Articles | Volume 7, issue 8
https://doi.org/10.5194/bg-7-2445-2010
https://doi.org/10.5194/bg-7-2445-2010
16 Aug 2010
 | 16 Aug 2010

Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites)

E. Douville, M. Paterne, G. Cabioch, P. Louvat, J. Gaillardet, A. Juillet-Leclerc, and L. Ayliffe

Related subject area

Biogeochemistry: Air - Sea Exchange
High-frequency continuous measurements reveal strong diel and seasonal cycling of pCO2 and CO2 flux in a mesohaline reach of the Chesapeake Bay
A. Whitman Miller, Jim R. Muirhead, Amanda C. Reynolds, Mark S. Minton, and Karl J. Klug
Biogeosciences, 21, 3717–3734, https://doi.org/10.5194/bg-21-3717-2024,https://doi.org/10.5194/bg-21-3717-2024, 2024
Short summary
Significant role of physical transport in the marine carbon monoxide (CO) cycle: observations in the East Sea (Sea of Japan), the western North Pacific, and the Bering Sea in summer
Young Shin Kwon, Tae Siek Rhee, Hyun-Cheol Kim, and Hyoun-Woo Kang
Biogeosciences, 21, 1847–1865, https://doi.org/10.5194/bg-21-1847-2024,https://doi.org/10.5194/bg-21-1847-2024, 2024
Short summary
Dimethyl sulfide (DMS) climatologies, fluxes and trends – Part A: Differences between seawater DMS estimations
Sankirna D. Joge, Anoop Sharad Mahajan, Shrivardhan Hulswar, Christa Marandino, Martí Galí, Thomas Bell, and Rafel Simo
EGUsphere, https://doi.org/10.5194/egusphere-2024-173,https://doi.org/10.5194/egusphere-2024-173, 2024
Short summary
Dimethyl sulfide (DMS) climatologies, fluxes, and trends – Part B: Sea-air fluxes
Sankirna D. Joge, Anoop Sharad Mahajan, Shrivardhan Hulswar, Christa Marandino, Marti Gali, Thomas Bell, Mingxi Yang, and Rafel Simo
EGUsphere, https://doi.org/10.5194/egusphere-2024-175,https://doi.org/10.5194/egusphere-2024-175, 2024
Short summary
Central Arctic Ocean surface–atmosphere exchange of CO2 and CH4 constrained by direct measurements
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024,https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary

Cited articles

Archer, D., Winguth, A., Lea, D., and Mahowald, N.: What caused the Glacial/Interglacial atmospheric pCO2 cycles?, Rev. Geophys., 38(2), 159–189, 2000.
Asami, R., Felis, T., Deschamps, P., Hanawa, K., Iryu, Y., Bard, E., Durand, M., and Murayama, M.: Evidence for tropical South Pacific climate change during the Younger Dryas and the Bølling-Allerød from geochemical records of fossil Tahiti corals, Earth Planet. Sc. Lett., 288, 96–107, 2009.
Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., and Rougerie, F.: Deglacial sea-level record from Tahiti corals and the timing of global melt water discharge, Nature, 382, 241–244, 1996.
Beck, J. W., Récy, J., Taylor, F., Edwards, R. L., and Cabioch, G.: Abrupt changes in early Holocene tropical sea surface temperature derived from coral records, Nature, 385, 705–707, 1997.
Boiseau, M.: Etude de la variabilité climatique liée à l'ENSO dans l'Océan Pacifique Central Sud (Moorea) à partir de traceurs géochimiques contenus dans le squelette d'un Scleractiniaire à zooxanthelles (Porites Lutea), pH'D thesis, University of Paris VII, Paris, 202 pp., 1998.
Download
Altmetrics
Final-revised paper
Preprint