Articles | Volume 22, issue 10
https://doi.org/10.5194/bg-22-2425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-22-2425-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reviews and syntheses: Current perspectives on biosphere research 2024–2025 – eight findings from ecology, sociology, and economics
Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
BAM Nachhaltigkeit Beratung Medien, Berlin, Germany
Ana Bastos
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany
Romina Martin
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
Anja Rammig
TUM School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
Niak Sian Koh
Department of Biology, University of Oxford, Oxford, UK
Giles B. Sioen
Future Earth Global Secretariat, Tokyo, Japan
Sustainable Society Design Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Japan
Bram Buscher
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Louise Carver
Lancaster Institute for the Contemporary Arts, Lancaster University, Lancaster, UK
Fabrice DeClerck
Alliance of Bioversity and CIAT, Montpellier, France
Moritz Drupp
Department of Management, Technology, and Economics, ETH Zurich, Switzerland
Department of Economics, University of Gothenburg, Gothenburg, Sweden
Robert Fletcher
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Matthew Forrest
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Alexandros Gasparatos
Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
Alex Godoy-Faúndez
Sustainability Research Center, Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
Gregor Hagedorn
Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung (MfN), Berlin, Germany
Martin C. Hänsel
Institute for Infrastructure and Resource Management, Leipzig University, Leipzig, Germany
Jessica Hetzer
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Thomas Hickler
Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Institute of Physical Geography, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
Cornelia B. Krug
Faculty of Economics and Management Science, Leipzig University, Leipzig, Germany
Stasja Koot
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, South Africa
Xiuzhen Li
Synthesis and Solutions Labs, Senckenberg Society for Nature Research, Frankfurt am Main, Germany
Amy Luers
Microsoft, Redmond, Washington, USA
Shelby Matevich
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
H. Damon Matthews
Department of Geography, Planning and Environment, Concordia University, Montreal, Quebec, Canada
Ina C. Meier
Functional Forest Ecology, Universität Hamburg, Barsbüttel, Germany
Mirco Migliavacca
European Commission, Joint Research Centre, Ispra (VA), Italy
Awaz Mohamed
Functional Forest Ecology, Universität Hamburg, Barsbüttel, Germany
Sungmin O
Department of AI Software, Kangwon National University, Samcheok, South Korea
David Obura
CORDIO East Africa, Mombasa, Kenya
Ben Orlove
School of International and Public Affairs, Columbia University, New York, New York, USA
Rene Orth
Modelling of Biogeochemical Systems, University of Freiburg, Freiburg, Germany
Laura Pereira
Global Change Institute, University of the Witwatersrand, Johannesburg, South Africa
Markus Reichstein
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
Lerato Thakholi
Sociology of Development and Change, Wageningen University, Wageningen, the Netherlands
Peter H. Verburg
Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Yuki Yoshida
Center for Climate Change Adaptation, National Institute for Environmental Studies, Ibaraki, Japan
Related authors
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-4082, https://doi.org/10.5194/egusphere-2025-4082, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used explainable machine learning that incorporates memory effects to study how plants respond to weather and drought. Using data from 90 sites worldwide, we show that memory plays a key role in regulating plant water stress. Forests and savannas rely on longer past conditions than grasslands, reflecting differences in rooting depth and water use. These insights improve our ability to anticipate ecosystem vulnerability as droughts intensify.
This article is included in the Encyclopedia of Geosciences
Basil Kraft, Jacob A. Nelson, Sophia Walther, Fabian Gans, Ulrich Weber, Gregory Duveiller, Markus Reichstein, Weijie Zhang, Marc Rußwurm, Devis Tuia, Marco Körner, Zayd Hamdi, and Martin Jung
Biogeosciences, 22, 3965–3987, https://doi.org/10.5194/bg-22-3965-2025, https://doi.org/10.5194/bg-22-3965-2025, 2025
Short summary
Short summary
This study evaluates machine learning approaches for upscaling evapotranspiration from the site to the global scale. Sequential models capture temporal dynamics better, especially with precipitation data, but all models show biases in data-scarce regions. Improved upscaling requires richer training data, informed covariate selection, and physical constraints to enhance robustness and reduce extrapolation errors.
This article is included in the Encyclopedia of Geosciences
Laura M. Pereira, Steven R. Smith, Lauren Gifford, Peter Newell, Sebastian Villasante, Therezah Achieng, Azucena Castro, Sara M. Constantino, Tom Powell, Ashish Ghadiali, Ben Smith, Coleen Vogel, and Caroline Zimm
Earth Syst. Dynam., 16, 1267–1285, https://doi.org/10.5194/esd-16-1267-2025, https://doi.org/10.5194/esd-16-1267-2025, 2025
Short summary
Short summary
Earth system tipping points pose existential threats requiring urgent action. However, this imperative should neither increase risks nor perpetuate injustices. We argue that considerations of what needs to change, who is asked to change, and where the impacts will be felt and by whom are fundamental questions that need to be addressed in decision-making. Everyone has a role to play in ensuring that justice and equity are incorporated into actions towards a more sustainable future.
This article is included in the Encyclopedia of Geosciences
Benjamin F. Meyer, João P. Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
Geosci. Model Dev., 18, 4643–4666, https://doi.org/10.5194/gmd-18-4643-2025, https://doi.org/10.5194/gmd-18-4643-2025, 2025
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening the European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show its ability to capture species-specific evapotranspiration responses to drought and to reproduce flux observations of both gross primary production and evapotranspiration.
This article is included in the Encyclopedia of Geosciences
Zhixuan Guo, Wei Li, Philippe Ciais, Stephen Sitch, Guido R. van der Werf, Simon P. K. Bowring, Ana Bastos, Florent Mouillot, Jiaying He, Minxuan Sun, Lei Zhu, Xiaomeng Du, Nan Wang, and Xiaomeng Huang
Earth Syst. Sci. Data, 17, 3599–3618, https://doi.org/10.5194/essd-17-3599-2025, https://doi.org/10.5194/essd-17-3599-2025, 2025
Short summary
Short summary
To address the limitations of short time spans in satellite data and spatiotemporal discontinuity in site records, we reconstructed global monthly burned area maps at a 0.5° resolution for 1901–2020 using machine learning models. The global burned area is predicted at 3.46 × 106–4.58 × 106 km² per year, showing a decline from 1901 to 1978, an increase from 1978 to 2008 and a sharper decrease from 2008 to 2020. This dataset provides a benchmark for studies on fire ecology and the carbon cycle.
This article is included in the Encyclopedia of Geosciences
Lucia S. Layritz, Konstantin Gregor, Andreas Krause, Stefan Kruse, Benjamin F. Meyer, Thomas A. M. Pugh, and Anja Rammig
Biogeosciences, 22, 3635–3660, https://doi.org/10.5194/bg-22-3635-2025, https://doi.org/10.5194/bg-22-3635-2025, 2025
Short summary
Short summary
Disturbances, such as fire, can change which vegetation grows in a forest, affecting water and carbon flows and, thus, the climate. Disturbances are expected to increase with climate change, but it is uncertain by how much. Using a simulation model, we studied how future climate, disturbances, and their combined effect impact northern (high-latitude) forest ecosystems. Our findings highlight the importance of considering these factors and the need to better understand how disturbances will change in the future.
This article is included in the Encyclopedia of Geosciences
Theertha Kariyathan, Ana Bastos, Markus Reichstein, Wouter Peters, and Julia Marshall
Atmos. Chem. Phys., 25, 7863–7878, https://doi.org/10.5194/acp-25-7863-2025, https://doi.org/10.5194/acp-25-7863-2025, 2025
Short summary
Short summary
The carbon uptake period (CUP) is the time period when land absorbs more CO2 than it emits. While atmospheric CO2 mole fraction measurements can be used to assess CUP changes, atmospheric transport and asynchronous timing across regions reduce the accuracy of the estimates. Forward model experiments show that only ~ 50 % of prescribed shifts in CUP timing applied to surface fluxes (ΔCUPNEE) are captured in simulated CO2 mole fraction data at monitoring sites like the Barrow Atmospheric Baseline Observatory.
This article is included in the Encyclopedia of Geosciences
Guohua Liu, Philippe Ciais, Shengli Tao, Hui Yang, and Ana Bastos
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-330, https://doi.org/10.5194/essd-2025-330, 2025
Preprint under review for ESSD
Short summary
Short summary
We have developed a long-term and high-resolution global map of above-ground biomass changes from 1993 to 2020 using radar data and machine learning approach. This dataset can help understand the effects of disturbances, land-use changes, and extreme events on global carbon cycle, and enhance the representation of these processes in Earth System Models.
This article is included in the Encyclopedia of Geosciences
Hao Huang, Junguo Liu, Aifang Chen, Melissa Ruiz-Vásquez, and René Orth
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-376, https://doi.org/10.5194/essd-2025-376, 2025
Preprint under review for ESSD
Short summary
Short summary
Hydrological research benefits from a growing number and diversity of datasets. However, the consistency across the increasing suite of datasets is unclear, limiting the comparability of findings derived from different datasets and variables. We find overall low consistency of numerous state-of-the-art precipitation, evapotranspiration, runoff, and soil moisture datasets in terms of the water balance. Meanwhile, the water balance consistency varies across space, sources, variables, and time.
This article is included in the Encyclopedia of Geosciences
Mara Y. McPartland, Tomas Lovato, Charles D. Koven, Jamie D. Wilson, Briony Turner, Colleen M. Petrik, José Licón-Saláiz, Fang Li, Fanny Lhardy, Jaclyn Clement Kinney, Michio Kawamiya, Birgit Hassler, Nathan P. Gillett, Cheikh Modou Noreyni Fall, Christopher Danek, Chris M. Brierley, Ana Bastos, and Oliver Andrews
EGUsphere, https://doi.org/10.5194/egusphere-2025-3246, https://doi.org/10.5194/egusphere-2025-3246, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Coupled Model Intercomparison Project (CMIP) is an international consortium of climate modeling groups that produce coordinated experiments in order to evaluate human influence on the climate and test knowledge of Earth systems. This paper describes the data requested for Earth systems research in CMIP7. We detail the request for model output of the carbon cycle, the flows of energy among the atmosphere, land and the oceans, and interactions between these and the global climate.
This article is included in the Encyclopedia of Geosciences
Zavud Baghirov, Markus Reichstein, Basil Kraft, Bernhard Ahrens, Marco Körner, and Martin Jung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3123, https://doi.org/10.5194/egusphere-2025-3123, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We introduce a new global model that links how water and carbon move through land ecosystems. By combining process knowledge with artificial intelligence that learns from observations, we model daily changes in vegetation, water and carbon cycle processes. This model outperforms both purely data-driven and traditional process models, especially in dry and tropical regions. This advance could improve current understanding of water-carbon cycle relationships.
This article is included in the Encyclopedia of Geosciences
Laura Nadolski, Tarek S. El-Madany, Jacob Nelson, Arnaud Carrara, Gerardo Moreno, Richard Nair, Yunpeng Luo, Anke Hildebrandt, Victor Rolo, Markus Reichstein, and Sung-Ching Lee
Biogeosciences, 22, 2935–2958, https://doi.org/10.5194/bg-22-2935-2025, https://doi.org/10.5194/bg-22-2935-2025, 2025
Short summary
Short summary
Semi-arid ecosystems are crucial for Earth's carbon balance and are sensitive to changes in nitrogen (N) and phosphorus (P) levels. Their carbon dynamics are complex and not fully understood. We studied how long-term nutrient changes affect carbon exchange. In summer, the addition of N+P changed plant composition and productivity. In transitional seasons, carbon exchange was less weather-dependent with N. The addition of N and N+P increases carbon-exchange variability, driven by grass greenness.
This article is included in the Encyclopedia of Geosciences
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
This article is included in the Encyclopedia of Geosciences
Mateus Dantas de Paula, Tatiana Reichert, Laynara F. Lugli, Erica McGale, Kerstin Pierick, João Paulo Darela-Filho, Liam Langan, Jürgen Homeier, Anja Rammig, and Thomas Hickler
Biogeosciences, 22, 2707–2732, https://doi.org/10.5194/bg-22-2707-2025, https://doi.org/10.5194/bg-22-2707-2025, 2025
Short summary
Short summary
This study explores how plant roots with different forms and functions rely on fungal partnerships for nutrient uptake. This relationship was integrated into a vegetation model and was tested in a tropical forest in Ecuador. The model accurately predicted root traits and showed that without fungi, biomass decreased by up to 80 %. The findings highlight the critical role of fungi in ecosystem processes and suggest that root–fungal interactions should be considered in vegetation models.
This article is included in the Encyclopedia of Geosciences
Yigit Uckan, Melissa Ruiz-Vásquez, Kelley De Polt, and René Orth
Earth Syst. Dynam., 16, 869–889, https://doi.org/10.5194/esd-16-869-2025, https://doi.org/10.5194/esd-16-869-2025, 2025
Short summary
Short summary
We analyze drivers of hot temperature extremes, focusing on both atmospheric and land-surface factors. Using observation-based data and an analogue-based approach, we find that geopotential height at 500 hPa is the most significant driver worldwide at daily and weekly timescales. Surface net radiation and evaporative fraction play relevant roles at the daily scale and wind at the weekly timescale. The driver influence varies by region, related to differences in climate regimes and land cover.
This article is included in the Encyclopedia of Geosciences
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
This article is included in the Encyclopedia of Geosciences
Katja Frieler, Stefan Lange, Jacob Schewe, Matthias Mengel, Simon Treu, Christian Otto, Jan Volkholz, Christopher P. O. Reyer, Stefanie Heinicke, Colin Jones, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Ryan Heneghan, Derek P. Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Dánnell Quesada Chacón, Kerry Emanuel, Chia-Ying Lee, Suzana J. Camargo, Jonas Jägermeyr, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Lisa Novak, Inga J. Sauer, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, Michel Bechtold, Robert Reinecke, Inge de Graaf, Jed O. Kaplan, Alexander Koch, and Matthieu Lengaigne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2103, https://doi.org/10.5194/egusphere-2025-2103, 2025
Short summary
Short summary
This paper describes the experiments and data sets necessary to run historic and future impact projections, and the underlying assumptions of future climate change as defined by the 3rd round of the ISIMIP Project (Inter-sectoral Impactmodel Intercomparison Project, isimip.org). ISIMIP provides a framework for cross-sectorally consistent climate impact simulations to contribute to a comprehensive and consistent picture of the world under different climate-change scenarios.
This article is included in the Encyclopedia of Geosciences
Samuel Upton, Markus Reichstein, Wouter Peters, Santiago Botía, Jacob A. Nelson, Sophia Walther, Martin Jung, Fabian Gans, László Haszpra, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-2097, https://doi.org/10.5194/egusphere-2025-2097, 2025
Short summary
Short summary
We create a hybrid ecosystem-level carbon flux model using both eddy-covariance observations and observations of the atmospheric mole fraction of CO2 at three tall-tower observatories. Our study uses an atmospheric transport model (STILT) to connect the atmospheric signal to the ecosystem-level model. We show that this inclusion of atmospheric information meaningfully improves the model's representation of the interannual variability of the global net flux of CO2.
This article is included in the Encyclopedia of Geosciences
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025, https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
Short summary
We use an innovative approach to studying the Earth's water cycle by integrating advanced machine learning techniques with a traditional water cycle model. Our model is designed to learn from observational data, with a particular emphasis on understanding the influence of vegetation on water movement. By closely aligning with real-world observations, our model offers new possibilities for enhancing our understanding of the water cycle and its interactions with vegetation.
This article is included in the Encyclopedia of Geosciences
Na Li, Sebastian Sippel, Nora Linscheid, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2025-1924, https://doi.org/10.5194/egusphere-2025-1924, 2025
Short summary
Short summary
The global land carbon sink has increased since the pre-industrial period, mainly caused by increasing atmospheric CO2 emissions and climate change. However, the large year-to-year variations can mask or amplify this trend. Here, we detect the time for the anthropogenic signal to emerge over natural variations in land carbon sink. We removed the circulation-induced variations in the global land carbon sink and effectively reduced the detection time of anthropogenic signal.
This article is included in the Encyclopedia of Geosciences
Rebecca Chloe Evans and H. Damon Matthews
Biogeosciences, 22, 1969–1984, https://doi.org/10.5194/bg-22-1969-2025, https://doi.org/10.5194/bg-22-1969-2025, 2025
Short summary
Short summary
To mitigate our impact on the climate, we must both drastically reduce emissions and perform carbon dioxide removal (CDR). We simulated agriculture as a form of CDR under three future climate scenarios to find out how the climate responds to CDR when the carbon is not permanently stored. We found that agricultural CDR is much more effective at reducing global temperatures if done in a low-emissions scenario and at a high rate, and it becomes less effective as removal continues.
This article is included in the Encyclopedia of Geosciences
Marleen Pallandt, Marion Schrumpf, Holger Lange, Markus Reichstein, Lin Yu, and Bernhard Ahrens
Biogeosciences, 22, 1907–1928, https://doi.org/10.5194/bg-22-1907-2025, https://doi.org/10.5194/bg-22-1907-2025, 2025
Short summary
Short summary
As soils warm due to climate change, soil organic carbon (SOC) decomposes faster due to increased microbial activity, given sufficient available moisture. We modelled the microbial decomposition of plant litter and residue at different depths and found that deep soil layers are more sensitive than topsoils. Warming causes SOC loss, but its extent depends on the litter type and its temperature sensitivity, which can either counteract or amplify losses. Droughts may also counteract warming-induced SOC losses.
This article is included in the Encyclopedia of Geosciences
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
This article is included in the Encyclopedia of Geosciences
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
This article is included in the Encyclopedia of Geosciences
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025, https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
Short summary
Air pollutants such as particulate matter with diameters of 10 µm and 2.5 µm or less (PM10 and PM2.5) can cause adverse public health and environment effects; therefore their regular monitoring is crucial to keep pollutant concentrations under control. Our study demonstrates the potential of high-resolution aerosol optical depth (AOD) data from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate ground-level PM concentrations using machine learning models.
This article is included in the Encyclopedia of Geosciences
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
This article is included in the Encyclopedia of Geosciences
Zhu Deng, Philippe Ciais, Liting Hu, Adrien Martinez, Marielle Saunois, Rona L. Thompson, Kushal Tibrewal, Wouter Peters, Brendan Byrne, Giacomo Grassi, Paul I. Palmer, Ingrid T. Luijkx, Zhu Liu, Junjie Liu, Xuekun Fang, Tengjiao Wang, Hanqin Tian, Katsumasa Tanaka, Ana Bastos, Stephen Sitch, Benjamin Poulter, Clément Albergel, Aki Tsuruta, Shamil Maksyutov, Rajesh Janardanan, Yosuke Niwa, Bo Zheng, Joël Thanwerdas, Dmitry Belikov, Arjo Segers, and Frédéric Chevallier
Earth Syst. Sci. Data, 17, 1121–1152, https://doi.org/10.5194/essd-17-1121-2025, https://doi.org/10.5194/essd-17-1121-2025, 2025
Short summary
Short summary
This study reconciles national greenhouse gas (GHG) inventories with updated atmospheric inversion results to evaluate discrepancies for three principal GHG fluxes at the national level. Compared to our previous study, new satellite-based CO2 inversions were included and an updated mask of managed lands was used, improving agreement for Brazil and Canada. The proposed methodology can be regularly applied as a check to assess the gap between top-down inversions and bottom-up inventories.
This article is included in the Encyclopedia of Geosciences
Martin Thurner, Kailiang Yu, Stefano Manzoni, Anatoly Prokushkin, Melanie A. Thurner, Zhiqiang Wang, and Thomas Hickler
Biogeosciences, 22, 1475–1493, https://doi.org/10.5194/bg-22-1475-2025, https://doi.org/10.5194/bg-22-1475-2025, 2025
Short summary
Short summary
Nitrogen concentrations in tree tissues (leaves, branches, stems, and roots) are related to photosynthesis, growth, and respiration and thus to vegetation carbon uptake. Our novel database allows us to identify the controls of tree tissue nitrogen concentrations in boreal and temperate forests, such as tree age/size, species, and climate. Changes therein will affect tissue nitrogen concentrations and thus also vegetation carbon uptake.
This article is included in the Encyclopedia of Geosciences
Mana Gharun, Ankit Shekhar, Lukas Hörtnagl, Luana Krebs, Nicola Arriga, Mirco Migliavacca, Marilyn Roland, Bert Gielen, Leonardo Montagnani, Enrico Tomelleri, Ladislav Šigut, Matthias Peichl, Peng Zhao, Marius Schmidt, Thomas Grünwald, Mika Korkiakoski, Annalea Lohila, and Nina Buchmann
Biogeosciences, 22, 1393–1411, https://doi.org/10.5194/bg-22-1393-2025, https://doi.org/10.5194/bg-22-1393-2025, 2025
Short summary
Short summary
The effect of winter warming on forest CO2 fluxes has rarely been investigated. We tested the effect of the warm winter of 2020 on the forest CO2 fluxes across 14 sites in Europe and found that the net ecosystem productivity (NEP) across most sites declined during the warm winter due to increased respiration fluxes.
This article is included in the Encyclopedia of Geosciences
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365, https://doi.org/10.5194/egusphere-2025-365, 2025
Preprint archived
Short summary
Short summary
We developed a machine learning model that accounts for the memory effects of soil moisture and vegetation to predict Evaporative Fraction (EF) without relying on soil moisture as a direct input. The model accurately predicts EF during dry periods for the unseen sites, highlighting the key of meteorological memory effects. The learned memory effect related to rooting depth and soil water holding capacity could potentially serve as proxies for assessing the plant water stress.
This article is included in the Encyclopedia of Geosciences
Javier Pacheco-Labrador, Ulisse Gomarasca, Daniel E. Pabon-Moreno, Wantong Li, Mirco Migliavacca, Martin Jung, and Gregory Duveiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-318, https://doi.org/10.5194/egusphere-2025-318, 2025
Short summary
Short summary
Measuring biodiversity is necessary to assess its loss, evolution, and role in ecosystem functions. Satellites image the whole terrestrial surface and could cost-efficiently map plant diversity globally. However, developing the necessary methods lacks consistent and sufficient field measurements. Thus, we propose using a simulation tool that generates virtual ecosystems, with species properties and functions varying in response to meteorology and the respective remote sensing imagery.
This article is included in the Encyclopedia of Geosciences
István Dunkl, Ana Bastos, and Tatiana Ilyina
Earth Syst. Dynam., 16, 151–167, https://doi.org/10.5194/esd-16-151-2025, https://doi.org/10.5194/esd-16-151-2025, 2025
Short summary
Short summary
While the El Niño–Southern Oscillation, a climate mode, has a similar impact on CO2 growth rates across Earth system models, there is significant uncertainty in the processes behind this relationship. We found a compensatory effect that masks differences in the sensitivity of carbon fluxes to climate anomalies and observed that the carbon fluxes contributing to global CO2 anomalies originate from different regions and are caused by different drivers.
This article is included in the Encyclopedia of Geosciences
Marco Girardello, Gonzalo Oton, Matteo Piccardo, Mark Pickering, Agata Elia, Guido Ceccherini, Mariano Garcia, Mirco Migliavacca, and Alessandro Cescatti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-471, https://doi.org/10.5194/essd-2024-471, 2025
Preprint under review for ESSD
Short summary
Short summary
Our research addresses the significant challenge of assessing forest structural diversity over large spatial scales, which is crucial for understanding the relationship between canopy structure, biodiversity, and ecosystem functioning. The advent of spaceborne LiDAR sensors, such as GEDI, has revolutionised the ability to obtain high-quality information on forest structural parameters. Our contribution provides a novel, spatially-explicit dataset on eight forest structural diversity metrics.
This article is included in the Encyclopedia of Geosciences
Ryan Vella, Matthew Forrest, Andrea Pozzer, Alexandra P. Tsimpidi, Thomas Hickler, Jos Lelieveld, and Holger Tost
Atmos. Chem. Phys., 25, 243–262, https://doi.org/10.5194/acp-25-243-2025, https://doi.org/10.5194/acp-25-243-2025, 2025
Short summary
Short summary
This study examines how land cover changes influence biogenic volatile organic compound (BVOC) emissions and atmospheric states. Using a coupled chemistry–climate–vegetation model, we compare present-day land cover (deforested for crops and grazing) with natural vegetation and an extreme reforestation scenario. We find that vegetation changes significantly impact global BVOC emissions and organic aerosols but have a relatively small effect on total aerosols, clouds, and radiative effects.
This article is included in the Encyclopedia of Geosciences
Matthew Forrest, Jessica Hetzer, Maik Billing, Simon P. K. Bowring, Eric Kosczor, Luke Oberhagemann, Oliver Perkins, Dan Warren, Fátima Arrogante-Funes, Kirsten Thonicke, and Thomas Hickler
Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, https://doi.org/10.5194/bg-21-5539-2024, 2024
Short summary
Short summary
Climate change is causing an increase in extreme wildfires in Europe, but drivers of fire are not well understood, especially across different land cover types. We used statistical models with satellite data, climate data, and socioeconomic data to determine what affects burning in cropland and non-cropland areas of Europe. We found different drivers of burning in cropland burning vs. non-cropland to the point that some variables, e.g. population density, had the complete opposite effects.
This article is included in the Encyclopedia of Geosciences
Blessing Kavhu, Matthew Forrest, and Thomas Hickler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3595, https://doi.org/10.5194/egusphere-2024-3595, 2024
Short summary
Short summary
We developed a model to predict global wildfire patterns by examining weather, vegetation, and human activities. This tool helps forecast seasonal fire risks across diverse regions and focuses on seasonal changes, unlike existing models. Its simplicity makes it valuable for climate and fire management planning, as well as for use in global climate studies, helping communities better prepare for and adapt to rising wildfire threats.
This article is included in the Encyclopedia of Geosciences
Laura Eifler, Franziska Müller, and Ana Bastos
EGUsphere, https://doi.org/10.5194/egusphere-2024-3534, https://doi.org/10.5194/egusphere-2024-3534, 2024
Short summary
Short summary
Forests provide ecosystem services and biodiversity, but they are increasingly affected by disturbances. Consistent global data on forest disturbances are lacking, impeding effective assessment. We compare four forest disturbance datasets for the continental USA, finding moderate agreement overall, with ground-based inventories more consistent than satellite data. This emphasizes the need for enhanced data quality assessment, integration, and accuracy to better understand forest disturbances.
This article is included in the Encyclopedia of Geosciences
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
This article is included in the Encyclopedia of Geosciences
Olivier Bouriaud, Ernst-Detlef Schulze, Konstantin Gregor, Issam Bourkhris, Peter Högberg, Roland Irslinger, Phillip Papastefanou, Julia Pongratz, Anja Rammig, Riccardo Valentini, and Christian Körner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3092, https://doi.org/10.5194/egusphere-2024-3092, 2024
Short summary
Short summary
The impact of harvesting on forests' carbon sink capacities is debated. One view is that their sink strength is resilient to harvesting, the other that it disrupts these capacities. Our work shows that leaf area index (LAI) has been overlooked in this discussion. We found that temperate forests' carbon uptake is largely insensitive to variations in LAI beyond about 4 m² m-², but that forests operate at higher levels.
This article is included in the Encyclopedia of Geosciences
Anne F. Van Loon, Sarra Kchouk, Alessia Matanó, Faranak Tootoonchi, Camila Alvarez-Garreton, Khalid E. A. Hassaballah, Minchao Wu, Marthe L. K. Wens, Anastasiya Shyrokaya, Elena Ridolfi, Riccardo Biella, Viorica Nagavciuc, Marlies H. Barendrecht, Ana Bastos, Louise Cavalcante, Franciska T. de Vries, Margaret Garcia, Johanna Mård, Ileen N. Streefkerk, Claudia Teutschbein, Roshanak Tootoonchi, Ruben Weesie, Valentin Aich, Juan P. Boisier, Giuliano Di Baldassarre, Yiheng Du, Mauricio Galleguillos, René Garreaud, Monica Ionita, Sina Khatami, Johanna K. L. Koehler, Charles H. Luce, Shreedhar Maskey, Heidi D. Mendoza, Moses N. Mwangi, Ilias G. Pechlivanidis, Germano G. Ribeiro Neto, Tirthankar Roy, Robert Stefanski, Patricia Trambauer, Elizabeth A. Koebele, Giulia Vico, and Micha Werner
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, https://doi.org/10.5194/nhess-24-3173-2024, https://doi.org/10.5194/nhess-24-3173-2024, 2024
Short summary
Short summary
Drought is a creeping phenomenon but is often still analysed and managed like an isolated event, without taking into account what happened before and after. Here, we review the literature and analyse five cases to discuss how droughts and their impacts develop over time. We find that the responses of hydrological, ecological, and social systems can be classified into four types and that the systems interact. We provide suggestions for further research and monitoring, modelling, and management.
This article is included in the Encyclopedia of Geosciences
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
This article is included in the Encyclopedia of Geosciences
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
This article is included in the Encyclopedia of Geosciences
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
This article is included in the Encyclopedia of Geosciences
Sinikka J. Paulus, Rene Orth, Sung-Ching Lee, Anke Hildebrandt, Martin Jung, Jacob A. Nelson, Tarek Sebastian El-Madany, Arnaud Carrara, Gerardo Moreno, Matthias Mauder, Jannis Groh, Alexander Graf, Markus Reichstein, and Mirco Migliavacca
Biogeosciences, 21, 2051–2085, https://doi.org/10.5194/bg-21-2051-2024, https://doi.org/10.5194/bg-21-2051-2024, 2024
Short summary
Short summary
Porous materials are known to reversibly trap water from the air, even at low humidity. However, this behavior is poorly understood for soils. In this analysis, we test whether eddy covariance is able to measure the so-called adsorption of atmospheric water vapor by soils. We find that this flux occurs frequently during dry nights in a Mediterranean ecosystem, while EC detects downwardly directed vapor fluxes. These results can help to map moisture uptake globally.
This article is included in the Encyclopedia of Geosciences
Martin Jung, Jacob Nelson, Mirco Migliavacca, Tarek El-Madany, Dario Papale, Markus Reichstein, Sophia Walther, and Thomas Wutzler
Biogeosciences, 21, 1827–1846, https://doi.org/10.5194/bg-21-1827-2024, https://doi.org/10.5194/bg-21-1827-2024, 2024
Short summary
Short summary
We present a methodology to detect inconsistencies in perhaps the most important data source for measurements of ecosystem–atmosphere carbon, water, and energy fluxes. We expect that the derived consistency flags will be relevant for data users and will help in improving our understanding of and our ability to model ecosystem–climate interactions.
This article is included in the Encyclopedia of Geosciences
Dana A. Lapides, W. Jesse Hahm, Matthew Forrest, Daniella M. Rempe, Thomas Hickler, and David N. Dralle
Biogeosciences, 21, 1801–1826, https://doi.org/10.5194/bg-21-1801-2024, https://doi.org/10.5194/bg-21-1801-2024, 2024
Short summary
Short summary
Water stored in weathered bedrock is rarely incorporated into vegetation and Earth system models despite increasing recognition of its importance. Here, we add a weathered bedrock component to a widely used vegetation model. Using a case study of two sites in California and model runs across the United States, we show that more accurately representing subsurface water storage and hydrology increases summer plant water use so that it better matches patterns in distributed data products.
This article is included in the Encyclopedia of Geosciences
Laura M. Pereira, Ignacio Gianelli, Therezah Achieng, Diva Amon, Sally Archibald, Suchinta Arif, Azucena Castro, Tapiwa Prosper Chimbadzwa, Kaera Coetzer, Tracy-Lynn Field, Odirilwe Selomane, Nadia Sitas, Nicola Stevens, Sebastian Villasante, Mohammed Armani, Duncan M. Kimuyu, Ibukun J. Adewumi, David M. Lapola, David Obura, Patricia Pinho, Felipe Roa-Clavijo, Juan Rocha, and U. Rashid Sumaila
Earth Syst. Dynam., 15, 341–366, https://doi.org/10.5194/esd-15-341-2024, https://doi.org/10.5194/esd-15-341-2024, 2024
Short summary
Short summary
Narratives around tipping points, such as the need for
This article is included in the Encyclopedia of Geosciences
positivetipping points in energy transitions to avoid
negativeEarth system tipping points, do not take into account the entire spectrum of impacts the proposed interventions could have or still rely on narratives that maintain current unsustainable behaviours and marginalize many people. We unpack these ideas in the context of what they mean for the concept of tipping points, using a critical decolonial view from the Global South.
Prajwal Khanal, Anne J. Hoek Van Dijke, Timo Schaffhauser, Wantong Li, Sinikka J. Paulus, Chunhui Zhan, and René Orth
Biogeosciences, 21, 1533–1547, https://doi.org/10.5194/bg-21-1533-2024, https://doi.org/10.5194/bg-21-1533-2024, 2024
Short summary
Short summary
Water availability is essential for vegetation functioning, but the depth of vegetation water uptake is largely unknown due to sparse ground measurements. This study correlates vegetation growth with soil moisture availability globally to infer vegetation water uptake depth using only satellite-based data. We find that the vegetation water uptake depth varies across climate regimes and vegetation types and also changes during dry months at a global scale.
This article is included in the Encyclopedia of Geosciences
Melanie A. Thurner, Silvia Caldararu, Jan Engel, Anja Rammig, and Sönke Zaehle
Biogeosciences, 21, 1391–1410, https://doi.org/10.5194/bg-21-1391-2024, https://doi.org/10.5194/bg-21-1391-2024, 2024
Short summary
Short summary
Due to their crucial role in terrestrial ecosystems, we implemented mycorrhizal fungi into the QUINCY terrestrial biosphere model. Fungi interact with mineral and organic soil to support plant N uptake and, thus, plant growth. Our results suggest that the effect of mycorrhizal interactions on simulated ecosystem dynamics is minor under constant environmental conditions but necessary to reproduce and understand observed patterns under changing conditions, such as rising atmospheric CO2.
This article is included in the Encyclopedia of Geosciences
Benjamin F. Meyer, Allan Buras, Konstantin Gregor, Lucia S. Layritz, Adriana Principe, Jürgen Kreyling, Anja Rammig, and Christian S. Zang
Biogeosciences, 21, 1355–1370, https://doi.org/10.5194/bg-21-1355-2024, https://doi.org/10.5194/bg-21-1355-2024, 2024
Short summary
Short summary
Late-spring frost (LSF), critically low temperatures when trees have already flushed their leaves, results in freezing damage leaving trees with reduced ability to perform photosynthesis. Forests with a high proportion of susceptible species like European beech are particularly vulnerable. However, this process is rarely included in dynamic vegetation models (DVMs). We show that the effect on simulated productivity and biomass is substantial, warranting more widespread inclusion of LSF in DVMs.
This article is included in the Encyclopedia of Geosciences
Samuel Upton, Markus Reichstein, Fabian Gans, Wouter Peters, Basil Kraft, and Ana Bastos
Atmos. Chem. Phys., 24, 2555–2582, https://doi.org/10.5194/acp-24-2555-2024, https://doi.org/10.5194/acp-24-2555-2024, 2024
Short summary
Short summary
Data-driven eddy-covariance upscaled estimates of the global land–atmosphere net CO2 exchange (NEE) show important mismatches with regional and global estimates based on atmospheric information. To address this, we create a model with a dual constraint based on bottom-up eddy-covariance data and top-down atmospheric inversion data. Our model overcomes shortcomings of each approach, producing improved NEE estimates from local to global scale, helping to reduce uncertainty in the carbon budget.
This article is included in the Encyclopedia of Geosciences
João Paulo Darela-Filho, Anja Rammig, Katrin Fleischer, Tatiana Reichert, Laynara Figueiredo Lugli, Carlos Alberto Quesada, Luis Carlos Colocho Hurtarte, Mateus Dantas de Paula, and David M. Lapola
Earth Syst. Sci. Data, 16, 715–729, https://doi.org/10.5194/essd-16-715-2024, https://doi.org/10.5194/essd-16-715-2024, 2024
Short summary
Short summary
Phosphorus (P) is crucial for plant growth, and scientists have created models to study how it interacts with carbon cycle in ecosystems. To apply these models, it is important to know the distribution of phosphorus in soil. In this study we estimated the distribution of phosphorus in the Amazon region. The results showed a clear gradient of soil development and P content. These maps can help improve ecosystem models and generate new hypotheses about phosphorus availability in the Amazon.
This article is included in the Encyclopedia of Geosciences
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
This article is included in the Encyclopedia of Geosciences
Wolfgang Alexander Obermeier, Clemens Schwingshackl, Ana Bastos, Giulia Conchedda, Thomas Gasser, Giacomo Grassi, Richard A. Houghton, Francesco Nicola Tubiello, Stephen Sitch, and Julia Pongratz
Earth Syst. Sci. Data, 16, 605–645, https://doi.org/10.5194/essd-16-605-2024, https://doi.org/10.5194/essd-16-605-2024, 2024
Short summary
Short summary
We provide and compare country-level estimates of land-use CO2 fluxes from a variety and large number of models, bottom-up estimates, and country reports for the period 1950–2021. Although net fluxes are small in many countries, they are often composed of large compensating emissions and removals. In many countries, the estimates agree well once their individual characteristics are accounted for, but in other countries, including some of the largest emitters, substantial uncertainties exist.
This article is included in the Encyclopedia of Geosciences
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
This article is included in the Encyclopedia of Geosciences
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
This article is included in the Encyclopedia of Geosciences
Chenwei Xiao, Sönke Zaehle, Hui Yang, Jean-Pierre Wigneron, Christiane Schmullius, and Ana Bastos
Earth Syst. Dynam., 14, 1211–1237, https://doi.org/10.5194/esd-14-1211-2023, https://doi.org/10.5194/esd-14-1211-2023, 2023
Short summary
Short summary
Ecosystem resistance reflects their susceptibility during adverse conditions and can be changed by land management. We estimate ecosystem resistance to drought and temperature globally. We find a higher resistance to drought in forests compared to croplands and an evident loss of resistance to drought when primary forests are converted to secondary forests or they are harvested. Old-growth trees tend to be more resistant in some forests and crops benefit from irrigation during drought periods.
This article is included in the Encyclopedia of Geosciences
Ryan Vella, Andrea Pozzer, Matthew Forrest, Jos Lelieveld, Thomas Hickler, and Holger Tost
Biogeosciences, 20, 4391–4412, https://doi.org/10.5194/bg-20-4391-2023, https://doi.org/10.5194/bg-20-4391-2023, 2023
Short summary
Short summary
We investigated the effect of the El Niño–Southern Oscillation (ENSO) on biogenic volatile organic compound (BVOC) emissions from plants. ENSO events can cause a significant increase in these emissions, which have a long-term impact on the Earth's atmosphere. Persistent ENSO conditions can cause long-term changes in vegetation, resulting in even higher BVOC emissions. We link ENSO-induced emission anomalies with driving atmospheric and vegetational variables.
This article is included in the Encyclopedia of Geosciences
Richard Nair, Yunpeng Luo, Tarek El-Madany, Victor Rolo, Javier Pacheco-Labrador, Silvia Caldararu, Kendalynn A. Morris, Marion Schrumpf, Arnaud Carrara, Gerardo Moreno, Markus Reichstein, and Mirco Migliavacca
EGUsphere, https://doi.org/10.5194/egusphere-2023-2434, https://doi.org/10.5194/egusphere-2023-2434, 2023
Preprint archived
Short summary
Short summary
We studied a Mediterranean ecosystem to understand carbon uptake efficiency and its controls. These ecosystems face potential nitrogen-phosphorus imbalances due to pollution. Analysing six years of carbon data, we assessed controls at different timeframes. This is crucial for predicting such vulnerable regions. Our findings revealed N limitation on C uptake, not N:P imbalance, and strong influence of water availability. whether drought or wetness promoted net C uptake depended on timescale.
This article is included in the Encyclopedia of Geosciences
Franziska Gaupp, Sara Constantino, and Laura Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2023-1533, https://doi.org/10.5194/egusphere-2023-1533, 2023
Preprint archived
Short summary
Short summary
Large-scale, accelerated societal transformation is required to address today's global challenges and to improve long-term sustainability. Human agency, the capacity to influence the outside world, is key in achieving societal change. We present a framework that examines the determinants of agency, the relationship between individual and collective agency and how collective agency can trigger large-scale transformation. We use the case of dietary change to exemplify our framework.
This article is included in the Encyclopedia of Geosciences
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023, https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Short summary
The timing and duration of the carbon uptake period (CUP) are sensitive to the occurrence of major phenological events, which are influenced by recent climate change. This study presents an ensemble-based approach for quantifying the timing and duration of the CUP and their uncertainty when derived from atmospheric CO2 measurements with noise and gaps. The CUP metrics derived with the approach are more robust and have less uncertainty than when estimated with the conventional methods.
This article is included in the Encyclopedia of Geosciences
A. Elia, M. Pickering, M. Girardello, G. Oton, G. Ceccherini, S. Capobianco, M. Piccardo, G. Forzieri, M. Migliavacca, and A. Cescatti
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W7-2023, 41–46, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-41-2023, 2023
Jennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R. L. Anderegg, and Anja Rammig
Biogeosciences, 20, 2117–2142, https://doi.org/10.5194/bg-20-2117-2023, https://doi.org/10.5194/bg-20-2117-2023, 2023
Short summary
Short summary
Unprecedented climate extremes (UCEs) are expected to have dramatic impacts on ecosystems. We present a road map of how dynamic vegetation models can explore extreme drought and climate change and assess ecological processes to measure and reduce model uncertainties. The models predict strong nonlinear responses to UCEs. Due to different model representations, the models differ in magnitude and trajectory of forest loss. Therefore, we explore specific plant responses that reflect knowledge gaps.
This article is included in the Encyclopedia of Geosciences
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
This article is included in the Encyclopedia of Geosciences
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
This article is included in the Encyclopedia of Geosciences
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023, https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) are released by vegetation and have a major impact on atmospheric chemistry and aerosol formation. Non-interacting vegetation constrains the majority of numerical models used to estimate global BVOC emissions, and thus, the effects of changing vegetation on emissions are not addressed. In this work, we replace the offline vegetation with dynamic vegetation states by linking a chemistry–climate model with a global dynamic vegetation model.
This article is included in the Encyclopedia of Geosciences
Manal Lam'barki, Wantong Li, Sungmin O, Chunhui Zhan, and Rene Orth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-404, https://doi.org/10.5194/hess-2022-404, 2022
Manuscript not accepted for further review
Short summary
Short summary
We investigate the main drivers of high river flows in near-natural European catchments. While there are a lot of previous research in this area, the understanding of the relative relevance of high flow drivers other than precipitation is understudied. We find that the secondary drivers of high river flows are very diverse and become more relevant for more extreme events. This illustrates the necessity of flood management by considering a multitude of drivers in the context of climate change.
This article is included in the Encyclopedia of Geosciences
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
This article is included in the Encyclopedia of Geosciences
Na Li, Sebastian Sippel, Alexander J. Winkler, Miguel D. Mahecha, Markus Reichstein, and Ana Bastos
Earth Syst. Dynam., 13, 1505–1533, https://doi.org/10.5194/esd-13-1505-2022, https://doi.org/10.5194/esd-13-1505-2022, 2022
Short summary
Short summary
Quantifying the imprint of large-scale atmospheric circulation dynamics and associated carbon cycle responses is key to improving our understanding of carbon cycle dynamics. Using a statistical model that relies on spatiotemporal sea level pressure as a proxy for large-scale atmospheric circulation, we quantify the fraction of interannual variability in atmospheric CO2 growth rate and the land CO2 sink that are driven by atmospheric circulation variability.
This article is included in the Encyclopedia of Geosciences
Étienne Guertin and H. Damon Matthews
EGUsphere, https://doi.org/10.5194/egusphere-2022-961, https://doi.org/10.5194/egusphere-2022-961, 2022
Preprint archived
Short summary
Short summary
In this research project we add a wildfire model to a model that simulates global vegetation and climate. Our model is simpler and faster than most models. The model simulates wildfire with moderate accuracy but in some areas, the model is very far from reality. This shows that wildfires are highly influenced by climate and vegetation and that these need to be simulated with more accuracy to simulate wildfire. We suggest using a method that compromises between accuracy and speed of simulation.
This article is included in the Encyclopedia of Geosciences
Melissa Ruiz-Vásquez, Sungmin O, Alexander Brenning, Randal D. Koster, Gianpaolo Balsamo, Ulrich Weber, Gabriele Arduini, Ana Bastos, Markus Reichstein, and René Orth
Earth Syst. Dynam., 13, 1451–1471, https://doi.org/10.5194/esd-13-1451-2022, https://doi.org/10.5194/esd-13-1451-2022, 2022
Short summary
Short summary
Subseasonal forecasts facilitate early warning of extreme events; however their predictability sources are not fully explored. We find that global temperature forecast errors in many regions are related to climate variables such as solar radiation and precipitation, as well as land surface variables such as soil moisture and evaporative fraction. A better representation of these variables in the forecasting and data assimilation systems can support the accuracy of temperature forecasts.
This article is included in the Encyclopedia of Geosciences
Xin Yu, René Orth, Markus Reichstein, Michael Bahn, Anne Klosterhalfen, Alexander Knohl, Franziska Koebsch, Mirco Migliavacca, Martina Mund, Jacob A. Nelson, Benjamin D. Stocker, Sophia Walther, and Ana Bastos
Biogeosciences, 19, 4315–4329, https://doi.org/10.5194/bg-19-4315-2022, https://doi.org/10.5194/bg-19-4315-2022, 2022
Short summary
Short summary
Identifying drought legacy effects is challenging because they are superimposed on variability driven by climate conditions in the recovery period. We develop a residual-based approach to quantify legacies on gross primary productivity (GPP) from eddy covariance data. The GPP reduction due to legacy effects is comparable to the concurrent effects at two sites in Germany, which reveals the importance of legacy effects. Our novel methodology can be used to quantify drought legacies elsewhere.
This article is included in the Encyclopedia of Geosciences
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
This article is included in the Encyclopedia of Geosciences
Phillip Papastefanou, Christian S. Zang, Zlatan Angelov, Aline Anderson de Castro, Juan Carlos Jimenez, Luiz Felipe Campos De Rezende, Romina C. Ruscica, Boris Sakschewski, Anna A. Sörensson, Kirsten Thonicke, Carolina Vera, Nicolas Viovy, Celso Von Randow, and Anja Rammig
Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, https://doi.org/10.5194/bg-19-3843-2022, 2022
Short summary
Short summary
The Amazon rainforest has been hit by multiple severe drought events. In this study, we assess the severity and spatial extent of the extreme drought years 2005, 2010 and 2015/16 in the Amazon. Using nine different precipitation datasets and three drought indicators we find large differences in drought stress across the Amazon region. We conclude that future studies should use multiple rainfall datasets and drought indicators when estimating the impact of drought stress in the Amazon region.
This article is included in the Encyclopedia of Geosciences
Sophia Walther, Simon Besnard, Jacob Allen Nelson, Tarek Sebastian El-Madany, Mirco Migliavacca, Ulrich Weber, Nuno Carvalhais, Sofia Lorena Ermida, Christian Brümmer, Frederik Schrader, Anatoly Stanislavovich Prokushkin, Alexey Vasilevich Panov, and Martin Jung
Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, https://doi.org/10.5194/bg-19-2805-2022, 2022
Short summary
Short summary
Satellite observations help interpret station measurements of local carbon, water, and energy exchange between the land surface and the atmosphere and are indispensable for simulations of the same in land surface models and their evaluation. We propose generalisable and efficient approaches to systematically ensure high quality and to estimate values in data gaps. We apply them to satellite data of surface reflectance and temperature with different resolutions at the stations.
This article is included in the Encyclopedia of Geosciences
Philip J. Ward, James Daniell, Melanie Duncan, Anna Dunne, Cédric Hananel, Stefan Hochrainer-Stigler, Annegien Tijssen, Silvia Torresan, Roxana Ciurean, Joel C. Gill, Jana Sillmann, Anaïs Couasnon, Elco Koks, Noemi Padrón-Fumero, Sharon Tatman, Marianne Tronstad Lund, Adewole Adesiyun, Jeroen C. J. H. Aerts, Alexander Alabaster, Bernard Bulder, Carlos Campillo Torres, Andrea Critto, Raúl Hernández-Martín, Marta Machado, Jaroslav Mysiak, Rene Orth, Irene Palomino Antolín, Eva-Cristina Petrescu, Markus Reichstein, Timothy Tiggeloven, Anne F. Van Loon, Hung Vuong Pham, and Marleen C. de Ruiter
Nat. Hazards Earth Syst. Sci., 22, 1487–1497, https://doi.org/10.5194/nhess-22-1487-2022, https://doi.org/10.5194/nhess-22-1487-2022, 2022
Short summary
Short summary
The majority of natural-hazard risk research focuses on single hazards (a flood, a drought, a volcanic eruption, an earthquake, etc.). In the international research and policy community it is recognised that risk management could benefit from a more systemic approach. In this perspective paper, we argue for an approach that addresses multi-hazard, multi-risk management through the lens of sustainability challenges that cut across sectors, regions, and hazards.
This article is included in the Encyclopedia of Geosciences
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
This article is included in the Encyclopedia of Geosciences
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
This article is included in the Encyclopedia of Geosciences
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
This article is included in the Encyclopedia of Geosciences
J. Pacheco-Labrador, U. Weber, X. Ma, M. D. Mahecha, N. Carvalhais, C. Wirth, A. Huth, F. J. Bohn, G. Kraemer, U. Heiden, FunDivEUROPE members, and M. Migliavacca
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 49–55, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-49-2022, 2022
Josephin Kroll, Jasper M. C. Denissen, Mirco Migliavacca, Wantong Li, Anke Hildebrandt, and Rene Orth
Biogeosciences, 19, 477–489, https://doi.org/10.5194/bg-19-477-2022, https://doi.org/10.5194/bg-19-477-2022, 2022
Short summary
Short summary
Plant growth relies on having access to energy (solar radiation) and water (soil moisture). This energy and water availability is impacted by weather extremes, like heat waves and droughts, which will occur more frequently in response to climate change. In this context, we analysed global satellite data to detect in which regions extreme plant growth is controlled by energy or water. We find that extreme plant growth is associated with temperature- or soil-moisture-related extremes.
This article is included in the Encyclopedia of Geosciences
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
This article is included in the Encyclopedia of Geosciences
Mats Lindeskog, Benjamin Smith, Fredrik Lagergren, Ekaterina Sycheva, Andrej Ficko, Hans Pretzsch, and Anja Rammig
Geosci. Model Dev., 14, 6071–6112, https://doi.org/10.5194/gmd-14-6071-2021, https://doi.org/10.5194/gmd-14-6071-2021, 2021
Short summary
Short summary
Forests play an important role in the global carbon cycle and for carbon storage. In Europe, forests are intensively managed. To understand how management influences carbon storage in European forests, we implement detailed forest management into the dynamic vegetation model LPJ-GUESS. We test the model by comparing model output to typical forestry measures, such as growing stock and harvest data, for different countries in Europe.
This article is included in the Encyclopedia of Geosciences
Ana Bastos, Kerstin Hartung, Tobias B. Nützel, Julia E. M. S. Nabel, Richard A. Houghton, and Julia Pongratz
Earth Syst. Dynam., 12, 745–762, https://doi.org/10.5194/esd-12-745-2021, https://doi.org/10.5194/esd-12-745-2021, 2021
Short summary
Short summary
Fluxes from land-use change and management (FLUC) are a large source of uncertainty in global and regional carbon budgets. Here, we evaluate the impact of different model parameterisations on FLUC. We show that carbon stock densities and allocation of carbon following transitions contribute more to uncertainty in FLUC than response-curve time constants. Uncertainty in FLUC could thus, in principle, be reduced by available Earth-observation data on carbon densities at a global scale.
This article is included in the Encyclopedia of Geosciences
Kerstin Hartung, Ana Bastos, Louise Chini, Raphael Ganzenmüller, Felix Havermann, George C. Hurtt, Tammas Loughran, Julia E. M. S. Nabel, Tobias Nützel, Wolfgang A. Obermeier, and Julia Pongratz
Earth Syst. Dynam., 12, 763–782, https://doi.org/10.5194/esd-12-763-2021, https://doi.org/10.5194/esd-12-763-2021, 2021
Short summary
Short summary
In this study, we model the relative importance of several contributors to the land-use and land-cover change (LULCC) flux based on a LULCC dataset including uncertainty estimates. The uncertainty of LULCC is as relevant as applying wood harvest and gross transitions for the cumulative LULCC flux over the industrial period. However, LULCC uncertainty matters less than the other two factors for the LULCC flux in 2014; historical LULCC uncertainty is negligible for estimates of future scenarios.
This article is included in the Encyclopedia of Geosciences
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
This article is included in the Encyclopedia of Geosciences
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
This article is included in the Encyclopedia of Geosciences
Gilvan Sampaio, Marília H. Shimizu, Carlos A. Guimarães-Júnior, Felipe Alexandre, Marcelo Guatura, Manoel Cardoso, Tomas F. Domingues, Anja Rammig, Celso von Randow, Luiz F. C. Rezende, and David M. Lapola
Biogeosciences, 18, 2511–2525, https://doi.org/10.5194/bg-18-2511-2021, https://doi.org/10.5194/bg-18-2511-2021, 2021
Short summary
Short summary
The impact of large-scale deforestation and the physiological effects of elevated atmospheric CO2 on Amazon rainfall are systematically compared in this study. Our results are remarkable in showing that the two disturbances cause equivalent rainfall decrease, though through different causal mechanisms. These results highlight the importance of not only curbing regional deforestation but also reducing global CO2 emissions to avoid climatic changes in the Amazon.
This article is included in the Encyclopedia of Geosciences
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
This article is included in the Encyclopedia of Geosciences
Anita D. Bayer, Richard Fuchs, Reinhard Mey, Andreas Krause, Peter H. Verburg, Peter Anthoni, and Almut Arneth
Earth Syst. Dynam., 12, 327–351, https://doi.org/10.5194/esd-12-327-2021, https://doi.org/10.5194/esd-12-327-2021, 2021
Short summary
Short summary
Many projections of future land-use/-cover exist. We evaluate a number of these and determine the variability they cause in ecosystems and their services. We found that projections differ a lot in regional patterns, with some patterns being at least questionable in a historical context. Across ecosystem service indicators, resulting variability until 2040 was highest in crop production. Results emphasize that such variability should be acknowledged in assessments of future ecosystem provisions.
This article is included in the Encyclopedia of Geosciences
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
This article is included in the Encyclopedia of Geosciences
Milan Flach, Alexander Brenning, Fabian Gans, Markus Reichstein, Sebastian Sippel, and Miguel D. Mahecha
Biogeosciences, 18, 39–53, https://doi.org/10.5194/bg-18-39-2021, https://doi.org/10.5194/bg-18-39-2021, 2021
Short summary
Short summary
Drought and heat events affect the uptake and sequestration of carbon in terrestrial ecosystems. We study the impact of droughts and heatwaves on the uptake of CO2 of different vegetation types at the global scale. We find that agricultural areas are generally strongly affected. Forests instead are not particularly sensitive to the events under scrutiny. This implies different water management strategies of forests but also a lack of sensitivity to remote-sensing-derived vegetation activity.
This article is included in the Encyclopedia of Geosciences
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
This article is included in the Encyclopedia of Geosciences
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
This article is included in the Encyclopedia of Geosciences
Naixin Fan, Sujan Koirala, Markus Reichstein, Martin Thurner, Valerio Avitabile, Maurizio Santoro, Bernhard Ahrens, Ulrich Weber, and Nuno Carvalhais
Earth Syst. Sci. Data, 12, 2517–2536, https://doi.org/10.5194/essd-12-2517-2020, https://doi.org/10.5194/essd-12-2517-2020, 2020
Short summary
Short summary
The turnover time of terrestrial carbon (τ) controls the global carbon cycle–climate feedback. In this study, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ which could contribute to uncertainty reductions in future projections of the carbon cycle–climate feedback.
This article is included in the Encyclopedia of Geosciences
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
This article is included in the Encyclopedia of Geosciences
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abatzoglou, J. T., Williams, A. P., and Barbero, R.: Global Emergence of Anthropogenic Climate Change in Fire Weather Indices, Geophys. Res. Lett., 46, 326–336, https://doi.org/10.1029/2018GL080959, 2019. a
Allan, J. R., Possingham, H. P., Atkinson, S. C., Waldron, A., Di Marco, M., Butchart, S. H. M., Adams, V. M., Kissling, W. D., Worsdell, T., Sandbrook, C., Gibbon, G., Kumar, K., Mehta, P., Maron, M., Williams, B. A., Jones, K. R., Wintle, B. A., Reside, A. E., and Watson, J. E. M.: The minimum land area requiring conservation attention to safeguard biodiversity, Science, 376, 1094–1101, https://doi.org/10.1126/science.abl9127, 2022. a
Alongi, D. M.: Carbon sequestration in mangrove forests, Carbon Manag., 3, 313–322, https://doi.org/10.4155/cmt.12.20, 2012. a
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-driven decline in global burned area, Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017. a
Andela, N., Morton, D. C., Schroeder, W., Chen, Y., Brando, P. M., and Randerson, J. T.: Tracking and classifying Amazon fire events in near real time, Sci. Adv., 8, 1356–1362, https://doi.org/10.1126/sciadv.abd2713, 2022. a
Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., Cullenward, D., Field, C. B., Freeman, J., Goetz, S. J., Hicke, J. A., Huntzinger, D., Jackson, R. B., Nickerson, J., Pacala, S., and Randerson, J. T.: Climate-driven risks to the climate mitigation potential of forests, Science, 368, eaaz7005, https://doi.org/10.1126/science.aaz7005, 2020. a, b
Apine, E. and Stojanovic, T.: Is the coastal future green, grey or hybrid? Diverse perspectives on coastal flood risk management and adaptation in the UK, Cambridge Prisms: Coastal Futures, 2, e4, https://doi.org/10.1017/cft.2024.4, 2024. a, b
Arroyo-Rodríguez, V., Fahrig, L., Tabarelli, M., Watling, J. I., Tischendorf, L., Benchimol, M., Cazetta, E., Faria, D., Leal, I. R., Melo, F. P. L., Morante-Filho, J. C., Santos, B. A., Arasa-Gisbert, R., Arce-Peña, N., Cervantes-López, M. J., Cudney-Valenzuela, S., Galán-Acedo, C., San-José, M., Vieira, I. C. G., Slik, J. F., Nowakowski, A. J., and Tscharntke, T.: Designing optimal human-modified landscapes for forest biodiversity conservation, Ecol. Lett., 23, 1404–1420, https://doi.org/10.1111/ele.13535, 2020. a
Ascoli, D., Plana, E., Oggioni, S. D., Tomao, A., Colonico, M., Corona, P., Giannino, F., Moreno, M., Xanthopoulos, G., Kaoukis, K., Athanasiou, M., Colaço, M. C., Rego, F., Sequeira, A. C., Acácio, V., Serra, M., and Barbati, A.: Fire-smart solutions for sustainable wildfire risk prevention: Bottom-up initiatives meet top-down policies under EU green deal, Int. J. Disast. Risk Re., 92, 103715, https://doi.org/10.1016/j.ijdrr.2023.103715, 2023. a
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., and Supuran, C. T.: Natural products in drug discovery: advances and opportunities, Nat. Rev. Drug. Discov., 20, 200–216, 2021. a
Ayugi, B., Eresanya, E. O., Onyango, A. O., Ogou, F. K., Okoro, E. C., Okoye, C. O., Anoruo, C. M., Dike, V. N., Ashiru, O. R., Daramola, M. T., Mumo, R., and Ongoma, V.: Review of meteorological drought in Africa: historical trends, impacts, mitigation measures, and prospects, Pure Appl. Geophys., 179, 1365–1386, 2022. a
Baker, J. C. A. and Spracklen, D. V.: Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models, Geophys. Res. Lett., 49, e2021GL095136, https://doi.org/10.1029/2021GL095136, 2022. a
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V. d., Soto, I., Gómez-Barbero, M., Barnes, A., and Eory, V.: Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics, Sustainability, 9, 1339, https://doi.org/10.3390/su9081339, 2017. a
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., and Graham, N. A. J.: The future of hyperdiverse tropical ecosystems, Nature, 559, 517–526, https://doi.org/10.1038/s41586-018-0301-1, 2018. a
Bastos Lima, M. G. and Persson, U. M.: Commodity-Centric Landscape Governance as a Double-Edged Sword: The Case of Soy and the Cerrado Working Group in Brazil, Front. Forest. Glob. Change, 3, 27, https://doi.org/10.3389/ffgc.2020.00027, 2020. a
Bayham, J., Yoder, J. K., Champ, P. A., and Calkin, D. E.: The Economics of Wildfire in the United States, Annu. Rev. Resour. Econ., 14, 379–401, https://doi.org/10.1146/annurev-resource-111920-014804, 2022. a, b
Bedia, J., Herrera, S., Gutiérrez, J. M., Benali, A., Brands, S., Mota, B., and Moreno, J. M.: Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change, Agr. Forest Meteorol., 214/215, 369–379, https://doi.org/10.1016/j.agrformet.2015.09.002, 2015. a
Beetz, K., Marrs, C., Busse, A., Poděbradská, M., Kinalczyk, D., Kranz, J., and Forkel, M.: Effects of bark beetle disturbance and fuel types on fire radiative power and burn severity in the Bohemian-Saxon Switzerland, Forestry: An International Journal of Forest Research, 98, 59–70, https://doi.org/10.1093/forestry/cpae024, 2024. a
Bishop, R. C., Boyle, K. J., Carson, R. T., Chapman, D., Hanemann, W. M., Kanninen, B., Kopp, R. J., Krosnick, J. A., List, J., Meade, N., Paterson, R., Presser, S., Smith, V. K., Tourangeau, R., Welsh, M., Wooldridge, J. M., DeBell, M., Donovan, C., Konopka, M., and Scherer, N.: Putting a value on injuries to natural assets: The BP oil spill, Science, 356, 253–254, https://doi.org/10.1126/science.aam8124, 2017. a
Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., and Hergert, G. W.: Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils, Agron. J., 107, 2449–2474, https://doi.org/10.2134/agronj15.0086, 2015. a
Bloem, S., Cullen, A. C., Mearns, L. O., and Abatzoglou, J. T.: The Role of International Resource Sharing Arrangements in Managing Fire in the Face of Climate Change, Fire, 5, 88, https://doi.org/10.3390/fire5040088, 2022. a
Blythe, J. L., Gill, D. A., Claudet, J., Bennett, N. J., Gurney, G. G., Baggio, J. A., Ban, N. C., Bernard, M. L., Brun, V., Darling, E. S., Franco, A. D., Epstein, G., Franks, P., Horan, R., Jupiter, S. D., Lau, J., Lazzari, N., Mahajan, S. L., Mangubhai, S., Naggea, J., Turner, R. A., and Zafra-Calvo, N.: Blue justice: A review of emerging scholarship and resistance movements, Cambridge Prisms: Coastal Futures, 1, e15, https://doi.org/10.1017/cft.2023.4, 2023. a
Bochow, N. and Boers, N.: The South American monsoon approaches a critical transition in response to deforestation, Sci. Adv., 9, eadd9973, https://doi.org/10.1126/sciadv.add9973, 2023. a, b
Bocken, N., Strupeit, L., Whalen, K., and Nußholz, J.: A Review and Evaluation of Circular Business Model Innovation Tools, Sustainability, 11, 2210, https://doi.org/10.3390/su11082210, 2019. a
Bohn, F. J.: Statistics on the authors of the “Current perspectives on biosphere research 2024–2025”, Figshare [code], https://doi.org/10.6084/m9.figshare.29092712, 2025. Date: 22.5.2025 a
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008. a
Bond, W. J. and Keeley, J. E.: Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems, Trend. Ecol. Evol., 20, 387–394, https://doi.org/10.1016/j.tree.2005.04.025, 2005. a
Bourgoin, C., Ceccherini, G., Girardello, M., Vancutsem, C., Avitabile, V., Beck, P. S. A., Beuchle, R., Blanc, L., Duveiller, G., Migliavacca, M., Vieilledent, G., Cescatti, A., and Achard, F.: Human degradation of tropical moist forests is greater than previously estimated, Nature, 631, 570–576, https://doi.org/10.1038/s41586-024-07629-0, 2024. a
Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., and Swetnam, T. W.: The human dimension of fire regimes on Earth, J. Biogeogr., 38, 2223–2236, https://doi.org/10.1111/j.1365-2699.2011.02595.x, 2011. a, b
Brancalion, P. H. S., de Almeida, D. R. A., Vidal, E., Molin, P. G., Sontag, V. E., Souza, S. E. X. F., and Schulze, M. D.: Fake legal logging in the Brazilian Amazon, Sci. Adv., 4, eaat1192, https://doi.org/10.1126/sciadv.aat1192, 2018. a
Brander, M. and Broekhoff, D.: Methods that equate temporary carbon storage with permanent CO2 emission reductions lead to false claims on temperature alignment, Carbon Manag., 14, 2284714, https://doi.org/10.1080/17583004.2023.2284714, 2023. a
Brockington, D., Duffy, R., and Igoe, J.: Nature unbound: conservation, capitalism and the future of protected areas, Routledge, London, 1st Edn., 240 pp., https://doi.org/10.4324/9781849772075, 2012. a, b
Brown, P. T., Hanley, H., Mahesh, A., Reed, C., Strenfel, S. J., Davis, S. J., Kochanski, A. K., and Clements, C. B.: Climate warming increases extreme daily wildfire growth risk in California, Nature, 621, 760–766, https://doi.org/10.1038/s41586-023-06444-3, 2023. a, b
Bruijnzeel, L., Mulligan, M., and Scatena, F. N.: Hydrometeorology of tropical montane cloud forests: emerging patterns, Hydrol. Process., 25, 465–498, 2011. a
Burton, C., Lampe, S., Kelley, D. I., Thiery, W., Hantson, S., Christidis, N., Gudmundsson, L., Forrest, M., Burke, E., Chang, J., Huang, H., Ito, A., Kou-Giesbrecht, S., Lasslop, G., Li, W., Nieradzik, L., Li, F., Chen, Y., Randerson, J., Reyer, C. P. O., and Mengel, M.: Global burned area increasingly explained by climate change, Nat. Clim. Change, 14, 1186–1192, https://doi.org/10.1038/s41558-024-02140-w, 2024. a
Bustamante, M., Roy, J., Ospina, D., Achakulwisut, P., Aggarwal, A., Bastos, A., Broadgate, W., Canadell, J. G., Carr, E. R., Chen, D., Cleugh, H. A., Ebi, K. L., Edwards, C., Farbotko, C., Fernández-Martínez, M., Frölicher, T. L., Fuss, S., Geden, O., Gruber, N., Harrington, L. J., Hauck, J., Hausfather, Z., Hebden, S., Hebinck, A., Huq, S., Huss, M., Jamero, M. L. P., Juhola, S., Kumarasinghe, N., Lwasa, S., Mallick, B., Martin, M., McGreevy, S., Mirazo, P., Mukherji, A., Muttitt, G., Nemet, G. F., Obura, D., Okereke, C., Oliver, T., Orlove, B., Ouedraogo, N. S., Patra, P. K., Pelling, M., Pereira, L. M., Persson, Å., Pongratz, J., Prakash, A., Rammig, A., Raymond, C., Redman, A., Reveco, C., Rockström, J., Rodrigues, R., Rounce, D. R., Schipper, E. L. F., Schlosser, P., Selomane, O., Semieniuk, G., Shin, Y.-J., Siddiqui, T. A., Singh, V., Sioen, G. B., Sokona, Y., Stammer, D., Steinert, N. J., Suk, S., Sutton, R., Thalheimer, L., Thompson, V., Trencher, G., van der Geest, K., Werners, S. E., Wübbelmann, T., Wunderling, N., Yin, J., Zickfeld, K., and Zscheischler, J.: Ten new insights in climate science 2023, Glob. Sustain., 7, e19, https://doi.org/10.1017/sus.2023.25, 2023. a
Büscher, B. and Fletcher, R.: Towards Convivial Conservation, Conserv. Soc., 17, 283, https://doi.org/10.4103/cs.cs_19_75, 2019. a, b, c
Caporaso, L., Duveiller, G., Giuliani, G., Giorgi, F., Stengel, M., Massaro, E., Piccardo, M., and Cescatti, A.: Converging Findings of Climate Models and Satellite Observations on the Positive Impact of European Forests on Cloud Cover, J. Geophys. Res.-Atmos., 129, e2023JD039235, https://doi.org/10.1029/2023JD039235, 2024. a
Cariveau, D. P., Bruninga-Socolar, B., and Pardee, G. L.: A review of the challenges and opportunities for restoring animal-mediated pollination of native plants, Emerging Topics in Life Sciences, 4, 99–109, https://doi.org/10.1042/ETLS20190073, 2020. a
Carton, W., Lund, J. F., and Dooley, K.: Undoing Equivalence: Rethinking Carbon Accounting for Just Carbon Removal, Front. Clim., 3, 664130, https://doi.org/10.3389/fclim.2021.664130, 2021. a
Carton, W., Hougaard, I.-M., Markusson, N., and Lund, J. F.: Is carbon removal delaying emission reductions?, WIREs Clim. Change, 14, e826, https://doi.org/10.1002/wcc.826, 2023. a
Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., Behrenfeld, M. J., Boetius, A., Boyd, P. W., Classen, A. T., Crowther, T. W., Danovaro, R., Foreman, C. M., Huisman, J., Hutchins, D. A., Jansson, J. K., Karl, D. M., Koskella, B., Mark Welch, D. B., Martiny, J. B. H., Moran, M. A., Orphan, V. J., Reay, D. S., Remais, J. V., Rich, V. I., Singh, B. K., Stein, L. Y., Stewart, F. J., Sullivan, M. B., van Oppen, M. J. H., Weaver, S. C., Webb, E. A., and Webster, N. S.: Scientists' warning to humanity: microorganisms and climate change, Nat. Rev. Microbiol., 17, 569–586, https://doi.org/10.1038/s41579-019-0222-5, 2019. a
Centre, C. C.: Convivial Conservation Manifesto, https://www.convivialconservation.com/2024/05/14/convivial-conservation-manifesto-is-available-online-now/ (last access: 10 August 2024), 2024. a
Chazdon, R. L., Lindenmayer, D., Guariguata, M. R., Crouzeilles, R., Benayas, J. M. R., and Chavero, E. L.: Fostering natural forest regeneration on former agricultural land through economic and policy interventions, Environ. Res. Lett., 15, 043002, https://doi.org/10.1088/1748-9326/ab79e6, 2020. a, b
Chen, Y., Hall, J., van Wees, D., Andela, N., Hantson, S., Giglio, L., van der Werf, G. R., Morton, D. C., and Randerson, J. T.: Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5), Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, 2023. a, b, c, d
Cheung, S. C.: The politics of wetlandscape: fishery heritage and natural conservation in Hong Kong, Int. J. Herit. Stud., 17, 36–45, https://doi.org/10.1080/13527258.2011.524004, 2011. a
Chuvieco, E., Pettinari, M. L., Koutsias, N., Forkel, M., Hantson, S., and Turco, M.: Human and climate drivers of global biomass burning variability, Sci. Total Environ., 779, 146361, https://doi.org/10.1016/j.scitotenv.2021.146361, 2021. a
Chuvieco, E., Yebra, M., Martino, S., Thonicke, K., Gómez-Giménez, M., San-Miguel, J., Oom, D., Velea, R., Mouillot, F., Molina, J. R., Miranda, A. I., Lopes, D., Salis, M., Bugaric, M., Sofiev, M., Kadantsev, E., Gitas, I. Z., Stavrakoudis, D., Eftychidis, G., Bar-Massada, A., Neidermeier, A., Pampanoni, V., Pettinari, M. L., Arrogante-Funes, F., Ochoa, C., Moreira, B., and Viegas, D.: Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn, Fire, 6, 215, https://doi.org/10.3390/fire6050215, 2023. a
Clarke, H., Nolan, R. H., De Dios, V. R., Bradstock, R., Griebel, A., Khanal, S., and Boer, M. M.: Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand, Nat. Commun., 13, 7161, https://doi.org/10.1038/s41467-022-34966-3, 2022. a
Forest Declaration Assessment Partners: Off track and falling behind: Tracking progress on 2030 forest goals, Climate Focus, https://www.forestdeclaration.org (last access: 31 July 2024), 2023. a
Collins, L., Bradstock, R. A., Clarke, H., Clarke, M. F., Nolan, R. H., and Penman, T. D.: The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire, Environ. Res. Lett., 16, 044029, https://doi.org/10.1088/1748-9326/abeb9e, 2021. a
Commar, L. F. S., Abrahão, G. M., and Costa, M. H.: A possible deforestation-induced synoptic-scale circulation that delays the rainy season onset in Amazonia, Environ. Res. Lett., 18, 044041, https://doi.org/10.1088/1748-9326/acc95f, 2023. a
Commission, E.: Factsheets on the European Green Deal – European Commission, https://commission.europa.eu/publications/factsheets-european-green-deal_en (last access: 10 August 2024), 2019. a
Connor, T., Tripp, E., Tripp, B., Saxon, B. J., Camarena, J., Donahue, A., Sarna-Wojcicki, D., Macaulay, L., Bean, T., Hanbury-Brown, A., and Brashares, J.: Karuk ecological fire management practices promote elk habitat in northern California, J. Appl. Ecol., 59, 1874–1883, https://doi.org/10.1111/1365-2664.14194, 2022. a
Copernicus: Canada produced 23 % of the global wildfire carbon emissions for 2023, https://atmosphere.copernicus.eu/copernicus-canada-produced-23-global-wildfire-carbon-emissions-2023# (last access: 31 July 2024), 2023. a
Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K.: Changes in the global value of ecosystem services, Glob. Environ. Change, 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002, 2014. a
Cowie, R. H., Bouchet, P., and Fontaine, B.: The Sixth Mass Extinction: fact, fiction or speculation?, Biological Reviews, 97, 640–663, https://doi.org/10.1111/brv.12816, 2022. a
Croker, A. R., Woods, J., and Kountouris, Y.: Changing fire regimes in East and Southern Africa’s savanna-protected areas: opportunities and challenges for indigenous-led savanna burning emissions abatement schemes, Fire Ecol., 19, 63, https://doi.org/10.1186/s42408-023-00215-1, 2023. a
Crutzen, P. J.: The “anthropocene”, in: Earth system science in the anthropocene, 13–18, Springer, Berlin, Heidelberg, Springer Berlin Heidelberg, ISBN-13: 978-3540265900, 2006. a
Dawson, N. M., Coolsaet, B., Bhardwaj, A., Booker, F., Brown, D., Lliso, B., Loos, J., Martin, A., Oliva, M., Pascual, U., Sherpa, P., and Worsdell, T.: Is it just conservation? A typology of Indigenous peoples’ and local communities’ roles in conserving biodiversity, One Earth, 7, 1007–1021, https://doi.org/10.1016/j.oneear.2024.05.001, 2024. a
de Lange, E., Sze, J. S., Allan, J., Atkinson, S., Booth, H., Fletcher, R., Khanyari, M., and Saif, O.: A global conservation basic income to safeguard biodiversity, Nat. Sustain., 6, 1016–1023, https://doi.org/10.1038/s41893-023-01115-7, 2023. a
Dean, A. J., Uebel, K., Schultz, T., Fielding, K. S., Saeck, E., Ross, H., and Martin, V.: Community stewardship to protect coastal and freshwater ecosystems–pathways between recreation and stewardship intentions, People Nat., 6, 1452–1468, https://doi.org/10.1002/pan3.10658, 2024. a
Dickson-Hoyle, S., Ignace, R. E., Ignace, M. B., Hagerman, S. M., Daniels, L. D., and Copes-Gerbitz, K.: Walking on two legs: a pathway of Indigenous restoration and reconciliation in fire-adapted landscapes, Restor. Ecol., 30, e13566, https://doi.org/10.1111/rec.13566, 2022. a
Dodge, M.: Forest Fuel Accumulation – A Growing Problem, Science, 177, 139–142, https://doi.org/10.1126/science.177.4044.139, 1972. a
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E. H. J., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., and Lucas, P. L.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, Glob. Change Biol., 26, 1576–1591, https://doi.org/10.1111/gcb.14887, 2020. a
Drupp, M. A., Hänsel, M. C., Fenichel, E. P., Freeman, M., Gollier, C., Groom, B., Heal, G. M., Howard, P. H., Millner, A., Moore, F. C., Nesje, F., Quaas, M. F., Smulders, S., Sterner, T., Traeger, C., and Venmans, F.: Accounting for the increasing benefits from scarce ecosystems, Science, 383, 1062–1064, https://doi.org/10.1126/science.adk2086, 2024. a, b
Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., and Cescatti, A.: Revealing the widespread potential of forests to increase low level cloud cover, Nat. Commun., 12, 4337, https://doi.org/10.1038/s41467-021-24551-5, 2021. a
Díaz, S., Pascual, U., Stenseke, M., Martín-López, B., Watson, R. T., Molnár, Z., Hill, R., Chan, K. M. A., Baste, I. A., Brauman, K. A., Polasky, S., Church, A., Lonsdale, M., Larigauderie, A., Leadley, P. W., van Oudenhoven, A. P. E., van der Plaat, F., Schröter, M., Lavorel, S., Aumeeruddy-Thomas, Y., Bukvareva, E., Davies, K., Demissew, S., Erpul, G., Failler, P., Guerra, C. A., Hewitt, C. L., Keune, H., Lindley, S., and Shirayama, Y.: Assessing nature's contributions to people, Science, 359, 270–272, https://doi.org/10.1126/science.aap8826, 2018. a, b
Díaz, S., Zafra-Calvo, N., Purvis, A., Verburg, P. H., Obura, D., Leadley, P., Chaplin-Kramer, R., De Meester, L., Dulloo, E., Martín-López, B., Shaw, M. R., Visconti, P., Broadgate, W., Bruford, M. W., Burgess, N. D., Cavender-Bares, J., DeClerck, F., Fernández-Palacios, J. M., Garibaldi, L. A., Hill, S. L. L., Isbell, F., Khoury, C. K., Krug, C. B., Liu, J., Maron, M., McGowan, P. J. K., Pereira, H. M., Reyes-García, V., Rocha, J., Rondinini, C., Shannon, L., Shin, Y.-J., Snelgrove, P. V. R., Spehn, E. M., Strassburg, B., Subramanian, S. M., Tewksbury, J. J., Watson, J. E. M., and Zanne, A. E.: Set ambitious goals for biodiversity and sustainability, Science, 370, 411–413, https://doi.org/10.1126/science.abe1530, 2020. a
EEA: Mapping the impacts of natural hazards and technological accidents in Europe – An overview of the last decade., EEA Technical Report 13/2010, European Environment Agency, Copenhagen, Denmark, https://doi.org/10.2800/62638, 2010. a
Eeraerts, M.: A minimum of 15 % semi-natural habitat facilitates adequate wild pollinator visitation to a pollinator-dependent crop, Biol. Conserv., 278, 109887, https://doi.org/10.1016/j.biocon.2022.109887, 2023. a
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., Noordwijk, M. v., Creed, I. F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot, S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world, Glob. Environ. Change, 43, 51–61, https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017. a, b
European Environment Agency: European climate risk assessment: executive summary, Publications Office of the European Union, ISBN 978-92-9480-627-7, https://data.europa.eu/doi/10.2800/204249 (last access: 10 August 2024), 2024. a
Ewert, F., Baatz, R., and Finger, R.: Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption, Annu. Rev. Resour. Econ., 15, 351–381, https://doi.org/10.1146/annurev-resource-102422-090105, 2023. a
Fa, J. E., Watson, J. E., Leiper, I., Potapov, P., Evans, T. D., Burgess, N. D., Molnár, Z., Fernández-Llamazares, A., Duncan, T., Wang, S., Austin, B. J., Jonas, H., Robinson, C. J., Malmer, P., Zander, K. K., Jackson, M. V., Ellis, E., Brondizio, E. S., and Garnett, S. T.: Importance of Indigenous Peoples’ lands for the conservation of Intact Forest Landscapes, Front. Ecol. Environ., 18, 135–140, https://doi.org/10.1002/fee.2148, 2020. a
Fahad, S., Chavan, S. B., Chichaghare, A. R., Uthappa, A. R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D. K., Kumar, V., Farooq, T. H., Ali, B., Sawant, A. V., Saud, S., Chen, S., and Poczai, P.: Agroforestry Systems for Soil Health Improvement and Maintenance, Sustainability, 14, 14877, https://doi.org/10.3390/su142214877, 2022. a
Fanning, A. L., O’Neill, D. W., Hickel, J., and Roux, N.: The social shortfall and ecological overshoot of nations, Nat. Sustain., 5, 26–36, https://doi.org/10.1038/s41893-021-00799-z, 2022. a
FAO: The state of the world’s forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies, Tech. Rep., FAO, ISBN 978-92-5-135984-6, https://doi.org/10.4060/cb9360en, 2022a. a
FAO: The State of Agricultural Commodity Markets 2022. The geography of food and agricultural trade: Policy approaches for sustainable development., Tech. rep., FAO, rome, FAO, https://doi.org/10.4060/cc0471en, 2022b. a
FAO: World Food and Agriculture: Statistical Yearbook 2023, Tech. Rep., FAO, Rome, https://doi.org/10.4060/cc8166en-fig03, 2023. a
Farley, K. A., Jobbágy, E. G., and Jackson, R. B.: Effects of afforestation on water yield: a global synthesis with implications for policy, Glob. Change Biol., 11, 1565–1576, https://doi.org/10.1111/j.1365-2486.2005.01011.x, 2005. a, b
Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Changes in rainfall seasonality in the tropics, Nat. Clim. Change, 3, 811–815, https://doi.org/10.1038/nclimate1907, 2013. a
Feng, Y., Zeng, Z., Searchinger, T. D., Ziegler, A. D., Wu, J., Wang, D., He, X., Elsen, P. R., Ciais, P., Xu, R., Guo, Z., Peng, L., Tao, Y., Spracklen, D. V., Holden, J., Liu, X., Zheng, Y., Xu, P., Chen, J., Jiang, X., Song, X.-P., Lakshmi, V., Wood, E. F., and Zheng, C.: Doubling of annual forest carbon loss over the tropics during the early twenty-first century, Nat. Sustain., 5, 444–451, https://doi.org/10.1038/s41893-022-00854-3, 2022. a, b
Fernandes, G. W., Coelho, M. S., Machado, R. B., Ferreira, M. E., Aguiar, L. M. d. S., Dirzo, R., Scariot, A., and Lopes, C. R.: Afforestation of savannas: an impending ecological disaster, Nat. Conservacao, 14, 146–151, https://doi.org/10.1016/j.ncon.2016.08.002, 2016. a
Fernandes, S., Athayde, S., Harrison, I., and Perry, D.: Connectivity and policy confluences: a multi-scalar conservation approach for protecting Amazon riverine ecosystems, Perspect Ecol Conserv, 22, 129–136, https://doi.org/10.1016/j.pecon.2024.02.002, 2024. a
Fletcher, R.: Failing forward: The rise and fall of neoliberal conservation, Univ of California Press, ISBN-13: 978-0520390690, https://doi.org/10.2307/j.ctv34wmx57, 2023. a, b
Fletcher, R. and Büscher, B.: Conservation basic income: A non-market mechanism to support convivial conservation, Biol. Conserv., 244, 108520, https://doi.org/10.1016/j.biocon.2020.108520, 2020. a
Folke, C., Polasky, S., Rockström, J., Galaz, V., Westley, F., Lamont, M., Scheffer, M., Österblom, H., Carpenter, S. R., Chapin, F. S., Seto, K. C., Weber, E. U., Crona, B. I., Daily, G. C., Dasgupta, P., Gaffney, O., Gordon, L. J., Hoff, H., Levin, S. A., Lubchenco, J., Steffen, W., and Walker, B. H.: Our future in the Anthropocene biosphere, Ambio, 50, 834–869, https://doi.org/10.1007/s13280-021-01544-8, 2021. a
Forrest, M., Hetzer, J., Billing, M., Bowring, S. P. K., Kosczor, E., Oberhagemann, L., Perkins, O., Warren, D., Arrogante-Funes, F., Thonicke, K., and Hickler, T.: Understanding and simulating cropland and non-cropland burning in Europe using the BASE (Burnt Area Simulator for Europe) model, Biogeosciences, 21, 5539–5560, https://doi.org/10.5194/bg-21-5539-2024, 2024. a
Forzieri, G., Bianchi, A., Silva, F. B. e., Marin Herrera, M. A., Leblois, A., Lavalle, C., Aerts, J. C. J. H., and Feyen, L.: Escalating impacts of climate extremes on critical infrastructures in Europe, Glob. Environ. Change, 48, 97–107, https://doi.org/10.1016/j.gloenvcha.2017.11.007, 2018. a
Forzieri, G., Miralles, D. G., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G., Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, A., Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P., Wiltshire, A., Pongratz, J., Piao, S., Sitch, S., Goll, D. S., Arora, V. K., Lienert, S., Lombardozzi, D., Kato, E., Nabel, J. E. M. S., Tian, H., Friedlingstein, P., and Cescatti, A.: Increased control of vegetation on global terrestrial energy fluxes, Nat. Clim. Change, 10, 356–362, https://doi.org/10.1038/s41558-020-0717-0, 2020. a
Fox, N., Tilt, J. H., Ruggiero, P., Stanton, K., and Bolte, J.: Toward equitable coastal community resilience: Incorporating principles of equity and justice in coastal hazard adaptation, Cambridge Prisms, Coast. Future., 1, e36, https://doi.org/10.1017/cft.2023.24, 2023. a
Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Barbero, L., Bates, N. R., Becker, M., Bellouin, N., Decharme, B., Bopp, L., Brasika, I. B. M., Cadule, P., Chamberlain, M. A., Chandra, N., Chau, T.-T.-T., Chevallier, F., Chini, L. P., Cronin, M., Dou, X., Enyo, K., Evans, W., Falk, S., Feely, R. A., Feng, L., Ford, D. J., Gasser, T., Ghattas, J., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, O., Harris, I., Hefner, M., Heinke, J., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Jacobson, A. R., Jain, A., Jarníková, T., Jersild, A., Jiang, F., Jin, Z., Joos, F., Kato, E., Keeling, R. F., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Lan, X., Lefèvre, N., Li, H., Liu, J., Liu, Z., Ma, L., Marland, G., Mayot, N., McGuire, P. C., McKinley, G. A., Meyer, G., Morgan, E. J., Munro, D. R., Nakaoka, S.-I., Niwa, Y., O'Brien, K. M., Olsen, A., Omar, A. M., Ono, T., Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C. M., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Séférian, R., Smallman, T. L., Smith, S. M., Sospedra-Alfonso, R., Sun, Q., Sutton, A. J., Sweeney, C., Takao, S., Tans, P. P., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., van der Werf, G. R., van Ooijen, E., Wanninkhof, R., Watanabe, M., Wimart-Rousseau, C., Yang, D., Yang, X., Yuan, W., Yue, X., Zaehle, S., Zeng, J., and Zheng, B.: Global Carbon Budget 2023, Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, 2023. a, b, c, d
Fu, R.: Global warming-accelerated drying in the tropics, P. Natl. Acad. Sci. USA, 112, 3593–3594, https://doi.org/10.1073/pnas.1503231112, 2015. a
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., and Myneni, R. B.: Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection, P. Natl. Acad. Sci. USA, 110, 18110–18115, https://doi.org/10.1073/pnas.1302584110, 2013. a
Fuhrman, J., Bergero, C., Weber, M., Monteith, S., Wang, F. M., Clarens, A. F., Doney, S. C., Shobe, W., and McJeon, H.: Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system, Nat. Clim. Change, 13, 341–350, https://doi.org/10.1038/s41558-023-01604-9, 2023. a
Garibaldi, L. A., Steffan-Dewenter, I., Kremen, C., Morales, J. M., Bommarco, R., Cunningham, S. A., Carvalheiro, L. G., Chacoff, N. P., Dudenhöffer, J. H., Greenleaf, S. S., Holzschuh, A., Isaacs, R., Krewenka, K., Mandelik, Y., Mayfield, M. M., Morandin, L. A., Potts, S. G., Ricketts, T. H., Szentgyörgyi, H., Viana, B. F., Westphal, C., Winfree, R., and Klein, A. M.: Stability of pollination services decreases with isolation from natural areas despite honey bee visits, Ecol. Lett., 14, 1062–1072, https://doi.org/10.1111/j.1461-0248.2011.01669.x, 2011. a
Garibaldi, L. A., Oddi, F. J., Miguez, F. E., Bartomeus, I., Orr, M. C., Jobbágy, E. G., Kremen, C., Schulte, L. A., Hughes, A. C., Bagnato, C., Abramson, G., Bridgewater, P., Carella, D. G., Díaz, S., Dicks, L. V., Ellis, E. C., Goldenberg, M., Huaylla, C. A., Kuperman, M., Locke, H., Mehrabi, Z., Santibañez, F., and Zhu, C.-D.: Working landscapes need at least 20 % native habitat, Conserv. Lett., 14, e12773, https://doi.org/10.1111/conl.12773, 2021. a
Garnett, S. T., Burgess, N. D., Fa, J. E., Fernández-Llamazares, A., Molnár, Z., Robinson, C. J., Watson, J. E. M., Zander, K. K., Austin, B., Brondizio, E. S., Collier, N. F., Duncan, T., Ellis, E., Geyle, H., Jackson, M. V., Jonas, H., Malmer, P., McGowan, B., Sivongxay, A., and Leiper, I.: A spatial overview of the global importance of Indigenous lands for conservation, Nature Sustainability, 1, 369–374, https://doi.org/10.1038/s41893-018-0100-6, 2018. a
Garrison, J. L., Vega, M. A., Shah, R., Mansell, J. R., Nold, B., Raymond, J., Banting, R., Bindlish, R., Larsen, K., Kim, S., Li, W., Kurum, M., Piepmeier, J., Khalifi, H., Tanner, F. A., Horgan, K., Kielbasa, C. E., and Babu, S. R.: SNOOPI: Demonstrating Earth remote sensing using P-band signals of opportunity (SoOp) on a CubeSat, Adv. Space Res., 73, 2855–2879, https://doi.org/10.1016/j.asr.2023.10.050, 2024. a
Gasser, T., Ciais, P., and Lewis, S. L.: How the Glasgow Declaration on Forests can help keep alive the 1.5 °C target, P. Natl. Acad. Sci. USA, 119, e2200519119, https://doi.org/10.1073/pnas.2200519119, 2022. a
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., and Hultink, E. J.: The Circular Economy – A new sustainability paradigm?, J. Clean.r Prod., 143, 757–768, https://doi.org/10.1016/j.jclepro.2016.12.048, 2017. a, b
Gielen, M.-C., Johannes, X., Kashe, N., Khumo, G., Zoronxhogo, Z., and Schtickzelle, N.: Monitoring wildlife abundance through track surveys: A capture-mark-recapture inspired approach to assess track detection by certified trackers in the Kalahari, Botswana, Glob. Ecol. Conserv., 51, e02924, https://doi.org/10.1016/j.gecco.2024.e02924, 2024. a
Gokkon, B.: “Decolonizing conservation”: Q&A with PNG marine activist John Aini, https://news.mongabay.com/2018/07/decolonizing-conservation-qa-with-png-marine-activist-john-aini/ (last access: 31 July 2024), 2018. a
Goodness, J., Andersson, E., Anderson, P. M., and Elmqvist, T.: Exploring the links between functional traits and cultural ecosystem services to enhance urban ecosystem management, Ecol. Indic., 70, 597–605, https://doi.org/10.1016/j.ecolind.2016.02.031, 2016. a
Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., and Noble, I.: Sustainable development goals for people and planet, Nature, 495, 305–307, https://doi.org/10.1038/495305a, 2013. a
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., Herrero, M., Kiesecker, J., Landis, E., Laestadius, L., Leavitt, S. M., Minnemeyer, S., Polasky, S., Potapov, P., Putz, F. E., Sanderman, J., Silvius, M., Wollenberg, E., and Fargione, J.: Natural climate solutions, P. Natl. Acad. Sci. USA, 114, 11645–11650, https://doi.org/10.1073/pnas.1710465114, 2017. a
Griscom, B. W., Busch, J., Cook-Patton, S. C., Ellis, P. W., Funk, J., Leavitt, S. M., Lomax, G., Turner, W. R., Chapman, M., Engelmann, J., Gurwick, N. P., Landis, E., Lawrence, D., Malhi, Y., Schindler Murray, L., Navarrete, D., Roe, S., Scull, S., Smith, P., Streck, C., Walker, W. S., and Worthington, T.: National mitigation potential from natural climate solutions in the tropics, Philos. T. R. Soc. B, 375, 20190126, https://doi.org/10.1098/rstb.2019.0126, 2020. a
Groom, B. and Venmans, F.: The social value of offsets, Nature, 619, 768–773, https://doi.org/10.1038/s41586-023-06153-x, 2023. a
Guinet, M., Nicolardot, B., and Voisin, A.-S.: Nitrogen benefits of ten legume pre-crops for wheat assessed by field measurements and modelling, Eur. J. Agron., 120, 126151, https://doi.org/10.1016/j.eja.2020.126151, 2020. a
Haas, O., Prentice, I. C., and Harrison, S. P.: Global environmental controls on wildfire burnt area, size, and intensity, Environ. Res. Lett., 17, 065004, https://doi.org/10.1088/1748-9326/ac6a69, 2022. a
Hagger, V., Worthington, T. A., Lovelock, C. E., Adame, M. F., Amano, T., Brown, B. M., Friess, D. A., Landis, E., Mumby, P. J., Morrison, T. H., O’Brien, K. R., Wilson, K. A., Zganjar, C., and Saunders, M. I.: Drivers of global mangrove loss and gain in social-ecological systems, Nat. Commun., 13, 6373, https://doi.org/10.1038/s41467-022-33962-x, 2022. a
Hahn, T., Sioen, G. B., Gasparatos, A., Elmqvist, T., Brondizio, E., Gómez-Baggethun, E., Folke, C., Setiawati, M. D., Atmaja, T., Arini, E. Y., Jarzebski, M. P., Fukushi, K., and Takeuchi, K.: Insurance value of biodiversity in the Anthropocene is the full resilience value, Ecol. Econ., 208, 107799, https://doi.org/10.1016/j.ecolecon.2023.107799, 2023. a, b
Hammoud, R., Tognin, S., Smythe, M., Gibbons, J., Davidson, N., Bakolis, I., and Mechelli, A.: Smartphone-based ecological momentary assessment reveals an incremental association between natural diversity and mental wellbeing, Sci. Rep., 14, 7051, https://doi.org/10.1038/s41598-024-55940-7, 2024. a
Hantson, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Rabin, S. S., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., and Yue, C.: Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, 2020. a
Harrison, M. E., Ottay, J. B., D’Arcy, L. J., Cheyne, S. M., Anggodo, Belcher, C., Cole, L., Dohong, A., Ermiasi, Y., Feldpausch, T., Gallego-Sala, A., Gunawan, A., Höing, A., Husson, S. J., Kulu, I. P., Soebagio, S. M., Mang, S., Mercado, L., Morrogh-Bernard, H. C., Page, S. E., Priyanto, R., Ripoll Capilla, B., Rowland, L., Santos, E. M., Schreer, V., Sudyana, I. N., Taman, S. B. B., Thornton, S. A., Upton, C., Wich, S. A., and van Veen, F. J. F.: Tropical forest and peatland conservation in Indonesia: Challenges and directions, People Nat., 2, 4–28, https://doi.org/10.1002/pan3.10060., 2020. a
Hartmann, H., Bastos, A., Das, A. J., Esquivel-Muelbert, A., Hammond, W. M., Martínez-Vilalta, J., McDowell, N. G., Powers, J. S., Pugh, T. A. M., Ruthrof, K. X., and Allen, C. D.: Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide, Annu. Rev. Plant Biol., 73, 673–702, 2022. a
Hasler, N., Williams, C. A., Denney, V. C., Ellis, P. W., Shrestha, S., Terasaki Hart, D. E., Wolff, N. H., Yeo, S., Crowther, T. W., Werden, L. K., and Cook-Patton, S. C.: Accounting for albedo change to identify climate-positive tree cover restoration, Nat. Commun., 15, 2275, https://doi.org/10.1038/s41467-024-46577-1, 2024. a
Haya, B. K., Evans, S., Brown, L., Bukoski, J., Butsic, V., Cabiyo, B., Jacobson, R., Kerr, A., Potts, M., and Sanchez, D. L.: Comprehensive review of carbon quantification by improved forest management offset protocols, Front. Forest. Glob. Change, 6, 958879, https://doi.org/10.3389/ffgc.2023.958879, 2023. a, b, c
He, T., Lamont, B. B., and Pausas, J. G.: Fire as a key driver of Earth's biodiversity, Biol. Rev., 94, 1983–2010, https://doi.org/10.1111/brv.12544, 2019. a
Hessilt, T. D., Rogers, B. M., Scholten, R. C., Potter, S., Janssen, T. A. J., and Veraverbeke, S.: Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America, Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, 2024. a
Hetzer, J., Forrest, M., Ribalaygua, J., Prado-López, C., and Hickler, T.: The fire weather in Europe: large-scale trends towards higher danger, Environ. Res. Lett., 19, 084017, https://doi.org/10.1088/1748-9326/ad5b09, 2024. a
Hickel, J.: Less is More: How Degrowth Will Save the World, Random House, ISBN 978-1-4735-8173-9, 2020. a
Hill, M. K.: Understanding environmental pollution, Cambridge University Press, ISBN-13: 978-1108436106, 2020. a
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., and Dove, S.: Coral Reef Ecosystems under Climate Change and Ocean Acidification, Front. Mar. Sci., 4, 158, https://doi.org/10.3389/fmars.2017.00158, 2017. a
Hoek van Dijke, A. J., Herold, M., Mallick, K., Benedict, I., Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J. J., Bastin, J.-F., and Teuling, A. J.: Shifts in regional water availability due to global tree restoration, Nat. Geosci., 15, 363–368, https://doi.org/10.1038/s41561-022-00935-0, 2022. a
Hoel, M. and Sterner, T.: Discounting and relative prices, Climatic Change, 84, 265–280, https://doi.org/10.1007/s10584-007-9255-2, 2007. a
Hutton, J., Adams, W. M., and Murombedzi, J. C.: Back to the Barriers? Changing Narratives in Biodiversity Conservation, Forum Dev. Stud., 32, 341–370, https://doi.org/10.1080/08039410.2005.9666319, 2005. a
Hyolmo, S. L.: Early results suggest communities stop logging during basic income pilot project, https://news.mongabay.com/2025/01/ (last access: 24 February 2025), 2025. a
Iglesias, V., Balch, J. K., and Travis, W. R.: U.S. fires became larger, more frequent, and more widespread in the 2000s, Sci. Adv., 8, eabc0020, https://doi.org/10.1126/sciadv.abc0020, 2022. a, b
Ikram, M., Sroufe, R., Awan, U., and Abid, N.: Enabling Progress in Developing Economies: A Novel Hybrid Decision-Making Model for Green Technology Planning, Sustainability, 14, 258, https://doi.org/10.3390/su14010258, 2022. a
IPBES: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, edited by: Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Guèze, M., Agard, J., Arneth, A., Balvanera,P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Roy Chowdhury, R., Shin, Y. J., Visseren-Hamakers, I. J., Willis, K. J., and Zayas, C. N., IPBES secretariat, Bonn, Germany, 56 pp., Zenodo, https://doi.org/10.5281/zenodo.3553579, 2019b. a
IPBES: The Nature Futures Framework, a flexible tool to support the development of scenarios and models of desirable futures for people, nature and Mother Earth, and its methodological guidance, Tech. rep., IPBES secretariat, Zenodo, https://zenodo.org/records/8171339 (last access: 1 August 2024), 2023. a, b
IPCC: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp., 2012. a
IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.: Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019. a
IPCC: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2021. a, b
IPCC: Climate Change 2022 – Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157926, 2022a. a, b
IPCC: Summary for Policymakers, in: Climate Change 2022: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 3–34, Cambridge University Press, https://doi.org/10.1017/9781009325844.001, 2022b. a
IPCC: Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009325844, 2023. a, b, c, d
Isaacs, M.: Is the Blue Justice concept a human rights agenda?, PLAAS Policy Brief, Bellville: Institute for Poverty, Land and Agrarian Studies, http://hdl.handle.net/10566/5087 (last access: 19 May 2024) 2019. a
Jain, P., Castellanos-Acuna, D., Coogan, S. C. P., Abatzoglou, J. T., and Flannigan, M. D.: Observed increases in extreme fire weather driven by atmospheric humidity and temperature, Nat. Clim. Change, 12, 63–70, https://doi.org/10.1038/s41558-021-01224-1, 2022. a
Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., and Purvis, A.: The direct drivers of recent global anthropogenic biodiversity loss, Sci. Adv., 8, eabm9982, https://doi.org/10.1126/sciadv.abm9982, 2022. a, b
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Schrier, G. v. d.: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Sci. Reports, 6, 33130, https://doi.org/10.1038/srep33130, 2016. a
Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., and Le Quéré, C.: Global and Regional Trends and Drivers of Fire Under Climate Change, Rev. Geophys., 60, 1–76, https://doi.org/10.1029/2020RG000726, 2022. a, b, c, d, e
Jones, M. W., Kelley, D. I., Burton, C. A., Di Giuseppe, F., Barbosa, M. L. F., Brambleby, E., Hartley, A. J., Lombardi, A., Mataveli, G., McNorton, J. R., Spuler, F. R., Wessel, J. B., Abatzoglou, J. T., Anderson, L. O., Andela, N., Archibald, S., Armenteras, D., Burke, E., Carmenta, R., Chuvieco, E., Clarke, H., Doerr, S. H., Fernandes, P. M., Giglio, L., Hamilton, D. S., Hantson, S., Harris, S., Jain, P., Kolden, C. A., Kurvits, T., Lampe, S., Meier, S., New, S., Parrington, M., Perron, M. M. G., Qu, Y., Ribeiro, N. S., Saharjo, B. H., San-Miguel-Ayanz, J., Shuman, J. K., Tanpipat, V., van der Werf, G. R., Veraverbeke, S., and Xanthopoulos, G.: State of Wildfires 2023–2024, Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, 2024. a, b, c, d, e, f, g
Jones, S. C. and Pippin, J. S.: Towards principles and policy levers for advancing living shorelines, J. Environ. Manag., 311, 114695, https://doi.org/10.1016/j.jenvman.2022.114695, 2022. a
Jones, S. K., Sánchez, A. C., Beillouin, D., Juventia, S. D., Mosnier, A., Remans, R., and Estrada Carmona, N.: Achieving win-win outcomes for biodiversity and yield through diversified farming, Basic Appl. Ecol., 67, 14–31, https://doi.org/10.1016/j.baae.2022.12.005, 2023. a
Junkermann, W., Hacker, J., Lyons, T., and Nair, U.: Land use change suppresses precipitation, Atmos. Chem. Phys., 9, 6531–6539, https://doi.org/10.5194/acp-9-6531-2009, 2009. a
Jurkus, E., Povilanskas, R., Razinkovas-Baziukas, A., and Taminskas, J.: Current Trends and Issues in Applications of Remote Sensing in Coastal and Marine Conservation, Earth, 3, 433–447, https://doi.org/10.3390/earth3010026, 2022. a
Kareiva, P., Lalasz, R., and Marvier, M.: Conservation in the Anthropocene: beyond solitude and fragility, Breakthrough J., 2, 29–37, 2011. a
Kim, H., Peterson, G. D., Cheung, W. W. L., Ferrier, S., Alkemade, R., Arneth, A., Kuiper, J. J., Okayasu, S., Pereira, L., Acosta, L. A., Chaplin-Kramer, R., den Belder, E., Eddy, T. D., Johnson, J. A., Karlsson-Vinkhuyzen, S., Kok, M. T. J., Leadley, P., Leclère, D., Lundquist, C. J., Rondinini, C., Scholes, R. J., Schoolenberg, M. A., Shin, Y.-J., Stehfest, E., Stephenson, F., Visconti, P., van Vuuren, D., Wabnitz, C. C. C., José Alava, J., Cuadros-Casanova, I., Davies, K. K., Gasalla, M. A., Halouani, G., Harfoot, M., Hashimoto, S., Hickler, T., Hirsch, T., Kolomytsev, G., Miller, B. W., Ohashi, H., Gabriela Palomo, M., Popp, A., Paco Remme, R., Saito, O., Rashid Sumalia, U., Willcock, S., and Pereira, H. M.: Towards a better future for biodiversity and people: Modelling Nature Futures, Glob. Environ. Change, 82, 102681, https://doi.org/10.1016/j.gloenvcha.2023.102681, 2023. a, b
Knapp, M., Teder, T., Lukas, V., Štrobl, M., Knappová, J., Landis, D. A., and González, E.: Ecologically-Informed Precision Conservation: A framework for increasing biodiversity in intensively managed agricultural landscapes with minimal sacrifice in crop production, Biol. Conserv., 288, 110343, https://doi.org/10.1016/j.biocon.2023.110343, 2023. a
Koch, A. and Kaplan, J. O.: Tropical forest restoration under future climate change, Nat. Clim. Change, 12, 279–283, https://doi.org/10.1038/s41558-022-01289-6, 2022. a
Koh, N. S., Ituarte-Lima, C., and Hahn, T.: Mind the Compliance Gap: How Insights from International Human Rights Mechanisms Can Help to Implement the Convention on Biological Diversity, Trans. Environ. Law, 11, 39–67, https://doi.org/10.1017/S2047102521000169, 2022. a
Konijnendijk, C. C.: Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule, J. Forestry Res., 34, 821–830, https://doi.org/10.1007/s11676-022-01523-z, 2023. a
Korhonen, J., Nuur, C., Feldmann, A., and Birkie, S. E.: Circular economy as an essentially contested concept, J. Clean. Prod., 175, 544–552, https://doi.org/10.1016/j.jclepro.2017.12.111, 2018. a
Kreider, M. R., Higuera, P. E., Parks, S. A., Rice, W. L., White, N., and Larson, A. J.: Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation, Nat. Commun., 15, 2412, https://doi.org/10.1038/s41467-024-46702-0, 2024. a
Krishnan, R. and Gopan, G.: A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations, Clean. Eng. Technol., 20, 100749, https://doi.org/10.1016/j.clet.2024.100749, 2024. a
Köhler, J., Geels, F. W., Kern, F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., Fünfschilling, L., Hess, D., Holtz, G., Hyysalo, S., Jenkins, K., Kivimaa, P., Martiskainen, M., McMeekin, A., Mühlemeier, M. S., Nykvist, B., Pel, B., Raven, R., Rohracher, H., Sandén, B., Schot, J., Sovacool, B., Turnheim, B., Welch, D., and Wells, P.: An agenda for sustainability transitions research: State of the art and future directions, Environ. Innov. Soc. Trans., 31, 1–32, https://doi.org/10.1016/j.eist.2019.01.004, 2019. a
Lal, P., Singh, G., Das, N. N., Entekhabi, D., Lohman, R., Colliander, A., Pandey, D. K., and Setia, R. K.: A multi-scale algorithm for the NISAR mission high-resolution soil moisture product, Remote Sens. Environ., 295, 113667, https://doi.org/10.1016/j.rse.2023.113667, 2023. a
Lalonde, M., Drenkhan, F., Rau, P., Baiker, J. R., and Buytaert, W.: Scientific evidence of the hydrological impacts of nature-based solutions at the catchment scale, WIREs Water, 11, e1744, https://doi.org/10.1002/wat2.1744, 2024. a
Lanjouw, A.: De-colonizing conservation in a global world, Am. J. Primatol., 83, e23258, https://doi.org/10.1002/ajp.23258, 2021. a
Lapola, D. M., Pinho, P., Barlow, J., Aragão, L. E. O. C., Berenguer, E., Carmenta, R., Liddy, H. M., Seixas, H., Silva, C. V. J., Silva-Junior, C. H. L., Alencar, A. A. C., Anderson, L. O., Armenteras, D., Brovkin, V., Calders, K., Chambers, J., Chini, L., Costa, M. H., Faria, B. L., Fearnside, P. M., Ferreira, J., Gatti, L., Gutierrez-Velez, V. H., Han, Z., Hibbard, K., Koven, C., Lawrence, P., Pongratz, J., Portela, B. T. T., Rounsevell, M., Ruane, A. C., Schaldach, R., da Silva, S. S., von Randow, C., and Walker, W. S.: The drivers and impacts of Amazon forest degradation, Science, 379, eabp8622, https://doi.org/10.1126/science.abp8622, 2023. a
Latawiec, A. E., Strassburg, B. B. N., Silva, D., Alves-Pinto, H. N., Feltran-Barbieri, R., Castro, A., Iribarrem, A., Rangel, M. C., Kalif, K. A. B., Gardner, T., and Beduschi, F.: Improving land management in Brazil: A perspective from producers, Agr. Ecosys. Environ., 240, 276–286, https://doi.org/10.1016/j.agee.2017.01.043, 2017. a
Lawrence, D. and Vandecar, K.: Effects of tropical deforestation on climate and agriculture, Nat. Clim. Change, 5, 27–36, https://doi.org/10.1038/nclimate2430, 2015. a
Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, https://doi.org/10.5194/essd-5-165-2013, 2013. a
Leach, M., Reyers, B., Bai, X., Brondizio, E. S., Cook, C., Díaz, S., Espindola, G., Scobie, M., Stafford-Smith, M., and Subramanian, S. M.: Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures, Glob. Sustain., 1, e13, https://doi.org/10.1017/sus.2018.12, 2018. a, b
Lechner, A. M., Stein, A., Jones, S. D., and Ferwerda, J. G.: Remote sensing of small and linear features: Quantifying the effects of patch size and length, grid position and detectability on land cover mapping, Remote Sens. Environ., 113, 2194–2204, https://doi.org/10.1016/j.rse.2009.06.002, 2009. a
Leclère, D., Obersteiner, M., Barrett, M., Butchart, S. H. M., Chaudhary, A., De Palma, A., DeClerck, F. A. J., Di Marco, M., Doelman, J. C., Dürauer, M., Freeman, R., Harfoot, M., Hasegawa, T., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Humpenöder, F., Jennings, N., Krisztin, T., Mace, G. M., Ohashi, H., Popp, A., Purvis, A., Schipper, A. M., Tabeau, A., Valin, H., van Meijl, H., van Zeist, W.-J., Visconti, P., Alkemade, R., Almond, R., Bunting, G., Burgess, N. D., Cornell, S. E., Di Fulvio, F., Ferrier, S., Fritz, S., Fujimori, S., Grooten, M., Harwood, T., Havlík, P., Herrero, M., Hoskins, A. J., Jung, M., Kram, T., Lotze-Campen, H., Matsui, T., Meyer, C., Nel, D., Newbold, T., Schmidt-Traub, G., Stehfest, E., Strassburg, B. B. N., van Vuuren, D. P., Ware, C., Watson, J. E. M., Wu, W., and Young, L.: Bending the curve of terrestrial biodiversity needs an integrated strategy, Nature, 585, 551–556, https://doi.org/10.1038/s41586-020-2705-y, 2020. a
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barret, K., Blanco, G., Cheung, W. W. L., Connors, S. L., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F. E. L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D. C., Roy, J., Ruane, A. C., Skea, J., Shukla, P. R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A. A., Tignor, M., van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F. X., Pachauri, S., Simpson, N. P., Singh, C., Thomas, A., Totin, E., Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J. J., Pichs-Madruga, R., Rose, S. K., Saheb, Y., Sánchez Rodríguez, R., Ürge Vorsatz, D., Xiao, C., Yassaa, N., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., van der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., Romero, J., Kim, J., Haites, E. F., Jung, Y., Stavins, R., Birt, A., Ha, M., Orendain, D. J. A., Ignon, L., Park, S., and Park, Y.: IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers, Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Lee, H., and Romero, J., IPCC, Geneva, Switzerland., Tech. rep., IPCC, https://doi.org/10.59327/IPCC/AR6-9789291691647.001, 2023. a
Leeuwen, S. v., Legge, S., and Rumpff, L.: Australia's Megafires: Biodiversity Impacts and Lessons from 2019–2020, Csiro Publishing, ISBN 978-1-4863-1665-6, 2023. a
Legge, S., Rumpff, L., Garnett, S. T., and Woinarski, J. C.: Loss of terrestrial biodiversity in Australia: Magnitude, causation, and response, Science, 381, 622–631, https://doi.org/10.1126/science.adg7870, 2023. a
Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M., and Börner, J.: Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon, Nat. Commun., 12, 2591, https://doi.org/10.1038/s41467-021-22840-7, 2021. a
Lenton, T. M., Rockström, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., and Schellnhuber, H. J.: Climate tipping points – too risky to bet against, Nature, 575, 592–595, https://doi.org/10.1038/d41586-019-03595-0, 2019. a
Levasseur, A., Lesage, P., Margni, M., Brandão, M., and Samson, R.: Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches, Climatic Change, 115, 759–776, https://doi.org/10.1007/s10584-012-0473-x, 2012. a
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M., and Nepstad, D.: The 2010 amazon drought, Science, 331, 554–554, https://doi.org/10.1126/science.1200807, 2011. a
Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein, M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread increasing vegetation sensitivity to soil moisture, Nat. Commun., 13, 3959, https://doi.org/10.1038/s41467-022-31667-9, 2022. a
Lichtenberg, E. M., Kennedy, C. M., Kremen, C., Batáry, P., Berendse, F., Bommarco, R., Bosque-Pérez, N. A., Carvalheiro, L. G., Snyder, W. E., Williams, N. M., Winfree, R., Klatt, B. K., Åström, S., Benjamin, F., Brittain, C., Chaplin-Kramer, R., Clough, Y., Danforth, B., Diekötter, T., Eigenbrode, S. D., Ekroos, J., Elle, E., Freitas, B. M., Fukuda, Y., Gaines-Day, H. R., Grab, H., Gratton, C., Holzschuh, A., Isaacs, R., Isaia, M., Jha, S., Jonason, D., Jones, V. P., Klein, A.-M., Krauss, J., Letourneau, D. K., Macfadyen, S., Mallinger, R. E., Martin, E. A., Martinez, E., Memmott, J., Morandin, L., Neame, L., Otieno, M., Park, M. G., Pfiffner, L., Pocock, M. J. O., Ponce, C., Potts, S. G., Poveda, K., Ramos, M., Rosenheim, J. A., Rundlöf, M., Sardiñas, H., Saunders, M. E., Schon, N. L., Sciligo, A. R., Sidhu, C. S., Steffan-Dewenter, I., Tscharntke, T., Veselý, M., Weisser, W. W., Wilson, J. K., and Crowder, D. W.: A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes, Glob. Change Biol., 23, 4946–4957, https://doi.org/10.1111/gcb.13714, 2017. a
Litvinenko, V., Bowbrik, I., Naumov, I., and Zaitseva, Z.: Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals, J. Clean. Prod., 338, 130530, https://doi.org/10.1016/j.jclepro.2022.130530, 2022. a
Liu, J., Dou, Y., Batistella, M., Challies, E., Connor, T., Friis, C., Millington, J. D., Parish, E., Romulo, C. L., Silva, R. F. B., Triezenberg, H., Yang, H., Zhao, Z., Zimmerer, K. S., Huettmann, F., Treglia, M. L., Basher, Z., Chung, M. G., Herzberger, A., Lenschow, A., Mechiche-Alami, A., Newig, J., Roche, J., and Sun, J.: Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability, Curr. Opin. Env. Sust., 33, 58–69, https://doi.org/10.1016/j.cosust.2018.04.009, 2018a. a
Liu, X., Trogisch, S., He, J.-S., Niklaus, P. A., Bruelheide, H., Tang, Z., Erfmeier, A., Scherer-Lorenzen, M., Pietsch, K. A., Yang, B., Kühn, P., Scholten, T., Huang, Y., Wang, C., Staab, M., Leppert, K. N., Wirth, C., Schmid, B., and Ma, K.: Tree species richness increases ecosystem carbon storage in subtropical forests, Proc. Roy. Soc. B, 285, 20181240, https://doi.org/10.1098/rspb.2018.1240, 2018b. a
Lovejoy, T. E. and Nobre, C.: Amazon Tipping Point, Sci. Adv., 4, eaat2340, https://doi.org/10.1126/sciadv.aat2340, 2018. a
Luke, S. H., Slade, E. M., Gray, C. L., Annammala, K. V., Drewer, J., Williamson, J., Agama, A. L., Ationg, M., Mitchell, S. L., Vairappan, C. S., and Struebig, M. J.: Riparian buffers in tropical agriculture: Scientific support, effectiveness and directions for policy, J. Appl. Ecol., 56, 85–92, https://doi.org/10.1111/1365-2664.13280, 2019. a
Luo, H., Quaas, J., and Han, Y.: Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation, Nat. Commun., 15, 7345, https://doi.org/10.1038/s41467-024-51783-y, 2024. a
Löfqvist, S., Kleinschroth, F., Bey, A., de Bremond, A., DeFries, R., Dong, J., Fleischman, F., Lele, S., Martin, D. A., Messerli, P., Meyfroidt, P., Pfeifer, M., Rakotonarivo, S. O., Ramankutty, N., Ramprasad, V., Rana, P., Rhemtulla, J. M., Ryan, C. M., Vieira, I. C. G., Wells, G. J., and Garrett, R. D.: How Social Considerations Improve the Equity and Effectiveness of Ecosystem Restoration, BioScience, 73, 134–148, https://doi.org/10.1093/biosci/biac099, 2023. a
Lüdeke-Freund, F., Gold, S., and Bocken, N. M. P.: A Review and Typology of Circular Economy Business Model Patterns, J. Ind. Ecol., 23, 36–61, https://doi.org/10.1111/jiec.12763, 2019. a
Mabele, M. B., Krauss, J. E., and Kiwango, W.: Going Back to the Roots: Ubuntu: and Just Conservation in Southern Africa, Conserv. Soc., 20, 92–102, https://doi.org/10.4103/cs.cs_33_21, 2022. a
MacCarthy, J., Tyukavina, A., Weisse, M. J., Harris, N., and Glen, E.: Extreme wildfires in Canada and their contribution to global loss in tree cover and carbon emissions in 2023, Glob. Change Biol., 30, e17392, https://doi.org/10.1111/gcb.17392, 2024. a, b
Magerl, A., Gingrich, S., Matej, S., Cunfer, G., Forrest, M., Lauk, C., Schlaffer, S., Weidinger, F., Yuskiw, C., and Erb, K.-H.: The Role of Wildfires in the Interplay of Forest Carbon Stocks and Wood Harvest in the Contiguous United States During the 20th Century, Global Biogeochem. Cy., 37, e2023GB007813, https://doi.org/10.1029/2023GB007813, 2023. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hartmann, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Quaas, J., Tegen, I., Weigelt, A., Wendisch, M., and Wirth, C.: Biodiversity loss and climate extremes – study the feedbacks, Nature, 612, 30–32, https://doi.org/10.1038/d41586-022-04152-y, 2022. a
Mahecha, M. D., Bastos, A., Bohn, F. J., Eisenhauer, N., Feilhauer, H., Hickler, T., Kalesse-Los, H., Migliavacca, M., Otto, F. E. L., Peng, J., Sippel, S., Tegen, I., Weigelt, A., Wendisch, M., Wirth, C., Al-Halbouni, D., Deneke, H., Doktor, D., Dunker, S., Duveiller, G., Ehrlich, A., Foth, A., García-García, A., Guerra, C. A., Guimarães-Steinicke, C., Hartmann, H., Henning, S., Herrmann, H., Hu, P., Ji, C., Kattenborn, T., Kolleck, N., Kretschmer, M., Kühn, I., Luttkus, M. L., Maahn, M., Mönks, M., Mora, K., Pöhlker, M., Reichstein, M., Rüger, N., Sánchez-Parra, B., Schäfer, M., Stratmann, F., Tesche, M., Wehner, B., Wieneke, S., Winkler, A. J., Wolf, S., Zaehle, S., Zscheischler, J., and Quaas, J.: Biodiversity and Climate Extremes: Known Interactions and Research Gaps, Earth's Future, 12, e2023EF003963, https://doi.org/10.1029/2023EF003963, 2024. a
Makarieva, A. M. and Gorshkov, V. G.: Biotic pump of atmospheric moisture as driver of the hydrological cycle on land, Hydrol. Earth Syst. Sci., 11, 1013–1033, https://doi.org/10.5194/hess-11-1013-2007, 2007. a
Mancini, L., Eslava, N. A., Traverso, M., and Mathieux, F.: Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study, Resour. Policy, 71, 102015, https://doi.org/10.1016/j.resourpol.2021.102015, 2021. a
Manning, P.: A global target for semi-natural land cover within human dominated landscapes?, One Earth, 7, 180–181, https://doi.org/10.1016/j.oneear.2024.01.007, 2024. a
Marja, R., Tscharntke, T., and Batáry, P.: Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis, Agr. Ecosyst. Environ.., 326, 107822, https://doi.org/10.1016/j.agee.2021.107822, 2022. a
Maron, M., Juffe-Bignoli, D., Krueger, L., Kiesecker, J., Kümpel, N. F., ten Kate, K., Milner-Gulland, E., Arlidge, W. N. S., Booth, H., Bull, J. W., Starkey, M., Ekstrom, J. M., Strassburg, B., Verburg, P. H., and Watson, J. E. M.: Setting robust biodiversity goals, Conserv. Lett., 14, e12816, https://doi.org/10.1111/conl.12816, 2021. a
Marquez, V., Carbone, L. M., Jiménez-Escobar, N. D., Britos, A. H., Aguilar, R., and Zamudio, F.: Local ecological knowledge of forage plants for goat farming and perceptions about pollination of tree species in the arid Chaco, J. Arid Environ., 222, 105167, https://doi.org/10.1016/j.jaridenv.2024.105167, 2024. a
Marris, E.: Rambunctious garden: saving nature in a post-wild world, Bloomsbury Publishing USA, ISBN-13: 978-1608194544, 2013. a
Martin, A., Armijos, M. T., Coolsaet, B., Dawson, N., A. S. Edwards, G., Few, R., Gross-Camp, N., Rodriguez, I., Schroeder, H., G. L. Tebboth, M., and White, C. S.: Environmental Justice and Transformations to Sustainability, Environment, 62, 19–30, https://doi.org/10.1080/00139157.2020.1820294, 2020. a
Martin, A., Gomez-Baggethun, E., Quaas, M., Rozzi, R., Tauro, A., Faith, D. P., Kumar, R., O’Farrell, P., and Pascual, U.: Plural values of nature help to understand contested pathways to sustainability, One Earth, 7, 806–819, https://doi.org/10.1016/j.oneear.2024.04.003, 2024. a
Martin, E. A., Dainese, M., Clough, Y., Báldi, A., Bommarco, R., Gagic, V., Garratt, M. P. D., Holzschuh, A., Kleijn, D., Kovács-Hostyánszki, A., Marini, L., Potts, S. G., Smith, H. G., Al Hassan, D., Albrecht, M., Andersson, G. K. S., Asís, J. D., Aviron, S., Balzan, M. V., Baños-Picón, L., Bartomeus, I., Batáry, P., Burel, F., Caballero-López, B., Concepción, E. D., Coudrain, V., Dänhardt, J., Diaz, M., Diekötter, T., Dormann, C. F., Duflot, R., Entling, M. H., Farwig, N., Fischer, C., Frank, T., Garibaldi, L. A., Hermann, J., Herzog, F., Inclán, D., Jacot, K., Jauker, F., Jeanneret, P., Kaiser, M., Krauss, J., Le Féon, V., Marshall, J., Moonen, A.-C., Moreno, G., Riedinger, V., Rundlöf, M., Rusch, A., Scheper, J., Schneider, G., Schüepp, C., Stutz, S., Sutter, L., Tamburini, G., Thies, C., Tormos, J., Tscharntke, T., Tschumi, M., Uzman, D., Wagner, C., Zubair-Anjum, M., and Steffan-Dewenter, I.: The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe, Ecol. Lett., 22, 1083–1094, https://doi.org/10.1111/ele.13265, 2019. a
Martin, L. J., Blossey, B., and Ellis, E.: Mapping where ecologists work: biases in the global distribution of terrestrial ecological observations, Front. Ecol. Environ., 10, 195–201, https://doi.org/10.1890/110154, 2012. a
Martin, M. A., Boakye, E. A., Boyd, E., Broadgate, W., Bustamante, M., Canadell, J. G., Carr, E. R., Chu, E. K., Cleugh, H., Csevár, S., Daoudy, M., de Bremond, A., Dhimal, M., Ebi, K. L., Edwards, C., Fuss, S., Girardin, M. P., Glavovic, B., Hebden, S., Hirota, M., Hsu, H.-H., Huq, S., Ingold, K., Johannessen, O. M., Kameyama, Y., Kumarasinghe, N., Langendijk, G. S., Lissner, T., Lwasa, S., Machalaba, C., Maltais, A., Mathai, M. V., Mbow, C., McNamara, K. E., Mukherji, A., Murray, V., Mysiak, J., Okereke, C., Ospina, D., Otto, F., Prakash, A., Pulhin, J. M., Raju, E., Redman, A., Rigaud, K. K., Rockström, J., Roy, J., Schipper, E. L. F., Schlosser, P., Schulz, K. A., Schumacher, K., Schwarz, L., Scown, M., Šedová, B., Siddiqui, T. A., Singh, C., Sioen, G. B., Stammer, D., Steinert, N. J., Suk, S., Sutton, R., Thalheimer, L., van Aalst, M., van der Geest, K., and Zhao, Z. J.: Ten new insights in climate science 2022, Global Sustain., 5, e20, https://doi.org/10.1017/sus.2022.17, 2022. a, b
Maskell, L. C., Radbourne, A., Norton, L. R., Reinsch, S., Alison, J., Bowles, L., Geudens, K., and Robinson, D. A.: Functional Agro-Biodiversity: An Evaluation of Current Approaches and Outcomes, Land, 12, 2078, https://doi.org/10.3390/land12112078, 2023. a
Massarella, K., Nygren, A., Fletcher, R., Büscher, B., Kiwango, W. A., Komi, S., Krauss, J. E., Mabele, M. B., McInturff, A., Sandroni, L. T., Alagona, P. S., Brockington, D., Coates, R., Duffy, R., Ferraz, K. M. P. M. B., Koot, S., Marchini, S., and Percequillo, A. R.: Transformation beyond conservation: how critical social science can contribute to a radical new agenda in biodiversity conservation, Curr. Opin. Env. Sust., 49, 79–87, https://doi.org/10.1016/j.cosust.2021.03.005, 2021. a
Massarella, K., Krauss, J., Kiwango, W., and Fletcher, R.: Convivial Conservation: From Principles to Practice, Mayfly Books, ISBN 978-1-906948-65-8, 2023. a
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., and Shukla, P. R.: Global Warming of 1.5 °C: IPCC special report on impacts of global warming of 1.5 °C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, 2022. a
Matias, A., Carrasco, A. R., Pinto, B., and Reis, J.: The role of art in coastal and marine sustainability, Cambridge Prisms, Coastal Futures, 1, e25, https://doi.org/10.1017/cft.2023.13, 2023. a
Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A. J., Mathesius, S., Nzotungicimpaye, C.-M., and Luers, A.: Temporary nature-based carbon removal can lower peak warming in a well-below 2 °C scenario, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00391-z, 2022. a, b
Matthews, H. D., Zickfeld, K., Koch, A., and Luers, A.: Accounting for the climate benefit of temporary carbon storage in nature, Nat. Commun., 14, 5485, https://doi.org/10.1038/s41467-023-41242-5, 2023. a, b, c
McDermott, C. L., Montana, J., Bennett, A., Gueiros, C., Hamilton, R., Hirons, M., Maguire-Rajpaul, V. A., Parry, E., and Picot, L.: Transforming land use governance: Global targets without equity miss the mark, Environ. Policy Gov., 33, 245–257, https://doi.org/10.1002/eet.2027, 2023. a, b
Meijaard, E., Brooks, T. M., Carlson, K. M., Slade, E. M., Garcia-Ulloa, J., Gaveau, D. L. A., Lee, J. S. H., Santika, T., Juffe-Bignoli, D., Struebig, M. J., Wich, S. A., Ancrenaz, M., Koh, L. P., Zamira, N., Abrams, J. F., Prins, H. H. T., Sendashonga, C. N., Murdiyarso, D., Furumo, P. R., Macfarlane, N., Hoffmann, R., Persio, M., Descals, A., Szantoi, Z., and Sheil, D.: The environmental impacts of palm oil in context, Nat. Plant., 6, 1418–1426, https://doi.org/10.1038/s41477-020-00813-w, 2020. a
Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L., and Hackmann, B.: Realization of Paris Agreement pledges may limit warming just below 2 °C, Nature, 604, 304–309, https://doi.org/10.1038/s41586-022-04553-z, 2022. a
Meli, P., Holl, K. D., Benayas, J. M. R., Jones, H. P., Jones, P. C., Montoya, D., and Mateos, D. M.: A global review of past land use, climate, and active vs. passive restoration effects on forest recovery, PLOS ONE, 12, e0171368, https://doi.org/10.1371/journal.pone.0171368, 2017. a, b
Merino, R. and Gustafsson, M.-T.: Localizing the indigenous environmental steward norm: The making of conservation and territorial rights in Peru, Environ. Sci. Policy, 124, 627–634, https://doi.org/10.1016/j.envsci.2021.07.005, 2021. a
M'Gonigle, L. K., Ponisio, L. C., Cutler, K., and Kremen, C.: Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture, Ecol. Appl., 25, 1557–1565, https://doi.org/10.1890/14-1863.1, 2015. a
Miralles, D. G., Gentine, P., Seneviratne, S. I., and Teuling, A. J.: Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges, Ann. NY Acad. Sci., 1436, 19–35, https://doi.org/10.1111/nyas.13912, 2019. a
Mohamed, A., DeClerck, F., Verburg, P. H., Obura, D., Abrams, J. F., Zafra-Calvo, N., Rocha, J., Estrada-Carmona, N., Fremier, A., Jones, S. K., Meier, I. C., and Stewart-Koster, B.: Securing Nature’s Contributions to People requires at least 20 %–25 %(semi-) natural habitat in human-modified landscapes, One Earth, 7, 59–71, https://doi.org/10.1016/j.oneear.2023.12.008, 2024. a, b, c, d, e, f
Molnár, Z., Aumeeruddy-Thomas, Y., Babai, D., Díaz, S., Garnett, S. T., Hill, R., Bates, P., Brondízio, E. S., Cariño, J., Demeter, L., Fernández-Llamazares, Á., Guèze, M., McElwee, P., Öllerer, K., Purvis, A., Reyes-García, V., Samakov, A., and Singh, R. K.: Towards richer knowledge partnerships between ecology and ethnoecology, Trend. Ecol. Evol., 39, 109–115, 2024. a
Moranta, J., Torres, C., Murray, I., Hidalgo, M., Hinz, H., and Gouraguine, A.: Transcending capitalism growth strategies for biodiversity conservation, Conserv. Biol., 36, e13821, https://doi.org/10.1111/cobi.13821, 2022. a
Müller, U. K., Stock, J. H., and Watson, M. W.: An econometric model of international growth dynamics for long-horizon forecasting, Rev. Econ. Stat., 104, 857–876, https://doi.org/10.1162/rest_a_00997, 2022. a
Neidermeier, A. N., Zagaria, C., Pampanoni, V., West, T. A. P., and Verburg, P. H.: Mapping opportunities for the use of land management strategies to address fire risk in Europe, J. Environ. Manag., 346, 118941, https://doi.org/10.1016/j.jenvman.2023.118941, 2023. a
Nelson, J. A., Walther, S., Gans, F., Kraft, B., Weber, U., Novick, K., Buchmann, N., Migliavacca, M., Wohlfahrt, G., Šigut, L., Ibrom, A., Papale, D., Göckede, M., Duveiller, G., Knohl, A., Hörtnagl, L., Scott, R. L., Zhang, W., Hamdi, Z. M., Reichstein, M., Aranda-Barranco, S., Ardö, J., Op de Beeck, M., Billdesbach, D., Bowling, D., Bracho, R., Brümmer, C., Camps-Valls, G., Chen, S., Cleverly, J. R., Desai, A., Dong, G., El-Madany, T. S., Euskirchen, E. S., Feigenwinter, I., Galvagno, M., Gerosa, G., Gielen, B., Goded, I., Goslee, S., Gough, C. M., Heinesch, B., Ichii, K., Jackowicz-Korczynski, M. A., Klosterhalfen, A., Knox, S., Kobayashi, H., Kohonen, K.-M., Korkiakoski, M., Mammarella, I., Mana, G., Marzuoli, R., Matamala, R., Metzger, S., Montagnani, L., Nicolini, G., O'Halloran, T., Ourcival, J.-M., Peichl, M., Pendall, E., Ruiz Reverter, B., Roland, M., Sabbatini, S., Sachs, T., Schmidt, M., Schwalm, C. R., Shekhar, A., Silberstein, R., Silveira, M. L., Spano, D., Tagesson, T., Tramontana, G., Trotta, C., Turco, F., Vesala, T., Vincke, C., Vitale, D., Vivoni, E. R., Wang, Y., Woodgate, W., Yepez, E. A., Zhang, J., Zona, D., and Jung, M.: X-BASE: the first terrestrial carbon and water flux products from an extended data-driven scaling framework, FLUXCOM-X, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-165, 2024. a
Nelson, K., Thompson, D., Hopkinson, C., Petrone, R., and Chasmer, L.: Peatland-fire interactions: A review of wildland fire feedbacks and interactions in Canadian boreal peatlands, Sci. Total Environ., 769, 145212, https://doi.org/10.1016/j.scitotenv.2021.145212, 2021. a
Newell, P. and Taylor, O.: Fiddling while the planet burns? COP25 in perspective, in: Economics and Climate Emergency, Routledge, ISBN 978-1-00-317470-7, 2022. a
Nie, M., Liu, W., Pennings, S. C., and Li, B.: Lessons from the invasion of in coastal China, Ecology, 104, e3874, https://doi.org/10.1002/ecy.3874, 2023. a
NOAA: Coastal Blue Carbon, https://oceanservice.noaa.gov/ecosystems/coastal-blue-carbon/# (last access: 10 January 2025), 2024. a
Nodo, P., Childs, A.-R., Pattrick, P., and James, N. C.: The nursery function of shallow nearshore and estuarine benthic habitats for demersal fishes, Estuar. Coast. Shelf Sci., 280, 108168, https://doi.org/10.1016/j.ecss.2022.108168, 2023. a
Nordhaus, W.: Climate change: The ultimate challenge for economics, Am. Econ. Rev., 109, 1991–2014, https://doi.org/10.1257/aer.109.6.1991, 2019. a
Northey, S. A., Mudd, G. M., Werner, T. T., Jowitt, S. M., Haque, N., Yellishetty, M., and Weng, Z.: The exposure of global base metal resources to water criticality, scarcity and climate change, Glob. Environ. Change, 44, 109–124, https://doi.org/10.1016/j.gloenvcha.2017.04.004, 2017. a
O., S. and Orth, R.: Global soil moisture data derived through machine learning trained with in-situ measurements, Sci. Data, 8, 170, https://doi.org/10.1038/s41597-021-00964-1, 2021. a
O'Brien, K. and Barnett, J.: Global Environmental Change and Human Security, Annu. Rev. Environ. Resour., 38, 373–391, https://doi.org/10.1146/annurev-environ-032112-100655, 2013. a
Obura, D. O., DeClerck, F., Verburg, P. H., Gupta, J., Abrams, J. F., Bai, X., Bunn, S., Ebi, K. L., Gifford, L., Gordon, C., Jacobson, L., Lenton, T. M., Liverman, D., Mohamed, A., Prodani, K., Rocha, J. C., Rockström, J., Sakschewski, B., Stewart-Koster, B., van Vuuren, D., Winkelmann, R., and Zimm, C.: Achieving a nature- and people-positive future, One Earth, 6, 105–117, https://doi.org/10.1016/j.oneear.2022.11.013, 2023. a, b, c
Ochieng, A., Koh, N. S., and Koot, S.: Compatible with Conviviality? Exploring African Ecotourism and Sport Hunting for Transformative Conservation, Conserv. Soc., 21, 38–47, https://doi.org/10.4103/cs.cs_42_21, 2023. a
OECD: Towards Sustainable Land Use: Aligning Biodiversity, Climate and Food Policies, Organisation for Economic Co-operation and Development, Paris, https://www.oecd-ilibrary.org/environment/towards-sustainable-land-use_3809b6a1-en (last access: 31 July 2024), 2020. a
Ojeda, J., Salomon, A. K., Rowe, J. K., and Ban, N. C.: Reciprocal contributions between people and nature: a conceptual intervention, BioScience, 72, 952–962, https://doi.org/10.1093/biosci/biac053, 2022. a
Oliveira, M. R., Ferreira, B. H. S., Souza, E. B., Lopes, A. A., Bolzan, F. P., Roque, F. O., Pott, A., Pereira, A. M. M., Garcia, L. C., Damasceno, G. A., Costa, A., Rocha, M., Xavier, S., Ferraz, R. A., and Ribeiro, D. B.: Indigenous brigades change the spatial patterns of wildfires, and the influence of climate on fire regimes, J. Appl. Ecol., 59, 1279–1290, https://doi.org/10.1111/1365-2664.14139, 2022. a
Orlove, B., Sherpa, P., Dawson, N., Adelekan, I., Alangui, W., Carmona, R., Coen, D., Nelson, M. K., Reyes-García, V., Rubis, J., Sanago, G., and Wilson, A.: Placing diverse knowledge systems at the core of transformative climate research, Ambio, 52, 1431–1447, https://doi.org/10.1007/s13280-023-01857-w, 2023. a
Ostrom, E.: A General Framework for Analyzing Sustainability of Social-Ecological Systems, Science, 325, 419–422, https://doi.org/10.1126/science.1172133, 2009. a
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli, I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri, L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B., Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Meyer, L., Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-Madruga, R., Plattner, G.-K., Pörtner, H.-O., Power, S. B., Preston, B., Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R., Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren, D., and van Ypserle, J.-P.: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland, ISBN 978-92-9169-143-2, https://epic.awi.de/id/eprint/37530/ (last access: 31 July 2024), 2014. a
Palinkas, C. M., Orton, P., Hummel, M. A., Nardin, W., Sutton-Grier, A. E., Harris, L., Gray, M., Li, M., Ball, D., Burks-Copes, K., Davlasheridze, M., De Schipper, M., George, D. A., Halsing, D., Maglio, C., Marrone, J., McKay, S. K., Nutters, H., Orff, K., Taal, M., Van Oudenhoven, A. P. E., Veatch, W., and Williams, T.: Innovations in Coastline Management With Natural and Nature-Based Features (NNBF): Lessons Learned From Three Case Studies, Front. Built Environ., 8, 814180, https://doi.org/10.3389/fbuil.2022.814180, 2022. a
Pan, Y., Birdsey, R. A., Phillips, O. L., Houghton, R. A., Fang, J., Kauppi, P. E., Keith, H., Kurz, W. A., Ito, A., Lewis, S. L., Nabuurs, G.-J., Shvidenko, A., Hashimoto, S., Lerink, B., Schepaschenko, D., Castanho, A., and Murdiyarso, D.: The enduring world forest carbon sink, Nature, 631, 563–569, 2024. a
Papastefanou, P., Zang, C. S., Angelov, Z., Anderson de Castro, A., Jimenez, J. C., De Rezende, L. F. C., Ruscica, R. C., Sakschewski, B., Sörensson, A. A., Thonicke, K., Vera, C., Viovy, N., Von Randow, C., and Rammig, A.: Recent extreme drought events in the Amazon rainforest: Assessment of different precipitation and evapotranspiration datasets and drought indicators, Biogeosciences, 19, 3843–3861, https://doi.org/10.5194/bg-19-3843-2022, 2022. a
Parr, C. L., Te Beest, M., and Stevens, N.: Conflation of reforestation with restoration is widespread, Science, 383, 698–701, https://doi.org/10.1126/science.adj089, 2024. a
Pascual, U., Balvanera, P., Anderson, C. B., Chaplin-Kramer, R., Christie, M., González-Jiménez, D., Martin, A., Raymond, C. M., Termansen, M., Vatn, A., Athayde, S., Baptiste, B., Barton, D. N., Jacobs, S., Kelemen, E., Kumar, R., Lazos, E., Mwampamba, T. H., Nakangu, B., O’Farrell, P., Subramanian, S. M., van Noordwijk, M., Ahn, S., Amaruzaman, S., Amin, A. M., Arias-Arévalo, P., Arroyo-Robles, G., Cantú-Fernández, M., Castro, A. J., Contreras, V., De Vos, A., Dendoncker, N., Engel, S., Eser, U., Faith, D. P., Filyushkina, A., Ghazi, H., Gómez-Baggethun, E., Gould, R. K., Guibrunet, L., Gundimeda, H., Hahn, T., Harmáčková, Z. V., Hernández-Blanco, M., Horcea-Milcu, A.-I., Huambachano, M., Wicher, N. L. H., Aydın, C. I., Islar, M., Koessler, A.-K., Kenter, J. O., Kosmus, M., Lee, H., Leimona, B., Lele, S., Lenzi, D., Lliso, B., Mannetti, L. M., Merçon, J., Monroy-Sais, A. S., Mukherjee, N., Muraca, B., Muradian, R., Murali, R., Nelson, S. H., Nemogá-Soto, G. R., Ngouhouo-Poufoun, J., Niamir, A., Nuesiri, E., Nyumba, T. O., Özkaynak, B., Palomo, I., Pandit, R., Pawłowska-Mainville, A., Porter-Bolland, L., Quaas, M., Rode, J., Rozzi, R., Sachdeva, S., Samakov, A., Schaafsma, M., Sitas, N., Ungar, P., Yiu, E., Yoshida, Y., and Zent, E.: Diverse values of nature for sustainability, Nature, 620, 813–823, https://doi.org/10.1038/s41586-023-06406-9, 2023. a, b
Pausas, J. G. and Keeley, J. E.: A burning story: the role of fire in the history of life, BioScience, 59, 593–601, https://doi.org/10.1525/bio.2009.59.7.10, 2009. a
Pendrill, F., Gardner, T. A., Meyfroidt, P., Persson, U. M., Adams, J., Azevedo, T., Bastos Lima, M. G., Baumann, M., Curtis, P. G., De Sy, V., Garrett, R., Godar, J., Goldman, E. D., Hansen, M. C., Heilmayr, R., Herold, M., Kuemmerle, T., Lathuillière, M. J., Ribeiro, V., Tyukavina, A., Weisse, M. J., and West, C.: Disentangling the numbers behind agriculture-driven tropical deforestation, Science, 377, eabm9267, https://doi.org/10.1126/science.abm9267, 2022. a, b
Pereira, H. M., Rosa, I. M. D., Martins, I. S., Kim, H., Leadley, P., Popp, A., Vuuren, D. P. v., Hurtt, G., Anthoni, P., Arneth, A., Baisero, D., Chaplin-Kramer, R., Chini, L., Fulvio, F. D., Marco, M. D., Ferrier, S., Fujimori, S., Guerra, C. A., Harfoot, M., Harwood, T. D., Hasegawa, T., Haverd, V., Havlík, P., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Hirata, A., Hoskins, A. J., Humpenöder, F., Janse, J. H., Jetz, W., Johnson, J. A., Krause, A., Leclère, D., Matsui, T., Meijer, J. R., Merow, C., Obsersteiner, M., Ohashi, H., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A. M., Settele, J., Sharp, R., Stehfest, E., Strassburg, B. B. N., Takahashi, K., Talluto, M. V., Thuiller, W., Titeux, N., Visconti, P., Ware, C., Wolf, F., and Alkemade, R.: Global trends in biodiversity and ecosystem services from 1900 to 2050, bioRxiv 2020.04.14.031716, 15 pp., https://doi.org/10.1101/2020.04.14.031716, 2020a. a
Pereira, H. M., Martins, I. S., Rosa, I. M. D., Kim, H., Leadley, P., Popp, A., van Vuuren, D. P., Hurtt, G., Quoss, L., Arneth, A., Baisero, D., Bakkenes, M., Chaplin-Kramer, R., Chini, L., Di Marco, M., Ferrier, S., Fujimori, S., Guerra, C. A., Harfoot, M., Harwood, T. D., Hasegawa, T., Haverd, V., Havlík, P., Hellweg, S., Hilbers, J. P., Hill, S. L. L., Hirata, A., Hoskins, A. J., Humpenöder, F., Janse, J. H., Jetz, W., Johnson, J. A., Krause, A., Leclère, D., Matsui, T., Meijer, J. R., Merow, C., Obersteiner, M., Ohashi, H., De Palma, A., Poulter, B., Purvis, A., Quesada, B., Rondinini, C., Schipper, A. M., Settele, J., Sharp, R., Stehfest, E., Strassburg, B. B. N., Takahashi, K., Talluto, M. V., Thuiller, W., Titeux, N., Visconti, P., Ware, C., Wolf, F., and Alkemade, R.: Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050, Science, 384, 458–465, https://doi.org/10.1126/science.adn3441, 2024. a
Pereira, L. M., Davies, K. K., den Belder, E., Ferrier, S., Karlsson-Vinkhuyzen, S., Kim, H., Kuiper, J. J., Okayasu, S., Palomo, M. G., Pereira, H. M., Peterson, G., Sathyapalan, J., Schoolenberg, M., Alkemade, R., Carvalho Ribeiro, S., Greenaway, A., Hauck, J., King, N., Lazarova, T., Ravera, F., Chettri, N., Cheung, W. W. L., Hendriks, R. J. J., Kolomytsev, G., Leadley, P., Metzger, J.-P., Ninan, K. N., Pichs, R., Popp, A., Rondinini, C., Rosa, I., van Vuuren, D., and Lundquist, C. J.: Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework, People Nat., 2, 1172–1195, https://doi.org/10.1002/pan3.10146, 2020b. a
Pereira, L. M., Gianelli, I., Achieng, T., Amon, D., Archibald, S., Arif, S., Castro, A., Chimbadzwa, T. P., Coetzer, K., Field, T.-L., Selomane, O., Sitas, N., Stevens, N., Villasante, S., Armani, M., Kimuyu, D. M., Adewumi, I. J., Lapola, D. M., Obura, D., Pinho, P., Roa-Clavijo, F., Rocha, J., and Sumaila, U. R.: Equity and justice should underpin the discourse on tipping points, Earth Syst. Dynam., 15, 341–366, https://doi.org/10.5194/esd-15-341-2024, 2023. a
Perino, A., Pereira, H. M., Felipe-Lucia, M., Kim, H., Kühl, H. S., Marselle, M. R., Meya, J. N., Meyer, C., Navarro, L. M., van Klink, R., Albert, G., Barratt, C. D., Bruelheide, H., Cao, Y., Chamoin, A., Darbi, M., Dornelas, M., Eisenhauer, N., Essl, F., Farwig, N., Förster, J., Freyhof, J., Geschke, J., Gottschall, F., Guerra, C., Haase, P., Hickler, T., Jacob, U., Kastner, T., Korell, L., Kühn, I., Lehmann, G. U. C., Lenzner, B., Marques, A., Motivans Švara, E., Quintero, L. C., Pacheco, A., Popp, A., Rouet-Leduc, J., Schnabel, F., Siebert, J., Staude, I. R., Trogisch, S., Švara, V., Svenning, J.-C., Pe'er, G., Raab, K., Rakosy, D., Vandewalle, M., Werner, A. S., Wirth, C., Xu, H., Yu, D., Zinngrebe, Y., and Bonn, A.: Biodiversity post-2020: Closing the gap between global targets and national-level implementation, Conserv. Lett., 15, e12848, https://doi.org/10.1111/conl.12848, 2022. a
Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T., and Frumhoff, P. C.: Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management, Sci. Adv., 8, eabl7161, https://doi.org/10.1126/sciadv.abl7161, 2022. a
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., Brando, P., Chave, J., de Oliveira, A. C. A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas, M. A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S., Peñuela, M. C., Prieto, A., Ramírez, F., Schwarz, M., Silva, J., Silveira, M., Thomas, A. S., Steege, H. t., Stropp, J., Vásquez, R., Zelazowski, P., Dávila, E. A., Andelman, S., Andrade, A., Chao, K.-J., Erwin, T., Di Fiore, A., C., E. H., Keeling, H., Killeen, T. J., Laurance, W. F., Cruz, A. P., Pitman, N. C. A., Vargas, P. N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J., and Torres-Lezama, A.: Drought Sensitivity of the Amazon Rainforest, Science, 323, 1344–1347, https://doi.org/10.1126/science.1164033, 2009. a
Pickering, J., Coolsaet, B., Dawson, N., Suiseeya, K. M., Inoue, C. Y. A., and Lim, M.: Rethinking and Upholding Justice and Equity in Transformative Biodiversity Governance, in: Transforming Biodiversity Governance, edited by: Visseren-Hamakers, I. J. and Kok, M. T. J., 155–178, Cambridge University Press, Cambridge, ISBN 978-1-108-47974-5, https://ueaeprints.uea.ac.uk/id/eprint/85334 (last access: 1 August 2024), 2022. a
Pollock, L. J., O’connor, L. M., Mokany, K., Rosauer, D. F., Talluto, M. V., and Thuiller, W.: Protecting biodiversity (in all its complexity): new models and methods, Trend. Ecol. Evol., 35, 1119–1128, 2020. a
Poveda, G. and Mesa, O. J.: Feedbacks between Hydrological Processes in Tropical South America and Large-Scale Ocean–Atmospheric Phenomena, J. Clim., 10, 2690–2702, https://doi.org/10.1175/1520-0442(1997)010<2690:FBHPIT>2.0.CO;2, 1997. a
Priyadarshana, T. S., Martin, E. A., Sirami, C., Woodcock, B. A., Goodale, E., Martínez-Núñez, C., Lee, M.-B., Pagani-Núñez, E., Raderschall, C. A., Brotons, L., Rege, A., Ouin, A., Tscharntke, T., and Slade, E. M.: Crop and landscape heterogeneity increase biodiversity in agricultural landscapes: A global review and meta-analysis, Ecol. Lett., 27, e14412, https://doi.org/10.1111/ele.14412, 2024. a
Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., Dawson, W., Essl, F., Foxcroft, L. C., Genovesi, P., Jeschke, J. M., Kühn, I., Liebhold, A. M., Mandrak, N. E., Meyerson, L. A., Pauchard, A., Pergl, J., Roy, H. E., Seebens, H., van Kleunen, M., Vilà, M., Wingfield, M. J., and Richardson, D. M.: Scientists' warning on invasive alien species, Biol. Rev., 95, 1511–1534, https://doi.org/10.1111/brv.12627, 2020. a
Pörtner, H.-O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L. W., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman Elasha, B., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y.-J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A. L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D. C., Rogers, A. D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., and Ngo, H.: Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change, info:eu-repo/semantics/report, IPBES secretariat, Bonn, Zenodo, https://doi.org/10.5281/zenodo.4659158, 2021a. a
Pörtner, H. O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman, E., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes- García, V., Sankaran, M., Settele, J., Shin, Y. J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A. L., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D. C., Rogers, A.D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., and Ngo, H. T.: IPBES-IPCC co-sponsored workshop report on biodiversity and climate change; IPBES and IPCC, Zenodo, https://doi.org/10.5281/zenodo.4782538, 2021b. a, b
Pörtner, H.-O., Scholes, R. J., Arneth, A., Barnes, D. K. A., Burrows, M. T., Diamond, S. E., Duarte, C. M., Kiessling, W., Leadley, P., Managi, S., McElwee, P., Midgley, G., Ngo, H. T., Obura, D., Pascual, U., Sankaran, M., Shin, Y. J., and Val, A. L.: Overcoming the coupled climate and biodiversity crises and their societal impacts, Science, 380, eabl4881, https://doi.org/10.1126/science.abl4881, 2023. a
Raja, N. B., Dunne, E. M., Matiwane, A., Khan, T. M., Nätscher, P. S., Ghilardi, A. M., and Chattopadhyay, D.: Colonial history and global economics distort our understanding of deep-time biodiversity, Nat. Ecol. Evol., 6, 145–154, https://doi.org/10.1038/s41559-021-01608-8, 2022. a
Rakotomalala, A. A. N. A., Ficiciyan, A. M., and Tscharntke, T.: Intercropping enhances beneficial arthropods and controls pests: A systematic review and meta-analysis, Agr. Ecosyst. Environ., 356, 108617, https://doi.org/10.1016/j.agee.2023.108617, 2023. a, b
Regos, A., Pais, S., Campos, J. C., and Lecina-Diaz, J.: Nature-based solutions to wildfires in rural landscapes of Southern Europe: let’s be fire-smart!, Int. J. Wildland Fire, 32, 942–950, https://doi.org/10.1071/WF22094, 2023. a
Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., and Moomaw, W. R.: World Scientists’ Warning of a Climate Emergency, BioScience, 70, 8–100, https://www.jstor.org/stable/26891410 (last access: 31 July 2024), 2020. a
Ripple, W. J., Wolf, C., Gregg, J. W., Rockström, J., Newsome, T. M., Law, B. E., Marques, L., Lenton, T. M., Xu, C., Huq, S., Simons, L., and King, S. D. A.: The 2023 state of the climate report: Entering uncharted territory, BioScience, 73, 841–850, https://doi.org/10.1093/biosci/biad080, 2023. a
Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S., and Coumou, D.: Increasing heat and rainfall extremes now far outside the historical climate, npj Clim. Atmos. Sci., 4, 1–4, https://doi.org/10.1038/s41612-021-00202-w, 2021. a
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science, 355, 1269–1271, https://doi.org/10.1126/science.aah3443, 2017. a, b
Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., Liverman, D. M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D., Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B., Tharammal, T., van Vuuren, D., Verburg, P. H., Winkelmann, R., Zimm, C., Bennett, E. M., Bringezu, S., Broadgate, W., Green, P. A., Huang, L., Jacobson, L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and Zhang, X.: Safe and just Earth system boundaries, Nature, 619, 102–111, https://doi.org/10.1038/s41586-023-06083-8, 2023. a, b, c
Roebroek, C. T. J., Duveiller, G., Seneviratne, S. I., Davin, E. L., and Cescatti, A.: Releasing global forests from human management: How much more carbon could be stored?, Science, 380, 749–753, https://doi.org/10.1126/science.add5878, 2023. a
Rounsevell, M. D., Harfoot, M., Harrison, P. A., Newbold, T., Gregory, R. D., and Mace, G. M.: A biodiversity target based on species extinctions, Science, 368, 1193–1195, https://doi.org/10.1126/science.aba6592, 2020. a
Roy, H. E., Pauchard, A., Stoett, P., and Renard Truong, T.: IPBES Invasive Alien Species Assessment: Full report, Tech. Rep., Zenodo, https://doi.org/10.5281/zenodo.11629357, 2024. a
Saintilan, N., Horton, B., Törnqvist, T. E., Ashe, E. L., Khan, N. S., Schuerch, M., Perry, C., Kopp, R. E., Garner, G. G., Murray, N., Rogers, K., Albert, S., Kelleway, J., Shaw, T. A., Woodroffe, C. D., Lovelock, C. E., Goddard, M. M., Hutley, L. B., Kovalenko, K., Feher, L., and Guntenspergen, G.: Widespread retreat of coastal habitat is likely at warming levels above 1.5 °C, Nature, 621, 112–119, https://doi.org/10.1038/s41586-023-06448-z, 2023. a, b
San-Miguel-Ayanz, J., Moreno, J. M., and Camia, A.: Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives, Forest Ecol. Manag., 294, 11–22, https://doi.org/10.1016/j.foreco.2012.10.050, 2013. a
Sanchez, G. M., Grone, M., and Apodaca, A.: Indigenous stewardship of coastal resources in native California, Front. Earth Sci., 11, 1064197, https://doi.org/10.3389/feart.2023.1064197, 2023. a
Schlesier, H., Schäfer, M., and Desing, H.: Measuring the Doughnut: A good life for all is possible within planetary boundaries, J. Clean. Prod., 448, 141447, https://doi.org/10.1016/j.jclepro.2024.141447, 2024. a
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke, S.: Overwintering fires in boreal forests, Nature, 593, 399–404, https://doi.org/10.1038/s41586-021-03437-y, 2021. a, b
Seddon, N.: Harnessing the potential of nature-based solutions for mitigating and adapting to climate change, Science, 376, 1410–1416, https://doi.org/10.1126/science.abn9668, 2022. a
Seebens, H., Niamir, A., Essl, F., Garnett, S. T., Kumagai, J. A., Molnár, Z., Saeedi, H., and Meyerson, L. A.: Biological invasions on Indigenous peoples’ lands, Nat. Sustain., 7, 737–746, https://doi.org/10.1038/s41893-024-01361-3, 2024. a
Shah, K. K., Modi, B., Pandey, H. P., Subedi, A., Aryal, G., Pandey, M., and Shrestha, J.: Diversified Crop Rotation: An Approach for Sustainable Agriculture Production, Adv. Agr., 2021, 8924087, https://doi.org/10.1155/2021/8924087, 2021. a
Skaalsveen, K., Ingram, J., and Clarke, L. E.: The effect of no-till farming on the soil functions of water purification and retention in north-western Europe: A literature review, Soil Till. Res., 189, 98–109, https://doi.org/10.1016/j.still.2019.01.004, 2019. a
Smith, C., Baker, J. C. A., and Spracklen, D. V.: Tropical deforestation causes large reductions in observed precipitation, Nature, 615, 270–275, https://doi.org/10.1038/s41586-022-05690-1, 2023. a, b
Song, S., Ding, Y., Li, W., Meng, Y., Zhou, J., Gou, R., Zhang, C., Ye, S., Saintilan, N., Krauss, K. W., Crooks, S., Lv, S., and Lin, G.: Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change, Nat. Commun., 14, 756, https://doi.org/10.1038/s41467-023-36477-1, 2023. a
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A., and Gimeno, L.: A Lagrangian perspective of the hydrological cycle in the Congo River basin, Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, 2017. a
Spracklen, D. V. and Garcia-Carreras, L.: The impact of Amazonian deforestation on Amazon basin rainfall, Geophys. Res. Lett., 42, 9546–9552, https://doi.org/10.1002/2015GL066063, 2015. a
Spracklen, D. V., Arnold, S. R., and Taylor, C.: Observations of increased tropical rainfall preceded by air passage over forests, Nature, 489, 282–285, https://doi.org/10.1038/nature11390, 2012. a
Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall cascades buffer against drought across the Amazon, Nat. Clim. Change, 8, 539–543, https://doi.org/10.1038/s41558-018-0177-y, 2018. a
Staal, A., Flores, B. M., Aguiar, A. P. D., Bosmans, J. H., Fetzer, I., and Tuinenburg, O. A.: Feedback between drought and deforestation in the Amazon, Environ. Res. Lett., 15, 044024, https://doi.org/10.1088/1748-9326/ab738e, 2020. a
Staal, A., Koren, G., Tejada, G., and Gatti, L. V.: Moisture origins of the Amazon carbon source region, Environ. Res. Lett., 18, 044027, https://doi.org/10.1088/1748-9326/acc676, 2023. a, b
Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., and Schellnhuber, H. J.: Trajectories of the Earth System in the Anthropocene, P. Natl. Acad. Sci. USA, 115, 8252–8259, https://doi.org/10.1073/pnas.1810141115, 2018. a, b, c
Sterner, T. and Persson, U. M.: An Even Sterner Review: Introducing Relative Prices into the Discounting Debate, Rev. Environ. Econ. Pol., 2, 61–76, https://doi.org/10.1093/reep/rem024, 2008. a
Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S., and Zhu, L.: Plastics in the Earth system, Science, 373, 51–55, https://doi.org/10.1126/science.abb0354, 2021. a
Sullivan, S.: Elephant in the room? Problematising “new” (neoliberal) biodiversity conservation, in: Forum for Development Studies, Taylor & Francis, Vol. 33, 105–135, https://doi.org/10.1080/08039410.2006.9666337, 2006. a
Sunkur, R., Kantamaneni, K., Bokhoree, C., and Ravan, S.: Mangroves' role in supporting ecosystem-based techniques to reduce disaster risk and adapt to climate change: A review, J. Sea Res., 196, 102449, https://doi.org/10.1016/j.seares.2023.102449, 2023. a
Sánchez-Bayo, F. and Wyckhuys, K. A.: Worldwide decline of the entomofauna: A review of its drivers, Biol. Conserv., 232, 8–27, https://doi.org/10.1016/j.biocon.2019.01.020, 2019. a
Tao, S., Chave, J., Frison, P.-L., Le Toan, T., Ciais, P., Fang, J., Wigneron, J.-P., Santoro, M., Yang, H., Li, X., Labrière, N., and Saatchi, S.: Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts, P. Natl. Acad. Sci. USA, 119, e2116626119, https://doi.org/10.1073/pnas.2116626119, 2022. a
Tedesco, A. M., Brancalion, P. H. S., Hepburn, M. L. H., Walji, K., Wilson, K. A., Possingham, H. P., Dean, A. J., Nugent, N., Elias-Trostmann, K., Perez-Hammerle, K.-V., and Rhodes, J. R.: The role of incentive mechanisms in promoting forest restoration, Philos. T. R. Soc. B, 378, 20210088, https://doi.org/10.1098/rstb.2021.0088, 2022. a
Teixeira, J. C. M., Burton, C., Kelly, D. I., Folberth, G. A., O'Connor, F. M., Betts, R. A., and Voulgarakis, A.: Representing socio-economic factors in the INFERNO global fire model using the Human Development Index, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2023-136, 2023. a
Thomas, R., Davies, J., King, C., Kuse, J., Schauer, M., Bisom, N., Tsegai, D., and Madani, K.: Economics of Drought: Investing in Nature-Based Solutions for Drought Resilience – Proaction Pays, A joint report by UNCCD, ELD Initiative and UNU-INWEH, Tech. rep., UN Convention to Combat Desertification (UNCCD), Economics of Land Degradation (ELD) Initiative and United Nations University Institute for Water, Environment and Health (UNU-INWEH), Richmond Hill, Ontario, Canada, https://doi.org/10.53328/INR24CCD001, 2024. a
TNFD: Recommendations of the Taskforce on Nature-related Financial Disclosures, https://seea.un.org/content/recommendations-taskforce-nature-related-financial-disclosures (last access: 31 July 2024), 2023. a
Toncheva, S., Fletcher, R., and Turnhout, E.: Convivial conservation from the bottom up: Human-bear cohabitation in the Rodopi Mountains of Bulgaria, Conserv. Soc., 20, 124–135, 2022. a
Torchio, G. M., Cimon-Morin, J., Mendes, P., Goyette, J.-O., Schwantes, A. M., Arias-Patino, M., Bennett, E. M., Destrempes, C., Pellerin, S., and Poulin, M.: From marginal croplands to natural habitats: A methodological framework for assessing the restoration potential to enhance wild-bee pollination in agricultural landscapes, Landscape Ecol., 39, 194, https://doi.org/10.1007/s10980-024-01993-y, 2024. a
Toth, L. T., Storlazzi, C. D., Kuffner, I. B., Quataert, E., Reyns, J., McCall, R., Stathakopoulos, A., Hillis-Starr, Z., Holloway, N. H., Ewen, K. A., Pollock, C. G., Code, T., and Aronson, R. B.: The potential for coral reef restoration to mitigate coastal flooding as sea levels rise, Nat. Commun., 14, 2313, https://doi.org/10.1038/s41467-023-37858-2, 2023. a
Trégarot, E., D'Olivo, J. P., Botelho, A. Z., Cabrito, A., Cardoso, G. O., Casal, G., Cornet, C. C., Cragg, S. M., Degia, A. K., Fredriksen, S., Furlan, E., Heiss, G., Kersting, D. K., Maréchal, J.-P., Meesters, E., O'Leary, B. C., Pérez, G., Seijo-Núñez, C., Simide, R., van der Geest, M., and de Juan, S.: Effects of climate change on marine coastal ecosystems – A review to guide research and management, Biol. Conserv., 289, 110394, https://doi.org/10.1016/j.biocon.2023.110394, 2024. a, b, c, d
Tscharntke, T., Batáry, P., and Grass, I.: Mixing on- and off-field measures for biodiversity conservation, Trend. Ecol. Evol., 39, 726–733, https://doi.org/10.1016/j.tree.2024.04.003, 2024. a
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020. a
Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., and Watts, A.: Global vulnerability of peatlands to fire and carbon loss, Nat. Geosci., 8, 11–14, https://doi.org/10.1038/ngeo2325, 2015. a, b
UNCCD: The Great Green Wall: Hope for the Sahara and the Sahel, https://www.unccd.int/sites/default/files/documents/26042016_GGW_ENG.pdf (last access: 31 July 2024), 2016. a
United Nations Environment Programme: Emissions Gap Report 2022: The Closing Window – Climate Crisis Calls for Rapid Transformation of Societies, https://wedocs.unep.org/20.500.11822/40874 (last access: 31 July 2024), ISBN: 978-92-807-3979-4, 2022. a
UNFCCC: The Paris Agreement, in: The Paris Agreement, Paris, https://unfccc.int/documents/184656 (last access: 31 July 2024), 2018. a
van der Ent, R. J., Savenije, H. H. G., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525, https://doi.org/10.1029/2010WR009127, 2010. a, b
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., Durigan, G., Buisson, E., Putz, F. E., and Bond, W. J.: Where tree planting and forest expansion are bad for biodiversity and ecosystem services, BioScience, 65, 1011–1018, https://doi.org/10.1093/biosci/biv118, 2015. a
Vikström, H., Davidsson, S., and Höök, M.: Lithium availability and future production outlooks, Appl. Energ., 110, 252–266, https://doi.org/10.1016/j.apenergy.2013.04.005, 2013. a
Wakwella, A., Wenger, A., Jenkins, A., Lamb, J., Kuempel, C. D., Claar, D., Corbin, C., Falinski, K., Rivera, A., Grantham, H. S., and Jupiter, S. D.: Integrated watershed management solutions for healthy coastal ecosystems and people, Cambridge Prisms, Coastal Futures, 1, e27, https://doi.org/10.1017/cft.2023.15, 2023. a, b
Wang, Z., Wang, Z., Zou, Z., Chen, X., Wu, H., Wang, W., Su, H., Li, F., Xu, W., Liu, Z., and Zhu, J.: Severe Global Environmental Issues Caused by Canada’s Record-Breaking Wildfires in 2023, Adv. Atmos. Sci., 41, 565–571, https://doi.org/10.1007/s00376-023-3241-0, 2024. a
Watson, J. E., Venter, O., Lee, J., Jones, K. R., Robinson, J. G., Possingham, H. P., and Allan, J. R.: Protect the last of the wild, Nature, 563, 27–30, https://doi.org/10.1038/d41586-018-07183-6, 2018. a
Watts, M.: Political ecology, A companion to economic geography, 257–274, ISBN: 9780631235798, Online ISBN: 9781405166430, https://doi.org/10.1002/9781405166430, 2017. a
Webb, A. E., Enochs, I. C., van Hooidonk, R., van Westen, R. M., Besemer, N., Kolodziej, G., Viehman, T. S., and Manzello, D. P.: Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys, Sci. Rep., 13, 258, https://doi.org/10.1038/s41598-022-26930-4, 2023. a
Wessely, J., Essl, F., Fiedler, K., Gattringer, A., Hülber, B., Ignateva, O., Moser, D., Rammer, W., Dullinger, S., and Seidl, R.: A climate-induced tree species bottleneck for forest management in Europe, Nat. Ecol. Evol., 8, 1109–1117, https://doi.org/10.1038/s41559-024-02406-8, 2024. a
Wiedmann, T. and Lenzen, M.: Environmental and social footprints of international trade, Nat. Geosci., 11, 314–321, https://doi.org/10.1038/s41561-018-0113-9, 2018. a
Wiedmann, T., Lenzen, M., Keyßer, L. T., and Steinberger, J. K.: Scientists’ warning on affluence, Nat. Commun., 11, 3107, https://doi.org/10.1038/s41467-020-16941-y, 2020. a, b
Willmer, J. N. G., Püttker, T., and Prevedello, J. A.: Global impacts of edge effects on species richness, Biol. Conserv., 272, 109654, https://doi.org/10.1016/j.biocon.2022.109654, 2022. a
WMO: State of the Global Climate 2023, Tech. Rep. WMO-No. 1347, World Meteorological Organization (WMO), Geneva, ISBN: 978-92-63-11347-4, 2024. a
Wuerthner, G., Crist, E., and Butler, T.: Protecting the Wild: Parks and Wilderness, the Foundation for Conservation, Island Press, ISBN 978-1-61091-548-9, 2015. a
WWF: Living Planet Report 2024 – A System in Peril, WWF, Gland, Switzerland, ISBN: 978-2-88085-319-8, 2024. a
Xu, R., Ye, T., Yue, X., Yang, Z., Yu, W., Zhang, Y., Bell, M. L., Morawska, L., Yu, P., Zhang, Y., Wu, Y., Liu, Y., Johnston, F., Lei, Y., Abramson, M. J., Guo, Y., and Li, S.: Global population exposure to landscape fire air pollution from 2000 to 2019, Nature, 621, 521–529, https://doi.org/10.1038/s41586-023-06398-6, 2023. a
Yamano, H., Kayanne, H., Yamaguchi, T., Kuwahara, Y., Yokoki, H., Shimazaki, H., and Chikamori, M.: Atoll island vulnerability to flooding and inundation revealed by historical reconstruction: Fongafale Islet, Funafuti Atoll, Tuvalu, Glob. Planet. Change, 57, 407–416, https://doi.org/10.1016/j.gloplacha.2007.02.007, 2007. a
Yu, M., Zhang, S., Ning, H., Li, Z., and Zhang, K.: Assessing the 2023 Canadian wildfire smoke impact in Northeastern US: Air quality, exposure and environmental justice, Sci. Total Environ., 926, 171853, https://doi.org/10.1016/j.scitotenv.2024.171853, 2024. a
Yu, Z., Chen, X., Zhou, G., Agathokleous, E., Li, L., Liu, Z., Wu, J., Zhou, P., Xue, M., Chen, Y., Yan, W., Liu, L., Shi, T., and Zhao, X.: Natural forest growth and human induced ecosystem disturbance influence water yield in forests, Commun. Earth Environ., 3, 1–8, https://doi.org/10.1038/s43247-022-00483-w, 2022. a
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014. a, b
Zemp, D. C., Schleussner, C.-F., Barbosa, H. d. M. J., and Rammig, A.: Deforestation effects on Amazon forest resilience, Geophys. Res. Lett., 44, 6182–6190, https://doi.org/10.5194/acp-14-13337-2014, 2017. a, b, c
Zhang, M. and Wei, X.: Deforestation, forestation, and water supply, Science, 371, 990–991, https://doi.org/10.1126/science.abe7821, 2021. a
Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y., and Liu, S.: A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime, J. Hydrol., 546, 44–59, https://doi.org/10.1016/j.jhydrol.2016.12.040, 2017. a
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., Peng, S., Peñuelas, J., Ruane, A. C., Wallach, D., Wang, T., Wu, D., Liu, Z., Zhu, Y., Zhu, Z., and Asseng, S.: Temperature increase reduces global yields of major crops in four independent estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331, https://doi.org/10.1073/pnas.1701762114, 2017. a
Zheng, B., Ciais, P., Chevallier, F., Yang, H., Canadell, J.G., Chen, Y., van der Velde, I.R., Aben, I., Chuvieco, E., Davis, S.J., Deeter, M., Hong, C., Kong, Y., Li, H., Li, H., Lin, X., He, K., and Zhang, Q.: Record-high CO2 emissions from boreal fires in 2021, Science, 379, 912–917, https://doi.org/10.1126/science.ade0805, 2023. a
Zickfeld, K., MacIsaac, A. J., Canadell, J. G., Fuss, S., Jackson, R. B., Jones, C. D., Lohila, A., Matthews, H. D., Peters, G. P., Rogelj, J., and Zaehle, S.: Net-zero approaches must consider Earth system impacts to achieve climate goals, Nat. Clim. Change, 13, 1298–1305, https://doi.org/10.1038/s41558-023-01862-7, 2023. a
Zomer, R. J., Bossio, D. A., Trabucco, A., Noordwijk, M. V., and Xu, J.: Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land, Circul. Agr. Syst., 2, 1–10, https://doi.org/10.48130/CAS-2022-0003, 2022. a
Short summary
An interdisciplinary collaboration of 36 international researchers from 35 institutions highlights recent findings in biosphere research. Within eight themes, they discuss issues arising from climate change and other anthropogenic stressors and highlight the co-benefits of nature-based solutions and ecosystem services. Based on an analysis of these eight topics, we have synthesized four overarching insights.
An interdisciplinary collaboration of 36 international researchers from 35 institutions...
Altmetrics
Final-revised paper
Preprint