time, Sci. Adv., 8, 1356–1362, https://doi.org/10.1126/sciadv.abd2713, 2022. a
Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and Randerson, J. T.: Climate-driven risks to the climate mitigation potential of forests, Science, 368, eaaz7005, https://doi.org/10.1126/science.aaz7005, 2020. a, b
Apine, E. and Stojanovic, T.: Is the coastal future green, grey or hybrid? Diverse perspectives on coastal flood risk management and adaptation in the UK, Cambridge Prisms: Coastal Futures, 2, e4, https://doi.org/10.1017/cft.2024.4, 2024. a, b
Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., Slik, J. F., Nowakowski, A. J., and Tscharntke, T.: Designing optimal human-modified landscapes for forest biodiversity conservation, Ecol. Lett., 23, 1404–1420, https://doi.org/10.1111/ele.13535, 2020. a
Ascoli, D., Plana, E., Oggioni, S. D., Tomao, A., Colonico, M., Corona, P., Giannino, F., Moreno, M., Xanthopoulos, G., Kaoukis, K., Athanasiou, M., Colaço, M. C., Rego, F., Sequeira, A. C., Acácio, V., Serra, M., and Barbati, A.: Fire-smart solutions for sustainable wildfire risk prevention: Bottom-up initiatives meet top-down policies under EU green deal, Int. J. Disast. Risk Re., 92, 103715, https://doi.org/10.1016/j.ijdrr.2023.103715, 2023. a
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., and Supuran, C. T.: Natural products in drug discovery: advances and opportunities, Nat. Rev. Drug. Discov., 20, 200–216, 2021. a
Ayugi, B., Eresanya, E. O., Onyango, A. O., Ogou, F. K., Okoro, E. C., Okoye, C. O., Anoruo, C. M., Dike, V. N., Ashiru, O. R., Daramola, M. T., Mumo, R., and Ongoma, V.: Review of meteorological drought in Africa: historical trends, impacts, mitigation measures, and prospects, Pure Appl. Geophys., 179, 1365–1386, 2022. a
Baker, J. C. A. and Spracklen, D. V.: Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models, Geophys. Res. Lett., 49, e2021GL095136, https://doi.org/10.1029/2021GL095136, 2022. a
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V. d., Soto, I., Gómez-Barbero, M., Barnes, A., and Eory, V.: Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics, Sustainability, 9, 1339, https://doi.org/10.3390/su9081339, 2017. a
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., and Graham, N. A. J.: The future of hyperdiverse tropical ecosystems, Nature, 559, 517–526, https://doi.org/10.1038/s41586-018-0301-1, 2018. a
Bastos Lima, M. G. and Persson, U. M.: Commodity-Centric Landscape Governance as a Double-Edged Sword: The Case of Soy and the Cerrado Working Group in Brazil, Front. Forest. Glob. Change, 3, 27, https://doi.org/10.3389/ffgc.2020.00027, 2020. a
Bayham, J., Yoder, J. K., Champ, P. A., and Calkin, D. E.: The Economics of Wildfire in the United States, Annu. Rev. Resour. Econ., 14, 379–401, https://doi.org/10.1146/annurev-resource-111920-014804, 2022. a, b
Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., and Moreno, J. M.: Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change, Agr. Forest Meteorol., 214/215, 369–379, https://doi.org/10.1016/j.agrformet.2015.09.002, 2015. a
Beetz, K., Marrs, C., Busse, A., Poděbradská, M., Kinalczyk, D., Kranz, J., and Forkel, M.: Effects of bark beetle disturbance and fuel types on fire radiative power and burn severity in the Bohemian-Saxon Switzerland, Forestry: An International Journal of Forest Research, 98, 59–70, https://doi.org/10.1093/forestry/cpae024, 2024. a
Bishop, R. C., Boyle, K. J., Carson, R. T., Chapman, D., Hanemann, W. M., Kanninen, B., Kopp, R. J., Krosnick, J. A., List, J., Meade, N., Paterson, R., Presser, S., Smith, V. K., Tourangeau, R., Welsh, M., Wooldridge, J. M., DeBell, M., Donovan, C., Konopka, M., and Scherer, N.: Putting a value on injuries to natural assets: The BP oil spill, Science, 356, 253–254, https://doi.org/10.1126/science.aam8124, 2017. a
Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., and Hergert, G. W.: Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils, Agron. J., 107, 2449–2474, https://doi.org/10.2134/agronj15.0086, 2015. a
Bloem, S., Cullen, A. C., Mearns, L. O., and Abatzoglou, J. T.: The Role of International Resource Sharing Arrangements in Managing Fire in the Face of Climate Change, Fire, 5, 88, https://doi.org/10.3390/fire5040088, 2022. a
Blythe, J. L., Gill, D. A., Claudet, J., Bennett, N. J., Gurney, G. G., Baggio, J. A., Ban, N. C., Bernard, M. L., Brun, V., Darling, E. S., Franco, A. D., Epstein, G., Franks, P., Horan, R., Jupiter, S. D., Lau, J., Lazzari, N., Mahajan, S. L., Mangubhai, S., Naggea, J., Turner, R. A., and Zafra-Calvo, N.: Blue justice: A review of emerging scholarship and resistance movements, Cambridge Prisms: Coastal Futures, 1, e15, https://doi.org/10.1017/cft.2023.4, 2023. a
Bochow, N. and Boers, N.: The South American monsoon approaches a critical transition in response to deforestation, Sci. Adv., 9, eadd9973, https://doi.org/10.1126/sciadv.add9973, 2023. a, b
Bocken, N., Strupeit, L., Whalen, K., and Nußholz, J.: A Review and Evaluation of Circular Business Model Innovation Tools, Sustainability, 11, 2210, https://doi.org/10.3390/su11082210, 2019. a
Bohn, F. J.: Statistics on the authors of the “Current perspectives on biosphere research 2024–2025”, Figshare [code], https://doi.org/10.6084/m9.figshare.29092712, 2025. Date: 22.5.2025 a
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008. a
Bond, W. J. and Keeley, J. E.: Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems, Trend. Ecol. Evol., 20, 387–394, https://doi.org/10.1016/j.tree.2005.04.025, 2005. a
Bourgoin, C., Ceccherini, G., Girardello, M., Vancutsem, C., Avitabile, V., Beck, P. S. A., Beuchle, R., Blanc, L., Duveiller, G., Migliavacca, M., Vieilledent, G., Cescatti, A., and Achard, F.: Human degradation of tropical moist forests is greater than previously estimated, Nature, 631, 570–576, https://doi.org/10.1038/s41586-024-07629-0, 2024. a
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on Earth, J. Biogeogr., 38, 2223–2236, https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011. a, b
Brancalion, P. H. S., de Almeida, D. R. A., Vidal, E., Molin, P. G., Sontag, V. E., Souza, S. E. X. F., and Schulze, M. D.: Fake legal logging in the Brazilian Amazon, Sci. Adv., 4, eaat1192, https://doi.org/10.1126/sciadv.aat1192, 2018. a
Brander, M. and Broekhoff, D.: Methods that equate temporary carbon storage with permanent CO2 emission reductions lead to false claims on temperature alignment, Carbon Manag., 14, 2284714, https://doi.org/10.1080/17583004.2023.2284714, 2023. a
Brockington, D., Duffy, R., and Igoe, J.: Nature unbound: conservation, capitalism and the future of protected areas, Routledge, London, 1st Edn., 240 pp., https://doi.org/10.4324/9781849772075, 2012. a, b
Brown, P. T., Hanley, H., Mahesh, A., Reed, C., Strenfel, S. J., Davis, S. J., Kochanski, A. K., and Clements, C. B.: Climate warming increases extreme daily wildfire growth risk in California, Nature, 621, 760–766, https://doi.org/10.1038/s41586-023-06444-3, 2023. a, b
Bruijnzeel, L., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: emerging patterns, Hydrol. Process., 25, 465–498, 2011. a
Burton, C., Lampe, S., Kelley, D. I., Thiery, W., Hantson, S., Christidis, N., Gudmundsson, L., Forrest, M., Burke, E., Chang, J., Huang, H., Ito, A., Kou-Giesbrecht, S., Lasslop, G., Li, W., Nieradzik, L., Li, F., Chen, Y., Randerson, J., Reyer, C. P. O., and Mengel, M.: Global burned area increasingly explained by climate change, Nat. Clim. Change, 14, 1186–1192, https://doi.org/10.1038/s41558-024-02140-w, 2024. a
Bustamante, M., Roy, J., Ospina, D., Achakulwisut, P., Aggarwal, A., Bastos, A., Broadgate, W., Canadell, J. G., Carr, E. R., Chen, D., Cleugh, H. A., Ebi, K. L., Edwards, C., Farbotko, C., Fernández-Martínez, M., Frölicher, T. L., Fuss, S., Geden, O., Gruber, N., Harrington, L. J., Hauck, J., Hausfather, Z., Hebden, S., Hebinck, A., Huq, S., Huss, M., Jamero, M. L. P., Juhola, S., Kumarasinghe, N., Lwasa, S., Mallick, B., Martin, M., McGreevy, S., Mirazo, P., Mukherji, A., Muttitt, G., Nemet, G. F., Obura, D., Okereke, C., Oliver, T., Orlove, B., Ouedraogo, N. S., Patra, P. K., Pelling, M., Pereira, L. M., Persson, Å., Pongratz, J., Prakash, A., Rammig, A., Raymond, C., Redman, A., Reveco, C., Rockström, J., Rodrigues, R., Rounce, D. R., Schipper, E. L. F., Schlosser, P., Selomane, O., Semieniuk, G., Shin, Y.-J., Siddiqui, T. A., Singh, V., Sioen, G. B., Sokona, Y., Stammer, D., Steinert, N. J., Suk, S., Sutton, R., Thalheimer, L., Thompson, V., Trencher, G., van der Geest, K., Werners, S. E., Wübbelmann, T., Wunderling, N., Yin, J., Zickfeld, K., and Zscheischler, J.: Ten new insights in climate science 2023, Glob. Sustain., 7, e19, https://doi.org/10.1017/sus.2023.25, 2023. a
Büscher, B. and Fletcher, R.: Towards Convivial Conservation, Conserv. Soc., 17, 283, https://doi.org/10.4103/cs.cs_19_75, 2019. a, b, c
Caporaso, L., Duveiller, G., Giuliani, G., Giorgi, F., Stengel, M., Massaro, E., Piccardo, M., and Cescatti, A.: Converging Findings of Climate Models and Satellite Observations on the Positive Impact of European Forests on Cloud Cover, J. Geophys. Res.-Atmos., 129, e2023JD039235, https://doi.org/10.1029/2023JD039235, 2024. a
Cariveau, D. P., Bruninga-Socolar, B., and Pardee, G. L.: A review of the challenges and opportunities for restoring animal-mediated pollination of native plants, Emerging Topics in Life Sciences, 4, 99–109, https://doi.org/10.1042/ETLS20190073, 2020. a
Carton, W., Lund, J. F., and Dooley, K.: Undoing Equivalence: Rethinking Carbon Accounting for Just Carbon Removal, Front. Clim., 3, 664130, https://doi.org/10.3389/fclim.2021.664130, 2021. a
Carton, W., Hougaard, I.-M., Markusson, N., and Lund, J. F.: Is carbon removal delaying emission reductions?, WIREs Clim. Change, 14, e826, https://doi.org/10.1002/wcc.826, 2023. a
Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., Martiny, J. B. H., Moran, M. A., Orphan, V. J., Reay, D. S., Remais, J. V., Rich, V. I., Singh, B. K., Stein, L. Y., Stewart, F. J., Sullivan, M. B., van Oppen, M. J. H., Weaver, S. C., Webb, E. A., and Webster, N. S.: Scientists' warning to humanity: microorganisms and climate change, Nat. Rev. Microbiol., 17, 569–586, https://doi.org/10.1038/s41579-019-0222-5, 2019. a
Centre, C. C.: Convivial Conservation Manifesto, https://www.convivialconservation.com/2024/05/14/convivial-conservation-manifesto-is-available-online-now/ (last access: 10 August 2024), 2024. a
Chazdon, R. L., Lindenmayer, D., Guariguata, M. R., Crouzeilles, R., Benayas, J. M. R., and Chavero, E. L.: Fostering natural forest regeneration on former agricultural land through economic and policy interventions, Environ. Res. Lett., 15, 043002, https://doi.org/10.1088/1748-9326/ab79e6, 2020. a, b
Chen, Y., Hall, J., van Wees, D., Andela, N., Hantson, S., Giglio, L., van der Werf, G. R., Morton, D. C., and Randerson, J. T.: Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5), Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, 2023. a, b, c, d
Cheung, S. C.: The politics of wetlandscape: fishery heritage and natural conservation in Hong Kong, Int. J. Herit. Stud., 17, 36–45, https://doi.org/10.1080/13527258.2011.524004, 2011. a
Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., and Turco, M.: Human and climate drivers of global biomass burning variability, Sci. Total Environ., 779, 146361, https://doi.org/10.1016/j.scitotenv.2021.146361, 2021. a
Chuvieco, E., Yebra, M., Martino, S., Thonicke, K., Gómez-Giménez, M., San-Miguel, J., Oom, D., Velea, R., Mouillot, F., Molina, J. R., Miranda, A. I., Lopes, D., Salis, M., Bugaric, M., Sofiev, M., Kadantsev, E., Gitas, I. Z., Stavrakoudis, D., Eftychidis, G., Bar-Massada, A., Neidermeier, A., Pampanoni, V., Pettinari, M. L., Arrogante-Funes, F., Ochoa, C., Moreira, B., and Viegas, D.: Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn, Fire, 6, 215, https://doi.org/10.3390/fire6050215, 2023. a
Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., and Boer, M. M.: Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand, Nat. Commun., 13, 7161, https://doi.org/10.1038/s41467-022-34966-3, 2022. a
Forest Declaration Assessment Partners: Off track and falling behind: Tracking progress on 2030 forest goals, Climate Focus, https://www.forestdeclaration.org (last access: 31 July 2024), 2023. a
Collins, L., Bradstock, R. A., Clarke, H., Clarke, M. F., Nolan, R. H., and Penman, T. D.: The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire, Environ. Res. Lett., 16, 044029, https://doi.org/10.1088/1748-9326/abeb9e, 2021. a
Commar, L. F. S., Abrahão, G. M., and Costa, M. H.: A possible deforestation-induced synoptic-scale circulation that delays the rainy season onset in Amazonia, Environ. Res. Lett., 18, 044041, https://doi.org/10.1088/1748-9326/acc95f, 2023. a
Commission, E.: Factsheets on the European Green Deal – European Commission, https://commission.europa.eu/publications/factsheets-european-green-deal_en (last access: 10 August 2024), 2019. a
Connor, T., Tripp, E., Tripp, B., Saxon, B. J., Camarena, J., Donahue, A., Sarna-Wojcicki, D., Macaulay, L., Bean, T., Hanbury-Brown, A., and Brashares, J.: Karuk ecological fire management practices promote elk habitat in northern California, J. Appl. Ecol., 59, 1874–1883, https://doi.org/10.1111/1365-2664.14194, 2022. a
Copernicus: Canada produced 23 % of the global wildfire carbon emissions for 2023, https://atmosphere.copernicus.eu/copernicus-canada-produced-23-global-wildfire-carbon-emissions-2023# (last access: 31 July 2024), 2023. a
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value of ecosystem services, Glob. Environ. Change, 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014. a
Cowie, R. H., Bouchet, P., and Fontaine, B.: The Sixth Mass Extinction: fact, fiction or speculation?, Biological Reviews, 97, 640–663, https://doi.org/10.1111/brv.12816, 2022. a
Croker, A. R., Woods, J., and Kountouris, Y.: Changing fire regimes in East and Southern Africa’s savanna-protected areas: opportunities and challenges for indigenous-led savanna burning emissions abatement schemes, Fire Ecol., 19, 63, https://doi.org/10.1186/s42408-023-00215-1, 2023. a
Crutzen, P. J.: The “anthropocene”, in: Earth system science in the anthropocene, 13–18, Springer, Berlin, Heidelberg, Springer Berlin Heidelberg, ISBN-13: 978-3540265900, 2006. a
Dawson, N. M., Coolsaet, B., Bhardwaj, A., Booker, F., Brown, D., Lliso, B., Loos, J., Martin, A., Oliva, M., Pascual, U., Sherpa, P., and Worsdell, T.: Is it just conservation? A typology of Indigenous peoples’ and local communities’ roles in conserving biodiversity, One Earth, 7, 1007–1021, https://doi.org/10.1016/j.oneear.2024.05.001, 2024. a
de Lange, E., Sze, J. S., Allan, J., Atkinson, S., Booth, H., Fletcher, R., Khanyari, M., and Saif, O.: A global conservation basic income to safeguard biodiversity, Nat. Sustain., 6, 1016–1023, https://doi.org/10.1038/s41893-023-01115-7, 2023. a
Dean, A. J., Uebel, K., Schultz, T., Fielding, K. S., Saeck, E., Ross, H., and Martin, V.: Community stewardship to protect coastal and freshwater ecosystems–pathways between recreation and stewardship intentions, People Nat., 6, 1452–1468, https://doi.org/10.1002/pan3.10658, 2024. a
Dickson-Hoyle, S., Ignace, R. E., Ignace, M. B., Hagerman, S. M., Daniels, L. D., and Copes-Gerbitz, K.: Walking on two legs: a pathway of Indigenous restoration and reconciliation in fire-adapted landscapes, Restor. Ecol., 30, e13566, https://doi.org/10.1111/rec.13566, 2022. a
Dodge, M.: Forest Fuel Accumulation – A Growing Problem, Science, 177, 139–142, https://doi.org/10.1126/science.177.4044.139, 1972. a
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E. H. J., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., and Lucas, P. L.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, Glob. Change Biol., 26, 1576–1591, https://doi.org/10.1111/gcb.14887, 2020. a
Drupp, M. A., Hänsel, M. C., Fenichel, E. P., Freeman, M., Gollier, C., Groom, B., Heal, G. M., Howard, P. H., Millner, A., Moore, F. C., Nesje, F., Quaas, M. F., Smulders, S., Sterner, T., Traeger, C., and Venmans, F.: Accounting for the increasing benefits from scarce ecosystems, Science, 383, 1062–1064, https://doi.org/10.1126/science.adk2086, 2024. a, b
Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., and Cescatti, A.: Revealing the widespread potential of forests to increase low level cloud cover, Nat. Commun., 12, 4337, https://doi.org/10.1038/s41467-021-24551-5, 2021. a
Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., Hill, R., Chan, K. M. A., Baste, I. A., Brauman, K. A., Polasky, S., Church, A., Lonsdale, M., Larigauderie, A., Leadley, P. W., van Oudenhoven, A. P. E., van der Plaat, F., Schröter, M., Lavorel, S., Aumeeruddy-Thomas, Y., Bukvareva, E., Davies, K., Demissew, S., Erpul, G., Failler, P., Guerra, C. A., Hewitt, C. L., Keune, H., Lindley, S., and Shirayama, Y.: Assessing nature's contributions to people, Science, 359, 270–272, https://doi.org/10.1126/science.aap8826, 2018. a, b
Díaz, S., Zafra-Calvo, N., Purvis, A., Verburg, P. H., Obura, D., Leadley, P., Chaplin-Kramer, R., De Meester, L., Dulloo, E., Martín-López, B., Shaw, M. R., Visconti, P., Broadgate, W., Bruford, M. W., Burgess, N. D., Cavender-Bares, J., DeClerck, F., Fernández-Palacios, J. M., Garibaldi, L. A., Hill, S. L. L., Isbell, F., Khoury, C. K., Krug, C. B., Liu, J., Maron, M., McGowan, P. J. K., Pereira, H. M., Reyes-García, V., Rocha, J., Rondinini, C., Shannon, L., Shin, Y.-J., Snelgrove, P. V. R., Spehn, E. M., Strassburg, B., Subramanian, S. M., Tewksbury, J. J., Watson, J. E. M., and Zanne, A. E.: Set ambitious goals for biodiversity and sustainability, Science, 370, 411–413, https://doi.org/10.1126/science.abe1530, 2020. a
EEA: Mapping the impacts of natural hazards and technological accidents in Europe – An overview of the last decade., EEA Technical Report 13/2010, European Environment Agency, Copenhagen, Denmark, https://doi.org/10.2800/62638, 2010. a
Eeraerts, M.: A minimum of 15 % semi-natural habitat facilitates adequate wild pollinator visitation to a pollinator-dependent crop, Biol. Conserv., 278, 109887, https://doi.org/10.1016/j.biocon.2022.109887, 2023. a
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Noordwijk, M. v., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world, Glob. Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017. a, b
European Environment Agency: European climate risk assessment: executive summary, Publications Office of the European Union, ISBN 978-92-9480-627-7, https://data.europa.eu/doi/10.2800/204249 (last access: 10 August 2024), 2024. a
Ewert, F., Baatz, R., and Finger, R.: Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption, Annu. Rev. Resour. Econ., 15, 351–381, https://doi.org/10.1146/annurev-resource-102422-090105, 2023. a
Fa, J. E., Watson, J. E., Leiper, I., Potapov, P., Evans, T. D., Burgess, N. D., Molnár, Z., Fernández-Llamazares, A., Duncan, T., Wang, S., Austin, B. J., Jonas, H., Robinson, C. J., Malmer, P., Zander, K. K., Jackson, M. V., Ellis, E., Brondizio, E. S., and Garnett, S. T.: Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes, Front. Ecol. Environ., 18, 135–140, https://doi.org/10.1002/fee.2148, 2020. a
Fahad, S., Chavan, S. B., Chichaghare, A. R., Uthappa, A. R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D. K., Kumar, V., Farooq, T. H., Ali, B., Sawant, A. V., Saud, S., Chen, S., and Poczai, P.: Agroforestry Systems for Soil Health Improvement and Maintenance, Sustainability, 14, 14877, https://doi.org/10.3390/su142214877, 2022. a
Fanning, A. L., O’Neill, D. W., Hickel, J., and Roux, N.: The social shortfall and ecological overshoot of nations, Nat. Sustain., 5, 26–36, https://doi.org/10.1038/s41893-021-00799-z, 2022. a
FAO: The state of the world’s forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies, Tech. Rep., FAO, ISBN 978-92-5-135984-6, https://doi.org/10.4060/cb9360en, 2022a. a
FAO: The State of Agricultural Commodity Markets 2022. The geography of food and agricultural trade: Policy approaches for sustainable development., Tech. rep., FAO, rome, FAO, https://doi.org/10.4060/cc0471en, 2022b. a
FAO: World Food and Agriculture: Statistical Yearbook 2023, Tech. Rep., FAO, Rome, https://doi.org/10.4060/cc8166en-fig03, 2023. a
Farley, K. A., Jobbágy, E. G., and Jackson, R. B.: Effects of afforestation on water yield: a global synthesis with implications for policy, Glob. Change Biol., 11, 1565–1576, https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005. a, b
Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Changes in rainfall seasonality in the tropics, Nat. Clim. Change, 3, 811–815, https://doi.org/10.1038/nclimate1907, 2013. a
Feng, Y., Zeng, Z., Searchinger, T. D., Ziegler, A. D., Wu, J., Wang, D., He, X., Elsen, P. R., Ciais, P., Xu, R., Guo, Z., Peng, L., Tao, Y., Spracklen, D. V., Holden, J., Liu, X., Zheng, Y., Xu, P., Chen, J., Jiang, X., Song, X.-P., Lakshmi, V., Wood, E. F., and Zheng, C.: Doubling of annual forest carbon loss over the tropics during the early twenty-first century, Nat. Sustain., 5, 444–451, https://doi.org/10.1038/s41893-022-00854-3, 2022. a, b
Fernandes, G. W., Coelho, M. S., Machado, R. B., Ferreira, M. E., Aguiar, L. M. d. S., Dirzo, R., Scariot, A., and Lopes, C. R.: Afforestation of savannas: an impending ecological disaster, Nat. Conservacao, 14, 146–151, https://doi.org/10.1016/j.ncon.2016.08.002, 2016. a
Fernandes, S., Athayde, S., Harrison, I., and Perry, D.: Connectivity and policy confluences: a multi-scalar conservation approach for protecting Amazon riverine ecosystems, Perspect Ecol Conserv, 22, 129–136, https://doi.org/10.1016/j.pecon.2024.02.002, 2024. a
Fletcher, R.: Failing forward: The rise and fall of neoliberal conservation, Univ of California Press, ISBN-13: 978-0520390690, https://doi.org/10.2307/j.ctv34wmx57, 2023. a, b
Fletcher, R. and Büscher, B.: Conservation basic income: A non-market mechanism to support convivial conservation, Biol. Conserv., 244, 108520, https://doi.org/10.1016/j.biocon.2020.108520, 2020. a
Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., Österblom, H., Carpenter, S. R., Chapin, F. S., Seto, K. C., Weber, E. U., Crona, B. I., Daily, G. C., Dasgupta, P., Gaffney, O., Gordon, L. J., Hoff, H., Levin, S. A., Lubchenco, J., Steffen, W., and Walker, B. H.: Our future in the Anthropocene biosphere, Ambio, 50, 834–869, https://doi.org/10.1007/s13280-021-01544-8, 2021. a
Forrest, M., Hetzer, J., Billing, M., Bowring, S. P. K., Kosczor, E., Oberhagemann, L., Perkins, O., Warren, D., Arrogante-Funes, F., Thonicke, K., and Hickler, T.: Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model, Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, 2024. a
Forzieri, G., Bianchi, A., Silva, F. B. e., Marin Herrera, M. A., Leblois, A., Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating impacts of climate extremes on critical infrastructures in Europe, Glob. Environ. Change, 48, 97–107, https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018. a
Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., Piao, S., Sitch, S., Goll, D. S., Arora, V. K., Lienert, S., Lombardozzi, D., Kato, E., Nabel, J. E. M. S., Tian, H., Friedlingstein, P., and Cescatti, A.: Increased control of vegetation on global terrestrial energy fluxes, Nat. Clim. Change, 10, 356–362, https://doi.org/10.1038/s41558-020-0717-0, 2020. a
Fox, N., Tilt, J. H., Ruggiero, P., Stanton, K., and Bolte, J.: Toward equitable coastal community resilience: Incorporating principles of equity and justice in coastal hazard adaptation, Cambridge Prisms, Coast. Future., 1, e36, https://doi.org/10.1017/cft.2023.24, 2023. a
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, O., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023. a, b, c, d
Fu, R.: Global warming-accelerated drying in the tropics, P. Natl. Acad. Sci. USA, 112, 3593–3594, https://doi.org/10.1073/pnas.1503231112, 2015. a
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, P. Natl. Acad. Sci. USA, 110, 18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013. a
Fuhrman, J., Bergero, C., Weber, M., Monteith, S., Wang, F. M., Clarens, A. F., Doney, S. C., Shobe, W., and McJeon, H.: Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system, Nat. Clim. Change, 13, 341–350, https://doi.org/10.1038/s41558-023-01604-9, 2023. a
Garibaldi, L. A., Steffan-Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, S. A., Carvalheiro, L. G., Chacoff, N. P., Dudenhöffer, J. H., Greenleaf, S. S., Holzschuh, A., Isaacs, R., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L. A., Potts, S. G., Ricketts, T. H., Szentgyörgyi, H., Viana, B. F., Westphal, C., Winfree, R., and Klein, A. M.: Stability of pollination services decreases with isolation from natural areas despite honey bee visits, Ecol. Lett., 14, 1062–1072, https://doi.org/10.1111/j.1461-0248.2011.01669.x, 2011. a
Garibaldi, L. A., Oddi, F. J., Miguez, F. E., Bartomeus, I., Orr, M. C., Jobbágy, E. G., Kremen, C., Schulte, L. A., Hughes, A. C., Bagnato, C., Abramson, G., Bridgewater, P., Carella, D. G., Díaz, S., Dicks, L. V., Ellis, E. C., Goldenberg, M., Huaylla, C. A., Kuperman, M., Locke, H., Mehrabi, Z., Santibañez, F., and Zhu, C.-D.: Working landscapes need at least 20 % native habitat, Conserv. Lett., 14, e12773, https://doi.org/10.1111/conl.12773, 2021. a
Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, A., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., and Leiper, I.: A spatial overview of the global importance of Indigenous lands for conservation, Nature Sustainability, 1, 369–374, https://doi.org/10.1038/s41893-018-0100-6, 2018. a
Garrison, J. L., Vega, M. A., Shah, R., Mansell, J. R., Nold, B., Raymond, J., Banting, R., Bindlish, R., Larsen, K., Kim, S., Li, W., Kurum, M., Piepmeier, J., Khalifi, H., Tanner, F. A., Horgan, K., Kielbasa, C. E., and Babu, S. R.: SNOOPI: Demonstrating Earth remote sensing using P-band signals of opportunity (SoOp) on a CubeSat, Adv. Space Res., 73, 2855–2879, https://doi.org/10.1016/j.asr.2023.10.050, 2024. a
Gasser, T., Ciais, P., and Lewis, S. L.: How the Glasgow Declaration on Forests can help keep alive the 1.5 °C target, P. Natl. Acad. Sci. USA, 119, e2200519119, https://doi.org/10.1073/pnas.2200519119, 2022. a
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., and Hultink, E. J.: The Circular Economy – A new sustainability paradigm?, J. Clean.r Prod., 143, 757–768, https://doi.org/10.1016/j.jclepro.2016.12.048, 2017. a, b
Gielen, M.-C., Johannes, X., Kashe, N., Khumo, G., Zoronxhogo, Z., and Schtickzelle, N.: Monitoring wildlife abundance through track surveys: A capture-mark-recapture inspired approach to assess track detection by certified trackers in the Kalahari, Botswana, Glob. Ecol. Conserv., 51, e02924, https://doi.org/10.1016/j.gecco.2024.e02924, 2024. a
Gokkon, B.: “Decolonizing conservation”: Q&A with PNG marine activist John Aini, https://news.mongabay.com/2018/07/decolonizing-conservation-qa-with-png-marine-activist-john-aini/ (last access: 31 July 2024), 2018. a
Goodness, J., Andersson, E., Anderson, P. M., and Elmqvist, T.: Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management, Ecol. Indic., 70, 597–605, https://doi.org/10.1016/j.ecolind.2016.02.031, 2016. a
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., and Noble, I.: Sustainable development goals for people and planet, Nature, 495, 305–307, https://doi.org/10.1038/495305a, 2013. a
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017. a
Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., Lomax, G., Turner, W. R., Chapman, M., Engelmann, J., Gurwick, N. P., Landis, E., Lawrence, D., Malhi, Y., Schindler Murray, L., Navarrete, D., Roe, S., Scull, S., Smith, P., Streck, C., Walker, W. S., and Worthington, T.: National mitigation potential from natural climate solutions in the tropics, Philos. T. R. Soc. B, 375, 20190126, https://doi.org/10.1098/rstb.2019.0126, 2020. a
Groom, B. and Venmans, F.: The social value of offsets, Nature, 619, 768–773, https://doi.org/10.1038/s41586-023-06153-x, 2023. a
Guinet, M., Nicolardot, B., and Voisin, A.-S.: Nitrogen benefits of ten legume pre-crops for wheat assessed by field measurements and modelling, Eur. J. Agron., 120, 126151, https://doi.org/10.1016/j.eja.2020.126151, 2020. a
Haas, O., Prentice, I. C., and Harrison, S. P.: Global environmental controls on wildfire burnt area, size, and intensity, Environ. Res. Lett., 17, 065004, https://doi.org/10.1088/1748-9326/ac6a69, 2022. a
Hagger, V., Worthington, T. A., Lovelock, C. E., Adame, M. F., Amano, T., Brown, B. M., Friess, D. A., Landis, E., Mumby, P. J., Morrison, T. H., O’Brien, K. R., Wilson, K. A., Zganjar, C., and Saunders, M. I.: Drivers of global mangrove loss and gain in social-ecological systems, Nat. Commun., 13, 6373, https://doi.org/10.1038/s41467-022-33962-x, 2022. a
Hahn, T., Sioen, G. B., Gasparatos, A., Elmqvist, T., Brondizio, E., Gómez-Baggethun, E., Folke, C., Setiawati, M. D., Atmaja, T., Arini, E. Y., Jarzebski, M. P., Fukushi, K., and Takeuchi, K.: Insurance value of biodiversity in the Anthropocene is the full resilience value, Ecol. Econ., 208, 107799, https://doi.org/10.1016/j.ecolecon.2023.107799, 2023. a, b
Hammoud, R., Tognin, S., Smythe, M., Gibbons, J., Davidson, N., Bakolis, I., and Mechelli, A.: Smartphone-based ecological momentary assessment reveals an incremental association between natural diversity and mental wellbeing, Sci. Rep., 14, 7051, https://doi.org/10.1038/s41598-024-55940-7, 2024. a
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020. a
Harrison, M. E., Ottay, J. B., D’Arcy, L. J., Cheyne, S. M., Anggodo, Belcher, C., Cole, L., Dohong, A., Ermiasi, Y., Feldpausch, T., Gallego-Sala, A., Gunawan, A., Höing, A., Husson, S. J., Kulu, I. P., Soebagio, S. M., Mang, S., Mercado, L., Morrogh-Bernard, H. C., Page, S. E., Priyanto, R., Ripoll Capilla, B., Rowland, L., Santos, E. M., Schreer, V., Sudyana, I. N., Taman, S. B. B., Thornton, S. A., Upton, C., Wich, S. A., and van Veen, F. J. F.: Tropical forest and peatland conservation in Indonesia: Challenges and directions, People Nat., 2, 4–28, https://doi.org/10.1002/pan3.10060., 2020. a
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., and Allen, C. D.: Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide, Annu. Rev. Plant Biol., 73, 673–702, 2022. a
Hasler, N., Williams, C. A., Denney, V. C., Ellis, P. W., Shrestha, S., Terasaki Hart, D. E., Wolff, N. H., Yeo, S., Crowther, T. W., Werden, L. K., and Cook-Patton, S. C.: Accounting for albedo change to identify climate-positive tree cover restoration, Nat. Commun., 15, 2275, https://doi.org/10.1038/s41467-024-46577-1, 2024. a
Haya, B. K., Evans, S., Brown, L., Bukoski, J., Butsic, V., Cabiyo, B., Jacobson, R., Kerr, A., Potts, M., and Sanchez, D. L.: Comprehensive review of carbon quantification by improved forest management offset protocols, Front. Forest. Glob. Change, 6, 958879, https://doi.org/10.3389/ffgc.2023.958879, 2023. a, b, c
He, T., Lamont, B. B., and Pausas, J. G.: Fire as a key driver of Earth's biodiversity, Biol. Rev., 94, 1983–2010, https://doi.org/10.1111/brv.12544, 2019. a
Hessilt, T. D., Rogers, B. M., Scholten, R. C., Potter, S., Janssen, T. A. J., and Veraverbeke, S.: Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America, Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, 2024. a
Hetzer, J., Forrest, M., Ribalaygua, J., Prado-López, C., and Hickler, T.: The fire weather in Europe: large-scale trends towards higher danger, Environ. Res. Lett., 19, 084017, https://doi.org/10.1088/1748-9326/ad5b09, 2024. a
Hickel, J.: Less is More: How Degrowth Will Save the World, Random House, ISBN 978-1-4735-8173-9, 2020. a
Hill, M. K.: Understanding environmental pollution, Cambridge University Press, ISBN-13: 978-1108436106, 2020. a
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., and Dove, S.: Coral Reef Ecosystems under Climate Change and Ocean Acidification, Front. Mar. Sci., 4, 158, https://doi.org/10.3389/fmars.2017.00158, 2017. a
Hoek van Dijke, A. J., Herold, M., Mallick, K., Benedict, I., Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J. J., Bastin, J.-F., and Teuling, A. J.: Shifts in regional water availability due to global tree restoration, Nat. Geosci., 15, 363–368, https://doi.org/10.1038/s41561-022-00935-0, 2022. a
Hoel, M. and Sterner, T.: Discounting and relative prices, Climatic Change, 84, 265–280, https://doi.org/10.1007/s10584-007-9255-2, 2007. a
Hutton, J., Adams, W. M., and Murombedzi, J. C.: Back to the Barriers? Changing Narratives in Biodiversity Conservation, Forum Dev. Stud., 32, 341–370, https://doi.org/10.1080/08039410.2005.9666319, 2005. a
Hyolmo, S. L.: Early results suggest communities stop logging during basic income pilot project, https://news.mongabay.com/2025/01/ (last access: 24 February 2025), 2025. a
Iglesias, V., Balch, J. K., and Travis, W. R.: U.S. fires became larger, more frequent, and more widespread in the 2000s, Sci. Adv., 8, eabc0020, https://doi.org/10.1126/sciadv.abc0020, 2022. a, b
Ikram, M., Sroufe, R., Awan, U., and Abid, N.: Enabling Progress in Developing Economies: A Novel Hybrid Decision-Making Model for Green Technology Planning, Sustainability, 14, 258, https://doi.org/10.3390/su14010258, 2022. a
IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, edited by: Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Guèze, M., Agard, J., Arneth, A., Balvanera,P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Roy Chowdhury, R., Shin, Y. J., Visseren-Hamakers, I. J., Willis, K. J., and Zayas, C. N., IPBES secretariat, Bonn, Germany, 56 pp., Zenodo, https://doi.org/10.5281/zenodo.3553579, 2019b. a
IPBES: The Nature Futures Framework, a flexible tool to support the development of scenarios and models of desirable futures for people, nature and Mother Earth, and its methodological guidance, Tech. rep., IPBES secretariat, Zenodo, https://zenodo.org/records/8171339 (last access: 1 August 2024), 2023. a, b
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012. a
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.: Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019. a
IPCC: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021. a, b
IPCC: Climate Change 2022 – Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157926, 2022a. a, b
IPCC: Summary for Policymakers, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 3–34, Cambridge University Press, https://doi.org/10.1017/9781009325844.001, 2022b. a
IPCC: Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009325844, 2023. a, b, c, d
Isaacs, M.: Is the Blue Justice concept a human rights agenda?, PLAAS Policy Brief, Bellville: Institute for Poverty, Land and Agrarian Studies, http://hdl.handle.net/10566/5087 (last access: 19 May 2024) 2019. a
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T., and Flannigan, M. D.: Observed increases in extreme fire weather driven by atmospheric humidity and temperature, Nat. Clim. Change, 12, 63–70, https://doi.org/10.1038/s41558-021-01224-1, 2022. a
Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., and Purvis, A.: The direct drivers of recent global anthropogenic biodiversity loss, Sci. Adv., 8, eabm9982, https://doi.org/10.1126/sciadv.abm9982, 2022. a, b
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Schrier, G. v. d.: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Sci. Reports, 6, 33130, https://doi.org/10.1038/srep33130, 2016. a
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and Regional Trends and Drivers of Fire Under Climate Change, Rev. Geophys., 60, 1–76, https://doi.org/10.1029/2020RG000726, 2022. a, b, c, d, e
Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024. a, b, c, d, e, f, g
Jones, S. C. and Pippin, J. S.: Towards principles and policy levers for advancing living shorelines, J. Environ. Manag., 311, 114695, https://doi.org/10.1016/j.jenvman.2022.114695, 2022. a
Jones, S. K., Sánchez, A. C., Beillouin, D., Juventia, S. D., Mosnier, A., Remans, R., and Estrada Carmona, N.: Achieving win-win outcomes for biodiversity and yield through diversified farming, Basic Appl. Ecol., 67, 14–31, https://doi.org/10.1016/j.baae.2022.12.005, 2023. a
Junkermann, W., Hacker, J., Lyons, T., and Nair, U.: Land use change suppresses precipitation, Atmos. Chem. Phys., 9, 6531–6539, https://doi.org/10.5194/acp-9-6531-2009, 2009. a
Jurkus, E., Povilanskas, R., Razinkovas-Baziukas, A., and Taminskas, J.: Current Trends and Issues in Applications of Remote Sensing in Coastal and Marine Conservation, Earth, 3, 433–447, https://doi.org/10.3390/earth3010026, 2022. a
Kareiva, P., Lalasz, R., and Marvier, M.: Conservation in the Anthropocene: beyond solitude and fragility, Breakthrough J., 2, 29–37, 2011. a
Kim, H., Peterson, G. D., Cheung, W. W. L., Ferrier, S., Alkemade, R., Arneth, A., Kuiper, J. J., Okayasu, S., Pereira, L., Acosta, L. A., Chaplin-Kramer, R., den Belder, E., Eddy, T. D., Johnson, J. A., Karlsson-Vinkhuyzen, S., Kok, M. T. J., Leadley, P., Leclère, D., Lundquist, C. J., Rondinini, C., Scholes, R. J., Schoolenberg, M. A., Shin, Y.-J., Stehfest, E., Stephenson, F., Visconti, P., van Vuuren, D., Wabnitz, C. C. C., José Alava, J., Cuadros-Casanova, I., Davies, K. K., Gasalla, M. A., Halouani, G., Harfoot, M., Hashimoto, S., Hickler, T., Hirsch, T., Kolomytsev, G., Miller, B. W., Ohashi, H., Gabriela Palomo, M., Popp, A., Paco Remme, R., Saito, O., Rashid Sumalia, U., Willcock, S., and Pereira, H. M.: Towards a better future for biodiversity and people: Modelling Nature Futures, Glob. Environ. Change, 82, 102681, https://doi.org/10.1016/j.gloenvcha.2023.102681, 2023. a, b
Knapp, M., Teder, T., Lukas, V., Štrobl, M., Knappová, J., Landis, D. A., and González, E.: Ecologically-Informed Precision Conservation: A framework for increasing biodiversity in intensively managed agricultural landscapes with minimal sacrifice in crop production, Biol. Conserv., 288, 110343, https://doi.org/10.1016/j.biocon.2023.110343, 2023. a
Koch, A. and Kaplan, J. O.: Tropical forest restoration under future climate change, Nat. Clim. Change, 12, 279–283, https://doi.org/10.1038/s41558-022-01289-6, 2022. a
Koh, N. S., Ituarte-Lima, C., and Hahn, T.: Mind the Compliance Gap: How Insights from International Human Rights Mechanisms Can Help to Implement the Convention on Biological Diversity, Trans. Environ. Law, 11, 39–67, https://doi.org/10.1017/S2047102521000169, 2022. a
Konijnendijk, C. C.: Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule, J. Forestry Res., 34, 821–830, https://doi.org/10.1007/s11676-022-01523-z, 2023. a
Korhonen, J., Nuur, C., Feldmann, A., and Birkie, S. E.: Circular economy as an essentially contested concept, J. Clean. Prod., 175, 544–552, https://doi.org/10.1016/j.jclepro.2017.12.111, 2018. a
Kreider, M. R., Higuera, P. E., Parks, S. A., Rice, W. L., White, N., and Larson, A. J.: Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation, Nat. Commun., 15, 2412, https://doi.org/10.1038/s41467-024-46702-0, 2024. a
Krishnan, R. and Gopan, G.: A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations, Clean. Eng. Technol., 20, 100749, https://doi.org/10.1016/j.clet.2024.100749, 2024. a
Köhler, J., Geels, F. W., Kern, F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., Fünfschilling, L., Hess, D., Holtz, G., Hyysalo, S., Jenkins, K., Kivimaa, P., Martiskainen, M., McMeekin, A., Mühlemeier, M. S., Nykvist, B., Pel, B., Raven, R., Rohracher, H., Sandén, B., Schot, J., Sovacool, B., Turnheim, B., Welch, D., and Wells, P.: An agenda for sustainability transitions research: State of the art and future directions, Environ. Innov. Soc. Trans., 31, 1–32, https://doi.org/10.1016/j.eist.2019.01.004, 2019. a
Lal, P., Singh, G., Das, N. N., Entekhabi, D., Lohman, R., Colliander, A., Pandey, D. K., and Setia, R. K.: A multi-scale algorithm for the NISAR mission high-resolution soil moisture product, Remote Sens. Environ., 295, 113667, https://doi.org/10.1016/j.rse.2023.113667, 2023. a
Lalonde, M., Drenkhan, F., Rau, P., Baiker, J. R., and Buytaert, W.: Scientific evidence of the hydrological impacts of nature-based solutions at the catchment scale, WIREs Water, 11, e1744, https://doi.org/10.1002/wat2.1744, 2024. a
Lanjouw, A.: De-colonizing conservation in a global world, Am. J. Primatol., 83, e23258, https://doi.org/10.1002/ajp.23258, 2021. a
Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer, E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J., Silva-Junior, C. H. L., Alencar, A. A. C., Anderson, L. O., Armenteras, D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M. H., Faria, B. L., Fearnside, P. M., Ferreira, J., Gatti, L., Gutierrez-Velez, V. H., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pongratz, J., Portela, B. T. T., Rounsevell, M., Ruane, A. C., Schaldach, R., da Silva, S. S., von Randow, C., and Walker, W. S.: The drivers and impacts of Amazon forest degradation, Science, 379, eabp8622, https://doi.org/10.1126/science.abp8622, 2023. a
Latawiec, A. E., Strassburg, B. B. N., Silva, D., Alves-Pinto, H. N., Feltran-Barbieri, R., Castro, A., Iribarrem, A., Rangel, M. C., Kalif, K. A. B., Gardner, T., and Beduschi, F.: Improving land management in Brazil: A perspective from producers, Agr. Ecosys. Environ., 240, 276–286, https://doi.org/10.1016/j.agee.2017.01.043, 2017. a
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on climate and agriculture, Nat. Clim. Change, 5, 27–36, https://doi.org/10.1038/nclimate2430, 2015. a
Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, 2013. a
Leach, M., Reyers, B., Bai, X., Brondizio, E. S., Cook, C., Díaz, S., Espindola, G., Scobie, M., Stafford-Smith, M., and Subramanian, S. M.: Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures, Glob. Sustain., 1, e13, https://doi.org/10.1017/sus.2018.12, 2018. a, b
Lechner, A. M., Stein, A., Jones, S. D., and Ferwerda, J. G.: Remote sensing of small and linear features: Quantifying the effects of patch size and length, grid position and detectability on land cover mapping, Remote Sens. Environ., 113, 2194–2204, https://doi.org/10.1016/j.rse.2009.06.002, 2009. a
Leclère, D., Obersteiner, M., Barrett, M., Butchart, S. H. M., Chaudhary, A., De Palma, A., DeClerck, F. A. J., Di Marco, M., Doelman, J. C., Dürauer, M., Freeman, R., Harfoot, M., Hasegawa, T., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Humpenöder, F., Jennings, N., Krisztin, T., Mace, G. M., Ohashi, H., Popp, A., Purvis, A., Schipper, A. M., Tabeau, A., Valin, H., van Meijl, H., van Zeist, W.-J., Visconti, P., Alkemade, R., Almond, R., Bunting, G., Burgess, N. D., Cornell, S. E., Di Fulvio, F., Ferrier, S., Fritz, S., Fujimori, S., Grooten, M., Harwood, T., Havlík, P., Herrero, M., Hoskins, A. J., Jung, M., Kram, T., Lotze-Campen, H., Matsui, T., Meyer, C., Nel, D., Newbold, T., Schmidt-Traub, G., Stehfest, E., Strassburg, B. B. N., van Vuuren, D. P., Ware, C., Watson, J. E. M., Wu, W., and Young, L.: Bending the curve of terrestrial biodiversity needs an integrated strategy, Nature, 585, 551–556, https://doi.org/10.1038/s41586-020-2705-y, 2020. a
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barret, K., Blanco, G., Cheung, W. W. L., Connors, S. L., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F. E. L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D. C., Roy, J., Ruane, A. C., Skea, J., Shukla, P. R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A. A., Tignor, M., van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F. X., Pachauri, S., Simpson, N. P., Singh, C., Thomas, A., Totin, E., Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J. J., Pichs-Madruga, R., Rose, S. K., Saheb, Y., Sánchez Rodríguez, R., Ürge Vorsatz, D., Xiao, C., Yassaa, N., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., van der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., Romero, J., Kim, J., Haites, E. F., Jung, Y., Stavins, R., Birt, A., Ha, M., Orendain, D. J. A., Ignon, L., Park, S., and Park, Y.: IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland., Tech. rep., IPCC, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023. a
Leeuwen, S. v., Legge, S., and Rumpff, L.: Australia's Megafires: Biodiversity Impacts and Lessons from 2019–2020, Csiro Publishing, ISBN 978-1-4863-1665-6, 2023. a
Legge, S., Rumpff, L., Garnett, S. T., and Woinarski, J. C.: Loss of terrestrial biodiversity in Australia: Magnitude, causation, and response, Science, 381, 622–631, https://doi.org/10.1126/science.adg7870, 2023. a
Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., and Börner, J.: Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon, Nat. Commun., 12, 2591, https://doi.org/10.1038/s41467-021-22840-7, 2021. a
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., and Schellnhuber, H. J.: Climate tipping points – too risky to bet against, Nature, 575, 592–595, https://doi.org/10.1038/d41586-019-03595-0, 2019. a
Levasseur, A., Lesage, P., Margni, M., Brandão, M., and Samson, R.: Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches, Climatic Change, 115, 759–776, https://doi.org/10.1007/s10584-012-0473-x, 2012. a
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M., and Nepstad, D.: The 2010 amazon drought, Science, 331, 554–554, https://doi.org/10.1126/science.1200807, 2011. a
Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread increasing vegetation sensitivity to soil moisture, Nat. Commun., 13, 3959, https://doi.org/10.1038/s41467-022-31667-9, 2022. a
Lichtenberg, E. M., Kennedy, C. M., Kremen, C., Batáry, P., Berendse, F., Bommarco, R., Bosque-Pérez, N. A., Carvalheiro, L. G., Snyder, W. E., Williams, N. M., Winfree, R., Klatt, B. K., Åström, S., Benjamin, F., Brittain, C., Chaplin-Kramer, R., Clough, Y., Danforth, B., Diekötter, T., Eigenbrode, S. D., Ekroos, J., Elle, E., Freitas, B. M., Fukuda, Y., Gaines-Day, H. R., Grab, H., Gratton, C., Holzschuh, A., Isaacs, R., Isaia, M., Jha, S., Jonason, D., Jones, V. P., Klein, A.-M., Krauss, J., Letourneau, D. K., Macfadyen, S., Mallinger, R. E., Martin, E. A., Martinez, E., Memmott, J., Morandin, L., Neame, L., Otieno, M., Park, M. G., Pfiffner, L., Pocock, M. J. O., Ponce, C., Potts, S. G., Poveda, K., Ramos, M., Rosenheim, J. A., Rundlöf, M., Sardiñas, H., Saunders, M. E., Schon, N. L., Sciligo, A. R., Sidhu, C. S., Steffan-Dewenter, I., Tscharntke, T., Veselý, M., Weisser, W. W., Wilson, J. K., and Crowder, D. W.: A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes, Glob. Change Biol., 23, 4946–4957, https://doi.org/10.1111/gcb.13714, 2017. a
Litvinenko, V., Bowbrik, I., Naumov, I., and Zaitseva, Z.: Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals, J. Clean. Prod., 338, 130530, https://doi.org/10.1016/j.jclepro.2022.130530, 2022. a
Liu, J., Dou, Y., Batistella, M., Challies, E., Connor, T., Friis, C., Millington, J. D., Parish, E., Romulo, C. L., Silva, R. F. B., Triezenberg, H., Yang, H., Zhao, Z., Zimmerer, K. S., Huettmann, F., Treglia, M. L., Basher, Z., Chung, M. G., Herzberger, A., Lenschow, A., Mechiche-Alami, A., Newig, J., Roche, J., and Sun, J.: Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability, Curr. Opin. Env. Sust., 33, 58–69, https://doi.org/10.1016/j.cosust.2018.04.009, 2018a. a
Liu, X., Trogisch, S., He, J.-S., Niklaus, P. A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K. A., Yang, B., Kühn, P., Scholten, T., Huang, Y., Wang, C., Staab, M., Leppert, K. N., Wirth, C., Schmid, B., and Ma, K.: Tree species richness increases ecosystem carbon storage in subtropical forests, Proc. Roy. Soc. B, 285, 20181240, https://doi.org/10.1098/rspb.2018.1240, 2018b. a
Lovejoy, T. E. and Nobre, C.: Amazon Tipping Point, Sci. Adv., 4, eaat2340, https://doi.org/10.1126/sciadv.aat2340, 2018. a
Luke, S. H., Slade, E. M., Gray, C. L., Annammala, K. V., Drewer, J., Williamson, J., Agama, A. L., Ationg, M., Mitchell, S. L., Vairappan, C. S., and Struebig, M. J.: Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy, J. Appl. Ecol., 56, 85–92, https://doi.org/10.1111/1365-2664.13280, 2019. a
Luo, H., Quaas, J., and Han, Y.: Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation, Nat. Commun., 15, 7345, https://doi.org/10.1038/s41467-024-51783-y, 2024. a
Löfqvist, S., Kleinschroth, F., Bey, A., de Bremond, A., DeFries, R., Dong, J., Fleischman, F., Lele, S., Martin, D. A., Messerli, P., Meyfroidt, P., Pfeifer, M., Rakotonarivo, S. O., Ramankutty, N., Ramprasad, V., Rana, P., Rhemtulla, J. M., Ryan, C. M., Vieira, I. C. G., Wells, G. J., and Garrett, R. D.: How Social Considerations Improve the Equity and Effectiveness of Ecosystem Restoration, BioScience, 73, 134–148, https://doi.org/10.1093/biosci/biac099, 2023. a
Lüdeke-Freund, F., Gold, S., and Bocken, N. M. P.: A Review and Typology of Circular Economy Business Model Patterns, J. Ind. Ecol., 23, 36–61, https://doi.org/10.1111/jiec.12763, 2019. a
Mabele, M. B., Krauss, J. E., and Kiwango, W.: Going Back to the Roots: Ubuntu: and Just Conservation in Southern Africa, Conserv. Soc., 20, 92–102, https://doi.org/10.4103/cs.cs_33_21, 2022. a
MacCarthy, J., Tyukavina, A., Weisse, M. J., Harris, N., and Glen, E.: Extreme wildfires in Canada and their contribution to global loss in tree cover and carbon emissions in 2023, Glob. Change Biol., 30, e17392, https://doi.org/10.1111/gcb.17392, 2024. a, b
Magerl, A., Gingrich, S., Matej, S., Cunfer, G., Forrest, M., Lauk, C., Schlaffer, S., Weidinger, F., Yuskiw, C., and Erb, K.-H.: The Role of Wildfires in the Interplay of Forest Carbon Stocks and Wood Harvest in the Contiguous United States During the 20th Century, Global Biogeochem. Cy., 37, e2023GB007813, https://doi.org/10.1029/2023GB007813, 2023. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hartmann, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Quaas, J., Tegen, I., Weigelt, A., Wendisch, M., and Wirth, C.: Biodiversity loss and climate extremes – study the feedbacks, Nature, 612, 30–32, https://doi.org/10.1038/d41586-022-04152-y, 2022. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Sippel, S., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Al-Halbouni, D., Deneke, H., Doktor, D., Dunker, S., Duveiller, G., Ehrlich, A., Foth, A., García-García, A., Guerra, C. A., Guimarães-Steinicke, C., Hartmann, H., Henning, S., Herrmann, H., Hu, P., Ji, C., Kattenborn, T., Kolleck, N., Kretschmer, M., Kühn, I., Luttkus, M. L., Maahn, M., Mönks, M., Mora, K., Pöhlker, M., Reichstein, M., Rüger, N., Sánchez-Parra, B., Schäfer, M., Stratmann, F., Tesche, M., Wehner, B., Wieneke, S., Winkler, A. J., Wolf, S., Zaehle, S., Zscheischler, J., and Quaas, J.: Biodiversity and Climate Extremes: Known Interactions and Research Gaps, Earth's Future, 12, e2023EF003963, https://doi.org/10.1029/2023EF003963, 2024. a
Makarieva, A. M. and Gorshkov, V. G.: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land, Hydrol. Earth Syst. Sci., 11, 1013–1033, https://doi.org/10.5194/hess-11-1013-2007, 2007. a
Mancini, L., Eslava, N. A., Traverso, M., and Mathieux, F.: Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study, Resour. Policy, 71, 102015, https://doi.org/10.1016/j.resourpol.2021.102015, 2021. a
Manning, P.: A global target for semi-natural land cover within human dominated landscapes?, One Earth, 7, 180–181, https://doi.org/10.1016/j.oneear.2024.01.007, 2024. a
Marja, R., Tscharntke, T., and Batáry, P.: Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis, Agr. Ecosyst. Environ.., 326, 107822, https://doi.org/10.1016/j.agee.2021.107822, 2022. a
Maron, M., Juffe-Bignoli, D., Krueger, L., Kiesecker, J., Kümpel, N. F., ten Kate, K., Milner-Gulland, E., Arlidge, W. N. S., Booth, H., Bull, J. W., Starkey, M., Ekstrom, J. M., Strassburg, B., Verburg, P. H., and Watson, J. E. M.: Setting robust biodiversity goals, Conserv. Lett., 14, e12816, https://doi.org/10.1111/conl.12816, 2021. a
Marquez, V., Carbone, L. M., Jiménez-Escobar, N. D., Britos, A. H., Aguilar, R., and Zamudio, F.: Local ecological knowledge of forage plants for goat farming and perceptions about pollination of tree species in the arid Chaco, J. Arid Environ., 222, 105167, https://doi.org/10.1016/j.jaridenv.2024.105167, 2024. a
Marris, E.: Rambunctious garden: saving nature in a post-wild world, Bloomsbury Publishing USA, ISBN-13: 978-1608194544, 2013. a
Martin, A., Armijos, M. T., Coolsaet, B., Dawson, N., A. S. Edwards, G., Few, R., Gross-Camp, N., Rodriguez, I., Schroeder, H., G. L. Tebboth, M., and White, C. S.: Environmental Justice and Transformations to Sustainability, Environment, 62, 19–30, https://doi.org/10.1080/00139157.2020.1820294, 2020. a
Martin, A., Gomez-Baggethun, E., Quaas, M., Rozzi, R., Tauro, A., Faith, D. P., Kumar, R., O’Farrell, P., and Pascual, U.: Plural values of nature help to understand contested pathways to sustainability, One Earth, 7, 806–819, https://doi.org/10.1016/j.oneear.2024.04.003, 2024. a
Martin, E. A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M. P. D., Holzschuh, A., Kleijn, D., Kovács-Hostyánszki, A., Marini, L., Potts, S. G., Smith, H. G., Al Hassan, D., Albrecht, M., Andersson, G. K. S., Asís, J. D., Aviron, S., Balzan, M. V., Baños-Picón, L., Bartomeus, I., Batáry, P., Burel, F., Caballero-López, B., Concepción, E. D., Coudrain, V., Dänhardt, J., Diaz, M., Diekötter, T., Dormann, C. F., Duflot, R., Entling, M. H., Farwig, N., Fischer, C., Frank, T., Garibaldi, L. A., Hermann, J., Herzog, F., Inclán, D., Jacot, K., Jauker, F., Jeanneret, P., Kaiser, M., Krauss, J., Le Féon, V., Marshall, J., Moonen, A.-C., Moreno, G., Riedinger, V., Rundlöf, M., Rusch, A., Scheper, J., Schneider, G., Schüepp, C., Stutz, S., Sutter, L., Tamburini, G., Thies, C., Tormos, J., Tscharntke, T., Tschumi, M., Uzman, D., Wagner, C., Zubair-Anjum, M., and Steffan-Dewenter, I.: The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe, Ecol. Lett., 22, 1083–1094, https://doi.org/10.1111/ele.13265, 2019. a
Martin, L. J., Blossey, B., and Ellis, E.: Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations, Front. Ecol. Environ., 10, 195–201, https://doi.org/10.1890/110154, 2012. a
Martin, M. A., Boakye, E. A., Boyd, E., Broadgate, W., Bustamante, M., Canadell, J. G., Carr, E. R., Chu, E. K., Cleugh, H., Csevár, S., Daoudy, M., de Bremond, A., Dhimal, M., Ebi, K. L., Edwards, C., Fuss, S., Girardin, M. P., Glavovic, B., Hebden, S., Hirota, M., Hsu, H.-H., Huq, S., Ingold, K., Johannessen, O. M., Kameyama, Y., Kumarasinghe, N., Langendijk, G. S., Lissner, T., Lwasa, S., Machalaba, C., Maltais, A., Mathai, M. V., Mbow, C., McNamara, K. E., Mukherji, A., Murray, V., Mysiak, J., Okereke, C., Ospina, D., Otto, F., Prakash, A., Pulhin, J. M., Raju, E., Redman, A., Rigaud, K. K., Rockström, J., Roy, J., Schipper, E. L. F., Schlosser, P., Schulz, K. A., Schumacher, K., Schwarz, L., Scown, M., Šedová, B., Siddiqui, T. A., Singh, C., Sioen, G. B., Stammer, D., Steinert, N. J., Suk, S., Sutton, R., Thalheimer, L., van Aalst, M., van der Geest, K., and Zhao, Z. J.: Ten new insights in climate science 2022, Global Sustain., 5, e20, https://doi.org/10.1017/sus.2022.17, 2022. a, b
Maskell, L. C., Radbourne, A., Norton, L. R., Reinsch, S., Alison, J., Bowles, L., Geudens, K., and Robinson, D. A.: Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes, Land, 12, 2078, https://doi.org/10.3390/land12112078, 2023. a
Massarella, K., Nygren, A., Fletcher, R., Büscher, B., Kiwango, W. A., Komi, S., Krauss, J. E., Mabele, M. B., McInturff, A., Sandroni, L. T., Alagona, P. S., Brockington, D., Coates, R., Duffy, R., Ferraz, K. M. P. M. B., Koot, S., Marchini, S., and Percequillo, A. R.: Transformation beyond conservation: how critical social science can contribute to a radical new agenda in biodiversity conservation, Curr. Opin. Env. Sust., 49, 79–87, https://doi.org/10.1016/j.cosust.2021.03.005, 2021. a
Massarella, K., Krauss, J., Kiwango, W., and Fletcher, R.: Convivial Conservation: From Principles to Practice, Mayfly Books, ISBN 978-1-906948-65-8, 2023. a
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., and Shukla, P. R.: Global Warming of 1.5 °C: IPCC special report on impacts of global warming of 1.5 °C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, 2022. a
Matias, A., Carrasco, A. R., Pinto, B., and Reis, J.: The role of art in coastal and marine sustainability, Cambridge Prisms, Coastal Futures, 1, e25, https://doi.org/10.1017/cft.2023.13, 2023. a
Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A. J., Mathesius, S., Nzotungicimpaye, C.-M., and Luers, A.: Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00391-z, 2022. a, b
Matthews, H. D., Zickfeld, K., Koch, A., and Luers, A.: Accounting for the climate benefit of temporary carbon storage in nature, Nat. Commun., 14, 5485, https://doi.org/10.1038/s41467-023-41242-5, 2023. a, b, c
McDermott, C. L., Montana, J., Bennett, A., Gueiros, C., Hamilton, R., Hirons, M., Maguire-Rajpaul, V. A., Parry, E., and Picot, L.: Transforming land use governance: Global targets without equity miss the mark, Environ. Policy Gov., 33, 245–257, https://doi.org/10.1002/eet.2027, 2023. a, b
Meijaard, E., Brooks, T. M., Carlson, K. M., Slade, E. M., Garcia-Ulloa, J., Gaveau, D. L. A., Lee, J. S. H., Santika, T., Juffe-Bignoli, D., Struebig, M. J., Wich, S. A., Ancrenaz, M., Koh, L. P., Zamira, N., Abrams, J. F., Prins, H. H. T., Sendashonga, C. N., Murdiyarso, D., Furumo, P. R., Macfarlane, N., Hoffmann, R., Persio, M., Descals, A., Szantoi, Z., and Sheil, D.: The environmental impacts of palm oil in context, Nat. Plant., 6, 1418–1426, https://doi.org/10.1038/s41477-020-00813-w, 2020. a
Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L., and Hackmann, B.: Realization of Paris Agreement pledges may limit warming just below 2 °C, Nature, 604, 304–309, https://doi.org/10.1038/s41586-022-04553-z, 2022. a
Meli, P., Holl, K. D., Benayas, J. M. R., Jones, H. P., Jones, P. C., Montoya, D., and Mateos, D. M.: A global review of past land use, climate, and active vs. passive restoration effects on forest recovery, PLOS ONE, 12, e0171368, https://doi.org/10.1371/journal.pone.0171368, 2017. a, b
Merino, R. and Gustafsson, M.-T.: Localizing the indigenous environmental steward norm: The making of conservation and territorial rights in Peru, Environ. Sci. Policy, 124, 627–634, https://doi.org/10.1016/j.envsci.2021.07.005, 2021. a
M'Gonigle, L. K., Ponisio, L. C., Cutler, K., and Kremen, C.: Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture, Ecol. Appl., 25, 1557–1565, https://doi.org/10.1890/14-1863.1, 2015. a
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019. a
Mohamed, A., DeClerck, F., Verburg, P. H., Obura, D., Abrams, J. F., Zafra-Calvo, N., Rocha, J., Estrada-Carmona, N., Fremier, A., Jones, S. K., Meier, I. C., and Stewart-Koster, B.: Securing Nature’s Contributions to People requires at least 20 %–25 %(semi-) natural habitat in human-modified landscapes, One Earth, 7, 59–71, https://doi.org/10.1016/j.oneear.2023.12.008, 2024. a, b, c, d, e, f
Molnár, Z., Aumeeruddy-Thomas, Y., Babai, D., Díaz, S., Garnett, S. T., Hill, R., Bates, P., Brondízio, E. S., Cariño, J., Demeter, L., Fernández-Llamazares, Á., Guèze, M., McElwee, P., Öllerer, K., Purvis, A., Reyes-García, V., Samakov, A., and Singh, R. K.: Towards richer knowledge partnerships between ecology and ethnoecology, Trend. Ecol. Evol., 39, 109–115, 2024. a
Moranta, J., Torres, C., Murray, I., Hidalgo, M., Hinz, H., and Gouraguine, A.: Transcending capitalism growth strategies for biodiversity conservation, Conserv. Biol., 36, e13821, https://doi.org/10.1111/cobi.13821, 2022. a
Müller, U. K., Stock, J. H., and Watson, M. W.: An econometric model of international growth dynamics for long-horizon forecasting, Rev. Econ. Stat., 104, 857–876, https://doi.org/10.1162/rest_a_00997, 2022. a
Neidermeier, A. N., Zagaria, C., Pampanoni, V., West, T. A. P., and Verburg, P. H.: Mapping opportunities for the use of land management strategies to address fire risk in Europe, J. Environ. Manag., 346, 118941, https://doi.org/10.1016/j.jenvman.2023.118941, 2023. a
Nelson, J. A., Walther, S., Gans, F., Kraft, B., Weber, U., Novick, K., Buchmann, N., Migliavacca, M., Wohlfahrt, G., Šigut, L., Ibrom, A., Papale, D., Göckede, M., Duveiller, G., Knohl, A., Hörtnagl, L., Scott, R. L., Zhang, W., Hamdi, Z. M., Reichstein, M., Aranda-Barranco, S., Ardö, J., Op de Beeck, M., Billdesbach, D., Bowling, D., Bracho, R., Brümmer, C., Camps-Valls, G., Chen, S., Cleverly, J. R., Desai, A., Dong, G., El-Madany, T. S., Euskirchen, E. S., Feigenwinter, I., Galvagno, M., Gerosa, G., Gielen, B., Goded, I., Goslee, S., Gough, C. M., Heinesch, B., Ichii, K., Jackowicz-Korczynski, M. A., Klosterhalfen, A., Knox, S., Kobayashi, H., Kohonen, K.-M., Korkiakoski, M., Mammarella, I., Mana, G., Marzuoli, R., Matamala, R., Metzger, S., Montagnani, L., Nicolini, G., O'Halloran, T., Ourcival, J.-M., Peichl, M., Pendall, E., Ruiz Reverter, B., Roland, M., Sabbatini, S., Sachs, T., Schmidt, M., Schwalm, C. R., Shekhar, A., Silberstein, R., Silveira, M. L., Spano, D., Tagesson, T., Tramontana, G., Trotta, C., Turco, F., Vesala, T., Vincke, C., Vitale, D., Vivoni, E. R., Wang, Y., Woodgate, W., Yepez, E. A., Zhang, J., Zona, D., and Jung, M.: X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-165, 2024. a
Nelson, K., Thompson, D., Hopkinson, C., Petrone, R., and Chasmer, L.: Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands, Sci. Total Environ., 769, 145212, https://doi.org/10.1016/j.scitotenv.2021.145212, 2021. a
Newell, P. and Taylor, O.: Fiddling while the planet burns? COP25 in perspective, in: Economics and Climate Emergency, Routledge, ISBN 978-1-00-317470-7, 2022. a
Nie, M., Liu, W., Pennings, S. C., and Li, B.: Lessons from the invasion of in coastal China, Ecology, 104, e3874, https://doi.org/10.1002/ecy.3874, 2023. a
NOAA: Coastal Blue Carbon, https://oceanservice.noaa.gov/ecosystems/coastal-blue-carbon/# (last access: 10 January 2025), 2024. a
Nodo, P., Childs, A.-R., Pattrick, P., and James, N. C.: The nursery function of shallow nearshore and estuarine benthic habitats for demersal fishes, Estuar. Coast. Shelf Sci., 280, 108168, https://doi.org/10.1016/j.ecss.2022.108168, 2023. a
Nordhaus, W.: Climate change: The ultimate challenge for economics, Am. Econ. Rev., 109, 1991–2014, https://doi.org/10.1257/aer.109.6.1991, 2019. a
Northey, S. A., Mudd, G. M., Werner, T. T., Jowitt, S. M., Haque, N., Yellishetty, M., and Weng, Z.: The exposure of global base metal resources to water criticality, scarcity and climate change, Glob. Environ. Change, 44, 109–124, https://doi.org/10.1016/j.gloenvcha.2017.04.004, 2017. a
O., S. and Orth, R.: Global soil moisture data derived through machine learning trained with in-situ measurements, Sci. Data, 8, 170, https://doi.org/10.1038/s41597-021-00964-1, 2021. a
O'Brien, K. and Barnett, J.: Global Environmental Change and Human Security, Annu. Rev. Environ. Resour., 38, 373–391, https://doi.org/10.1146/annurev-environ-032112-100655, 2013. a
Obura, D. O., DeClerck, F., Verburg, P. H., Gupta, J., Abrams, J. F., Bai, X., Bunn, S., Ebi, K. L., Gifford, L., Gordon, C., Jacobson, L., Lenton, T. M., Liverman, D., Mohamed, A., Prodani, K., Rocha, J. C., Rockström, J., Sakschewski, B., Stewart-Koster, B., van Vuuren, D., Winkelmann, R., and Zimm, C.: Achieving a nature- and people-positive future, One Earth, 6, 105–117, https://doi.org/10.1016/j.oneear.2022.11.013, 2023. a, b, c
Ochieng, A., Koh, N. S., and Koot, S.: Compatible with Conviviality? Exploring African Ecotourism and Sport Hunting for Transformative Conservation, Conserv. Soc., 21, 38–47, https://doi.org/10.4103/cs.cs_42_21, 2023. a
OECD: Towards Sustainable Land Use: Aligning Biodiversity, Climate and Food Policies, Organisation for Economic Co-operation and Development, Paris, https://www.oecd-ilibrary.org/environment/towards-sustainable-land-use_3809b6a1-en (last access: 31 July 2024), 2020. a
Ojeda, J., Salomon, A. K., Rowe, J. K., and Ban, N. C.: Reciprocal contributions between people and nature: a conceptual intervention, BioScience, 72, 952–962, https://doi.org/10.1093/biosci/biac053, 2022. a
Oliveira, M. R., Ferreira, B. H. S., Souza, E. B., Lopes, A. A., Bolzan, F. P., Roque, F. O., Pott, A., Pereira, A. M. M., Garcia, L. C., Damasceno, G. A., Costa, A., Rocha, M., Xavier, S., Ferraz, R. A., and Ribeiro, D. B.: Indigenous brigades change the spatial patterns of wildfires, and the influence of climate on fire regimes, J. Appl. Ecol., 59, 1279–1290, https://doi.org/10.1111/1365-2664.14139, 2022. a
Orlove, B., Sherpa, P., Dawson, N., Adelekan, I., Alangui, W., Carmona, R., Coen, D., Nelson, M. K., Reyes-García, V., Rubis, J., Sanago, G., and Wilson, A.: Placing diverse knowledge systems at the core of transformative climate research, Ambio, 52, 1431–1447, https://doi.org/10.1007/s13280-023-01857-w, 2023. a
Ostrom, E.: A General Framework for Analyzing Sustainability of Social-Ecological Systems, Science, 325, 419–422, https://doi.org/10.1126/science.1172133, 2009. a
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J.-P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, ISBN 978-92-9169-143-2, https://epic.awi.de/id/eprint/37530/ (last access: 31 July 2024), 2014. a
Palinkas, C. M., Orton, P., Hummel, M. A., Nardin, W., Sutton-Grier, A. E., Harris, L., Gray, M., Li, M., Ball, D., Burks-Copes, K., Davlasheridze, M., De Schipper, M., George, D. A., Halsing, D., Maglio, C., Marrone, J., McKay, S. K., Nutters, H., Orff, K., Taal, M., Van Oudenhoven, A. P. E., Veatch, W., and Williams, T.: Innovations in Coastline Management With Natural and Nature-Based Features (NNBF): Lessons Learned From Three Case Studies, Front. Built Environ., 8, 814180, https://doi.org/10.3389/fbuil.2022.814180, 2022. a
Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The enduring world forest carbon sink, Nature, 631, 563–569, 2024. a
Papastefanou, P., Zang, C. S., Angelov, Z., Anderson de Castro, A., Jimenez, J. C., De Rezende, L. F. C., Ruscica, R. C., Sakschewski, B., Sörensson, A. A., Thonicke, K., Vera, C., Viovy, N., Von Randow, C., and Rammig, A.: Recent extreme drought events in the Amazon rainforest: Assessment of different precipitation and evapotranspiration datasets and drought indicators, Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, 2022. a
Parr, C. L., Te Beest, M., and Stevens, N.: Conflation of reforestation with restoration is widespread, Science, 383, 698–701, https://doi.org/10.1126/science.adj089, 2024. a
Pascual, U., Balvanera, P., Anderson, C. B., Chaplin-Kramer, R., Christie, M., González-Jiménez, D., Martin, A., Raymond, C. M., Termansen, M., Vatn, A., Athayde, S., Baptiste, B., Barton, D. N., Jacobs, S., Kelemen, E., Kumar, R., Lazos, E., Mwampamba, T. H., Nakangu, B., O’Farrell, P., Subramanian, S. M., van Noordwijk, M., Ahn, S., Amaruzaman, S., Amin, A. M., Arias-Arévalo, P., Arroyo-Robles, G., Cantú-Fernández, M., Castro, A. J., Contreras, V., De Vos, A., Dendoncker, N., Engel, S., Eser, U., Faith, D. P., Filyushkina, A., Ghazi, H., Gómez-Baggethun, E., Gould, R. K., Guibrunet, L., Gundimeda, H., Hahn, T., Harmáčková, Z. V., Hernández-Blanco, M., Horcea-Milcu, A.-I., Huambachano, M., Wicher, N. L. H., Aydın, C. I., Islar, M., Koessler, A.-K., Kenter, J. O., Kosmus, M., Lee, H., Leimona, B., Lele, S., Lenzi, D., Lliso, B., Mannetti, L. M., Merçon, J., Monroy-Sais, A. S., Mukherjee, N., Muraca, B., Muradian, R., Murali, R., Nelson, S. H., Nemogá-Soto, G. R., Ngouhouo-Poufoun, J., Niamir, A., Nuesiri, E., Nyumba, T. O., Özkaynak, B., Palomo, I., Pandit, R., Pawłowska-Mainville, A., Porter-Bolland, L., Quaas, M., Rode, J., Rozzi, R., Sachdeva, S., Samakov, A., Schaafsma, M., Sitas, N., Ungar, P., Yiu, E., Yoshida, Y., and Zent, E.: Diverse values of nature for sustainability, Nature, 620, 813–823, https://doi.org/10.1038/s41586-023-06406-9, 2023. a, b
Pausas, J. G. and Keeley, J. E.: A burning story: the role of fire in the history of life, BioScience, 59, 593–601, https://doi.org/10.1525/bio.2009.59.7.10, 2009. a
Pendrill, F., Gardner, T. A., Meyfroidt, P., Persson, U. M., Adams, J., Azevedo, T., Bastos Lima, M. G., Baumann, M., Curtis, P. G., De Sy, V., Garrett, R., Godar, J., Goldman, E. D., Hansen, M. C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M. J., Ribeiro, V., Tyukavina, A., Weisse, M. J., and West, C.: Disentangling the numbers behind agriculture-driven tropical deforestation, Science, 377, eabm9267, https://doi.org/10.1126/science.abm9267, 2022. a, b
Pereira, H. M., Rosa, I. M. D., Martins, I. S., Kim, H., Leadley, P., Popp, A., Vuuren, D. P. v., Hurtt, G., Anthoni, P., Arneth, A., Baisero, D., Chaplin-Kramer, R., Chini, L., Fulvio, F. D., Marco, M. D., Ferrier, S., Fujimori, S., Guerra, C. A., Harfoot, M., Harwood, T. D., Hasegawa, T., Haverd, V., Havlík, P., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Hirata, A., Hoskins, A. J., Humpenöder, F., Janse, J. H., Jetz, W., Johnson, J. A., Krause, A., Leclère, D., Matsui, T., Meijer, J. R., Merow, C., Obsersteiner, M., Ohashi, H., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A. M., Settele, J., Sharp, R., Stehfest, E., Strassburg, B. B. N., Takahashi, K., Talluto, M. V., Thuiller, W., Titeux, N., Visconti, P., Ware, C., Wolf, F., and Alkemade, R.: Global trends in biodiversity and ecosystem services from 1900 to 2050, bioRxiv 2020.04.14.031716, 15 pp., https://doi.org/10.1101/2020.04.14.031716, 2020a. a
Pereira, H. M., Martins, I. S., Rosa, I. M. D., Kim, H., Leadley, P., Popp, A., van Vuuren, D. P., Hurtt, G., Quoss, L., Arneth, A., Baisero, D., Bakkenes, M., Chaplin-Kramer, R., Chini, L., Di Marco, M., Ferrier, S., Fujimori, S., Guerra, C. A., Harfoot, M., Harwood, T. D., Hasegawa, T., Haverd, V., Havlík, P., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Hirata, A., Hoskins, A. J., Humpenöder, F., Janse, J. H., Jetz, W., Johnson, J. A., Krause, A., Leclère, D., Matsui, T., Meijer, J. R., Merow, C., Obersteiner, M., Ohashi, H., De Palma, A., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A. M., Settele, J., Sharp, R., Stehfest, E., Strassburg, B. B. N., Takahashi, K., Talluto, M. V., Thuiller, W., Titeux, N., Visconti, P., Ware, C., Wolf, F., and Alkemade, R.: Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050, Science, 384, 458–465, https://doi.org/10.1126/science.adn3441, 2024. a
Pereira, L. M., Davies, K. K., den Belder, E., Ferrier, S., Karlsson-Vinkhuyzen, S., Kim, H., Kuiper, J. J., Okayasu, S., Palomo, M. G., Pereira, H. M., Peterson, G., Sathyapalan, J., Schoolenberg, M., Alkemade, R., Carvalho Ribeiro, S., Greenaway, A., Hauck, J., King, N., Lazarova, T., Ravera, F., Chettri, N., Cheung, W. W. L., Hendriks, R. J. J., Kolomytsev, G., Leadley, P., Metzger, J.-P., Ninan, K. N., Pichs, R., Popp, A., Rondinini, C., Rosa, I., van Vuuren, D., and Lundquist, C. J.: Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework, People Nat., 2, 1172–1195, https://doi.org/10.1002/pan3.10146, 2020b. a
Pereira, L. M., Gianelli, I., Achieng, T., Amon, D., Archibald, S., Arif, S., Castro, A., Chimbadzwa, T. P., Coetzer, K., Field, T.-L., Selomane, O., Sitas, N., Stevens, N., Villasante, S., Armani, M., Kimuyu, D. M., Adewumi, I. J., Lapola, D. M., Obura, D., Pinho, P., Roa-Clavijo, F., Rocha, J., and Sumaila, U. R.: Equity and justice should underpin the discourse on tipping points, Earth Syst. Dynam., 15, 341–366, https://doi.org/10.5194/esd-15-341-2024, 2023. a
Perino, A., Pereira, H. M., Felipe-Lucia, M., Kim, H., Kühl, H. S., Marselle, M. R., Meya, J. N., Meyer, C., Navarro, L. M., van Klink, R., Albert, G., Barratt, C. D., Bruelheide, H., Cao, Y., Chamoin, A., Darbi, M., Dornelas, M., Eisenhauer, N., Essl, F., Farwig, N., Förster, J., Freyhof, J., Geschke, J., Gottschall, F., Guerra, C., Haase, P., Hickler, T., Jacob, U., Kastner, T., Korell, L., Kühn, I., Lehmann, G. U. C., Lenzner, B., Marques, A., Motivans Švara, E., Quintero, L. C., Pacheco, A., Popp, A., Rouet-Leduc, J., Schnabel, F., Siebert, J., Staude, I. R., Trogisch, S., Švara, V., Svenning, J.-C., Pe'er, G., Raab, K., Rakosy, D., Vandewalle, M., Werner, A. S., Wirth, C., Xu, H., Yu, D., Zinngrebe, Y., and Bonn, A.: Biodiversity post-2020: Closing the gap between global targets and national-level implementation, Conserv. Lett., 15, e12848, https://doi.org/10.1111/conl.12848, 2022. a
Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T., and Frumhoff, P. C.: Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management, Sci. Adv., 8, eabl7161, https://doi.org/10.1126/sciadv.abl7161, 2022. a
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A. C. A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. t., Stropp, J., Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., C., E. H., Keeling, H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest, Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009. a
Pickering, J., Coolsaet, B., Dawson, N., Suiseeya, K. M., Inoue, C. Y. A., and Lim, M.: Rethinking and Upholding Justice and Equity in Transformative Biodiversity Governance, in: Transforming Biodiversity Governance, edited by: Visseren-Hamakers, I. J. and Kok, M. T. J., 155–178, Cambridge University Press, Cambridge, ISBN 978-1-108-47974-5, https://ueaeprints.uea.ac.uk/id/eprint/85334 (last access: 1 August 2024), 2022. a
Pollock, L. J., O’connor, L. M., Mokany, K., Rosauer, D. F., Talluto, M. V., and Thuiller, W.: Protecting biodiversity (in all its complexity): new models and methods, Trend. Ecol. Evol., 35, 1119–1128, 2020. a
Poveda, G. and Mesa, O. J.: Feedbacks between Hydrological Processes in Tropical South America and Large-Scale Ocean–Atmospheric Phenomena, J. Clim., 10, 2690–2702, https://doi.org/10.1175/1520-0442(1997)010<2690:FBHPIT>2.0.CO;2, 1997. a
Priyadarshana, T. S., Martin, E. A., Sirami, C., Woodcock, B. A., Goodale, E., Martínez-Núñez, C., Lee, M.-B., Pagani-Núñez, E., Raderschall, C. A., Brotons, L., Rege, A., Ouin, A., Tscharntke, T., and Slade, E. M.: Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: A global review and meta-analysis, Ecol. Lett., 27, e14412, https://doi.org/10.1111/ele.14412, 2024. a
Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., and Richardson, D. M.: Scientists' warning on invasive alien species, Biol. Rev., 95, 1511–1534, https://doi.org/10.1111/brv.12627, 2020. a
Pörtner, H.-O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L. W., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman Elasha, B., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y.-J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A. L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D. C., Rogers, A. D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., and Ngo, H.: Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change, info:eu-repo/semantics/report, IPBES secretariat, Bonn, Zenodo, https://doi.org/10.5281/zenodo.4659158, 2021a. a
Pörtner, H. O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes- García, V., Sankaran, M., Settele, J., Shin, Y. J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A. L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D. C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., and Ngo, H. T.: IPBES-IPCC co-sponsored workshop report on biodiversity and climate change; IPBES and IPCC, Zenodo, https://doi.org/10.5281/zenodo.4782538, 2021b. a, b
Pörtner, H.-O., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T., Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y. J., and Val, A. L.: Overcoming the coupled climate and biodiversity crises and their societal impacts, Science, 380, eabl4881, https://doi.org/10.1126/science.abl4881, 2023. a
Raja, N. B., Dunne, E. M., Matiwane, A., Khan, T. M., Nätscher, P. S., Ghilardi, A. M., and Chattopadhyay, D.: Colonial history and global economics distort our understanding of deep-time biodiversity, Nat. Ecol. Evol., 6, 145–154, https://doi.org/10.1038/s41559-021-01608-8, 2022. a
Rakotomalala, A. A. N. A., Ficiciyan, A. M., and Tscharntke, T.: Intercropping enhances beneficial arthropods and controls pests: A systematic review and meta-analysis, Agr. Ecosyst. Environ., 356, 108617, https://doi.org/10.1016/j.agee.2023.108617, 2023. a, b
Regos, A., Pais, S., Campos, J. C., and Lecina-Diaz, J.: Nature-based solutions to wildfires in rural landscapes of Southern Europe: let’s be fire-smart!, Int. J. Wildland Fire, 32, 942–950, https://doi.org/10.1071/WF22094, 2023. a
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., and Moomaw, W. R.: World Scientists’ Warning of a Climate Emergency, BioScience, 70, 8–100, https://www.jstor.org/stable/26891410 (last access: 31 July 2024), 2020. a
Ripple, W. J., Wolf, C., Gregg, J. W., Rockström, J., Newsome, T. M., Law, B. E., Marques, L., Lenton, T. M., Xu, C., Huq, S., Simons, L., and King, S. D. A.: The 2023 state of the climate report: Entering uncharted territory, BioScience, 73, 841–850, https://doi.org/10.1093/biosci/biad080, 2023. a
Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S., and Coumou, D.: Increasing heat and rainfall extremes now far outside the historical climate, npj Clim. Atmos. Sci., 4, 1–4, https://doi.org/10.1038/s41612-021-00202-w, 2021. a
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science, 355, 1269–1271, https://doi.org/10.1126/science.aah3443, 2017. a, b
Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., Liverman, D. M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B., Tharammal, T., van Vuuren, D., Verburg, P. H., Winkelmann, R., Zimm, C., Bennett, E. M., Bringezu, S., Broadgate, W., Green, P. A., Huang, L., Jacobson, L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and Zhang, X.: Safe and just Earth system boundaries, Nature, 619, 102–111, https://doi.org/10.1038/s41586-023-06083-8, 2023. a, b, c
Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L., and Cescatti, A.: Releasing global forests from human management: How much more carbon could be stored?, Science, 380, 749–753, https://doi.org/10.1126/science.add5878, 2023. a
Rounsevell, M. D., Harfoot, M., Harrison, P. A., Newbold, T., Gregory, R. D., and Mace, G. M.: A biodiversity target based on species extinctions, Science, 368, 1193–1195, https://doi.org/10.1126/science.aba6592, 2020. a
Roy, H. E., Pauchard, A., Stoett, P., and Renard Truong, T.: IPBES Invasive Alien Species Assessment: Full report, Tech. Rep., Zenodo, https://doi.org/10.5281/zenodo.11629357, 2024. a
Saintilan, N., Horton, B., Törnqvist, T. E., Ashe, E. L., Khan, N. S., Schuerch, M., Perry, C., Kopp, R. E., Garner, G. G., Murray, N., Rogers, K., Albert, S., Kelleway, J., Shaw, T. A., Woodroffe, C. D., Lovelock, C. E., Goddard, M. M., Hutley, L. B., Kovalenko, K., Feher, L., and Guntenspergen, G.: Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C, Nature, 621, 112–119, https://doi.org/10.1038/s41586-023-06448-z, 2023. a, b
San-Miguel-Ayanz, J., Moreno, J. M., and Camia, A.: Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives, Forest Ecol. Manag., 294, 11–22, https://doi.org/10.1016/j.foreco.2012.10.050, 2013. a
Sanchez, G. M., Grone, M., and Apodaca, A.: Indigenous stewardship of coastal resources in native California, Front. Earth Sci., 11, 1064197, https://doi.org/10.3389/feart.2023.1064197, 2023. a
Schlesier, H., Schäfer, M., and Desing, H.: Measuring the Doughnut: A good life for all is possible within planetary boundaries, J. Clean. Prod., 448, 141447, https://doi.org/10.1016/j.jclepro.2024.141447, 2024. a
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke, S.: Overwintering fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 2021. a, b
Seddon, N.: Harnessing the potential of nature-based solutions for mitigating and adapting to climate change, Science, 376, 1410–1416, https://doi.org/10.1126/science.abn9668, 2022. a
Seebens, H., Niamir, A., Essl, F., Garnett, S. T., Kumagai, J. A., Molnár, Z., Saeedi, H., and Meyerson, L. A.: Biological invasions on Indigenous peoples’ lands, Nat. Sustain., 7, 737–746, https://doi.org/10.1038/s41893-024-01361-3, 2024. a
Shah, K. K., Modi, B., Pandey, H. P., Subedi, A., Aryal, G., Pandey, M., and Shrestha, J.: Diversified Crop Rotation: An Approach for Sustainable Agriculture Production, Adv. Agr., 2021, 8924087, https://doi.org/10.1155/2021/8924087, 2021. a
Skaalsveen, K., Ingram, J., and Clarke, L. E.: The effect of no-till farming on the soil functions of water purification and retention in north-western Europe: A literature review, Soil Till. Res., 189, 98–109, https://doi.org/10.1016/j.still.2019.01.004, 2019. a
Smith, C., Baker, J. C. A., and Spracklen, D. V.: Tropical deforestation causes large reductions in observed precipitation, Nature, 615, 270–275, https://doi.org/10.1038/s41586-022-05690-1, 2023. a, b
Song, S., Ding, Y., Li, W., Meng, Y., Zhou, J., Gou, R., Zhang, C., Ye, S., Saintilan, N., Krauss, K. W., Crooks, S., Lv, S., and Lin, G.: Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change, Nat. Commun., 14, 756, https://doi.org/10.1038/s41467-023-36477-1, 2023. a
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A., and Gimeno, L.: A Lagrangian perspective of the hydrological cycle in the Congo River basin, Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, 2017. a
Spracklen, D. V. and Garcia-Carreras, L.: The impact of Amazonian deforestation on Amazon basin rainfall, Geophys. Res. Lett., 42, 9546–9552, https://doi.org/10.1002/2015GL066063, 2015. a
Spracklen, D. V., Arnold, S. R., and Taylor, C.: Observations of increased tropical rainfall preceded by air passage over forests, Nature, 489, 282–285, https://doi.org/10.1038/nature11390, 2012. a
Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall cascades buffer against drought across the Amazon, Nat. Clim. Change, 8, 539–543, https://doi.org/10.1038/s41558-018-0177-y, 2018. a
Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H., Fetzer, I., and Tuinenburg, O. A.: Feedback between drought and deforestation in the Amazon, Environ. Res. Lett., 15, 044024, https://doi.org/10.1088/1748-9326/ab738e, 2020. a
Staal, A., Koren, G., Tejada, G., and Gatti, L. V.: Moisture origins of the Amazon carbon source region, Environ. Res. Lett., 18, 044027, https://doi.org/10.1088/1748-9326/acc676, 2023. a, b
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., and Schellnhuber, H. J.: Trajectories of the Earth System in the Anthropocene, P. Natl. Acad. Sci. USA, 115, 8252–8259, https://doi.org/10.1073/pnas.1810141115, 2018. a, b, c
Sterner, T. and Persson, U. M.: An Even Sterner Review: Introducing Relative Prices into the Discounting Debate, Rev. Environ. Econ. Pol., 2, 61–76, https://doi.org/10.1093/reep/rem024, 2008. a
Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S., and Zhu, L.: Plastics in the Earth system, Science, 373, 51–55, https://doi.org/10.1126/science.abb0354, 2021. a
Sullivan, S.: Elephant in the room? Problematising “new” (neoliberal) biodiversity conservation, in: Forum for Development Studies, Taylor & Francis, Vol. 33, 105–135, https://doi.org/10.1080/08039410.2006.9666337, 2006. a
Sunkur, R., Kantamaneni, K., Bokhoree, C., and Ravan, S.: Mangroves' role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: A review, J. Sea Res., 196, 102449, https://doi.org/10.1016/j.seares.2023.102449, 2023. a
Sánchez-Bayo, F. and Wyckhuys, K. A.: Worldwide decline of the entomofauna: A review of its drivers, Biol. Conserv., 232, 8–27, https://doi.org/10.1016/j.biocon.2019.01.020, 2019. a
Tao, S., Chave, J., Frison, P.-L., Le Toan, T., Ciais, P., Fang, J., Wigneron, J.-P., Santoro, M., Yang, H., Li, X., Labrière, N., and Saatchi, S.: Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts, P. Natl. Acad. Sci. USA, 119, e2116626119, https://doi.org/10.1073/pnas.2116626119, 2022. a
Tedesco, A. M., Brancalion, P. H. S., Hepburn, M. L. H., Walji, K., Wilson, K. A., Possingham, H. P., Dean, A. J., Nugent, N., Elias-Trostmann, K., Perez-Hammerle, K.-V., and Rhodes, J. R.: The role of incentive mechanisms in promoting forest restoration, Philos. T. R. Soc. B, 378, 20210088, https://doi.org/10.1098/rstb.2021.0088, 2022. a
Teixeira, J. C. M., Burton, C., Kelly, D. I., Folberth, G. A., O'Connor, F. M., Betts, R. A., and Voulgarakis, A.: Representing socio-economic factors in the INFERNO global fire model using the Human Development Index, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-136, 2023. a
Thomas, R., Davies, J., King, C., Kuse, J., Schauer, M., Bisom, N., Tsegai, D., and Madani, K.: Economics of Drought: Investing in Nature-Based Solutions for Drought Resilience – Proaction Pays, A joint report by UNCCD, ELD Initiative and UNU-INWEH, Tech. rep., UN Convention to Combat Desertification (UNCCD), Economics of Land Degradation (ELD) Initiative and United Nations University Institute for Water, Environment and Health (UNU-INWEH), Richmond Hill, Ontario, Canada, https://doi.org/10.53328/INR24CCD001, 2024. a
TNFD: Recommendations of the Taskforce on Nature-related Financial Disclosures, https://seea.un.org/content/recommendations-taskforce-nature-related-financial-disclosures (last access: 31 July 2024), 2023. a
Toncheva, S., Fletcher, R., and Turnhout, E.: Convivial conservation from the bottom up: Human-bear cohabitation in the Rodopi Mountains of Bulgaria, Conserv. Soc., 20, 124–135, 2022. a
Torchio, G. M., Cimon-Morin, J., Mendes, P., Goyette, J.-O., Schwantes, A. M., Arias-Patino, M., Bennett, E. M., Destrempes, C., Pellerin, S., and Poulin, M.: From marginal croplands to natural habitats: A methodological framework for assessing the restoration potential to enhance wild-bee pollination in agricultural landscapes, Landscape Ecol., 39, 194, https://doi.org/10.1007/s10980-024-01993-y, 2024. a
Toth, L. T., Storlazzi, C. D., Kuffner, I. B., Quataert, E., Reyns, J., McCall, R., Stathakopoulos, A., Hillis-Starr, Z., Holloway, N. H., Ewen, K. A., Pollock, C. G., Code, T., and Aronson, R. B.: The potential for coral reef restoration to mitigate coastal flooding as sea levels rise, Nat. Commun., 14, 2313, https://doi.org/10.1038/s41467-023-37858-2, 2023. a
Trégarot, E., D'Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., Kersting, D. K., Maréchal, J.-P., Meesters, E., O'Leary, B. C., Pérez, G., Seijo-Núñez, C., Simide, R., van der Geest, M., and de Juan, S.: Effects of climate change on marine coastal ecosystems – A review to guide research and management, Biol. Conserv., 289, 110394, https://doi.org/10.1016/j.biocon.2023.110394, 2024. a, b, c, d
Tscharntke, T., Batáry, P., and Grass, I.: Mixing on- and off-field measures for biodiversity conservation, Trend. Ecol. Evol., 39, 726–733, https://doi.org/10.1016/j.tree.2024.04.003, 2024. a
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020. a
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., and Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015. a, b
UNCCD: The Great Green Wall: Hope for the Sahara and the Sahel, https://www.unccd.int/sites/default/files/documents/26042016_GGW_ENG.pdf (last access: 31 July 2024), 2016. a
United Nations Environment Programme: Emissions Gap Report 2022: The Closing Window – Climate Crisis Calls for Rapid Transformation of Societies, https://wedocs.unep.org/20.500.11822/40874 (last access: 31 July 2024), ISBN: 978-92-807-3979-4, 2022. a
UNFCCC: The Paris Agreement, in: The Paris Agreement, Paris, https://unfccc.int/documents/184656 (last access: 31 July 2024), 2018. a
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010. a, b
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.: Where tree planting and forest expansion are bad for biodiversity and ecosystem services, BioScience, 65, 1011–1018, https://doi.org/10.1093/biosci/biv118, 2015. a
Vikström, H., Davidsson, S., and Höök, M.: Lithium availability and future production outlooks, Appl. Energ., 110, 252–266, https://doi.org/10.1016/j.apenergy.2013.04.005, 2013. a
Wakwella, A., Wenger, A., Jenkins, A., Lamb, J., Kuempel, C. D., Claar, D., Corbin, C., Falinski, K., Rivera, A., Grantham, H. S., and Jupiter, S. D.: Integrated watershed management solutions for healthy coastal ecosystems and people, Cambridge Prisms, Coastal Futures, 1, e27, https://doi.org/10.1017/cft.2023.15, 2023. a, b
Wang, Z., Wang, Z., Zou, Z., Chen, X., Wu, H., Wang, W., Su, H., Li, F., Xu, W., Liu, Z., and Zhu, J.: Severe Global Environmental Issues Caused by Canada’s Record-Breaking Wildfires in 2023, Adv. Atmos. Sci., 41, 565–571, https://doi.org/10.1007/s00376-023-3241-0, 2024. a
Watson, J. E., Venter, O., Lee, J., Jones, K. R., Robinson, J. G., Possingham, H. P., and Allan, J. R.: Protect the last of the wild, Nature, 563, 27–30, https://doi.org/10.1038/d41586-018-07183-6, 2018. a
Watts, M.: Political ecology, A companion to economic geography, 257–274, ISBN: 9780631235798, Online ISBN: 9781405166430, https://doi.org/10.1002/9781405166430, 2017. a
Webb, A. E., Enochs, I. C., van Hooidonk, R., van Westen, R. M., Besemer, N., Kolodziej, G., Viehman, T. S., and Manzello, D. P.: Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys, Sci. Rep., 13, 258, https://doi.org/10.1038/s41598-022-26930-4, 2023. a
Wessely, J., Essl, F., Fiedler, K., Gattringer, A., Hülber, B., Ignateva, O., Moser, D., Rammer, W., Dullinger, S., and Seidl, R.: A climate-induced tree species bottleneck for forest management in Europe, Nat. Ecol. Evol., 8, 1109–1117, https://doi.org/10.1038/s41559-024-02406-8, 2024. a
Wiedmann, T. and Lenzen, M.: Environmental and social footprints of international trade, Nat. Geosci., 11, 314–321, https://doi.org/10.1038/s41561-018-0113-9, 2018. a
Wiedmann, T., Lenzen, M., Keyßer, L. T., and Steinberger, J. K.: Scientists’ warning on affluence, Nat. Commun., 11, 3107, https://doi.org/10.1038/s41467-020-16941-y, 2020. a, b
Willmer, J. N. G., Püttker, T., and Prevedello, J. A.: Global impacts of edge effects on species richness, Biol. Conserv., 272, 109654, https://doi.org/10.1016/j.biocon.2022.109654, 2022. a
WMO: State of the Global Climate 2023, Tech. Rep. WMO-No. 1347, World Meteorological Organization (WMO), Geneva, ISBN: 978-92-63-11347-4, 2024. a
Wuerthner, G., Crist, E., and Butler, T.: Protecting the Wild: Parks and Wilderness, the Foundation for Conservation, Island Press, ISBN 978-1-61091-548-9, 2015. a
WWF: Living Planet Report 2024 – A System in Peril, WWF, Gland, Switzerland, ISBN: 978-2-88085-319-8, 2024. a
Xu, R., Ye, T., Yue, X., Yang, Z., Yu, W., Zhang, Y., Bell, M. L., Morawska, L., Yu, P., Zhang, Y., Wu, Y., Liu, Y., Johnston, F., Lei, Y., Abramson, M. J., Guo, Y., and Li, S.: Global population exposure to landscape fire air pollution from 2000 to 2019, Nature, 621, 521–529, https://doi.org/10.1038/s41586-023-06398-6, 2023. a
Yamano, H., Kayanne, H., Yamaguchi, T., Kuwahara, Y., Yokoki, H., Shimazaki, H., and Chikamori, M.: Atoll island vulnerability to flooding and inundation revealed by historical reconstruction: Fongafale Islet, Funafuti Atoll, Tuvalu, Glob. Planet. Change, 57, 407–416, https://doi.org/10.1016/j.gloplacha.2007.02.007, 2007. a
Yu, M., Zhang, S., Ning, H., Li, Z., and Zhang, K.: Assessing the 2023 Canadian wildfire smoke impact in Northeastern US: Air quality, exposure and environmental justice, Sci. Total Environ., 926, 171853, https://doi.org/10.1016/j.scitotenv.2024.171853, 2024. a
Yu, Z., Chen, X., Zhou, G., Agathokleous, E., Li, L., Liu, Z., Wu, J., Zhou, P., Xue, M., Chen, Y., Yan, W., Liu, L., Shi, T., and Zhao, X.: Natural forest growth and human induced ecosystem disturbance influence water yield in forests, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00483-w, 2022. a
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014. a, b
Zemp, D. C., Schleussner, C.-F., Barbosa, H. d. M. J., and Rammig, A.: Deforestation effects on Amazon forest resilience, Geophys. Res. Lett., 44, 6182–6190, https://doi.org/10.5194/acp-14-13337-2014, 2017. a, b, c
Zhang, M. and Wei, X.: Deforestation, forestation, and water supply, Science, 371, 990–991, https://doi.org/10.1126/science.abe7821, 2021. a
Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y., and Liu, S.: A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime, J. Hydrol., 546, 44–59, https://doi.org/10.1016/j.jhydrol.2016.12.040, 2017. a
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S.: Temperature increase reduces global yields of major crops in four independent estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331, https://doi.org/10.1073/pnas.1701762114, 2017. a
Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J.G., Chen, Y., van der Velde, I.R., Aben, I., Chuvieco, E., Davis, S.J., Deeter, M., Hong, C., Kong, Y., Li, H., Li, H., Lin, X., He, K., and Zhang, Q.: Record-high CO2 emissions from boreal fires in 2021, Science, 379, 912–917, https://doi.org/10.1126/science.ade0805, 2023. a
Zickfeld, K., MacIsaac, A. J., Canadell, J. G., Fuss, S., Jackson, R. B., Jones, C. D., Lohila, A., Matthews, H. D., Peters, G. P., Rogelj, J., and Zaehle, S.: Net-zero approaches must consider Earth system impacts to achieve climate goals, Nat. Clim. Change, 13, 1298–1305, https://doi.org/10.1038/s41558-023-01862-7, 2023. a
Zomer, R. J., Bossio, D. A., Trabucco, A., Noordwijk, M. V., and Xu, J.: Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land, Circul. Agr. Syst., 2, 1–10, https://doi.org/10.48130/CAS-2022-0003, 2022. a
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
An interdisciplinary collaboration of 36 international researchers from 35 institutions...
Altmetrics
Final-revised paper
Preprint