Articles | Volume 10, issue 11
https://doi.org/10.5194/bg-10-7235-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/bg-10-7235-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Downward fluxes of sinking particulate matter in the deep Ionian Sea (NESTOR site), eastern Mediterranean: seasonal and interannual variability
S. Stavrakakis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
E. Krasakopoulou
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
A. P. Karageorgis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
H. Kontoyiannis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
G. Rousakis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
D. Velaoras
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
L. Perivoliotis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
G. Kambouri
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
I. Stavrakaki
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
V. Lykousis
Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Greece
Related authors
C. Theodosi, C. Parinos, A. Gogou, A. Kokotos, S. Stavrakakis, V. Lykousis, J. Hatzianestis, and N. Mihalopoulos
Biogeosciences, 10, 4449–4464, https://doi.org/10.5194/bg-10-4449-2013, https://doi.org/10.5194/bg-10-4449-2013, 2013
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Irini Tsiodra, Georgios Grivas, Kalliopi Tavernaraki, Aikaterini Bougiatioti, Maria Apostolaki, Despina Paraskevopoulou, Alexandra Gogou, Constantine Parinos, Konstantina Oikonomou, Maria Tsagkaraki, Pavlos Zarmpas, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 21, 17865–17883, https://doi.org/10.5194/acp-21-17865-2021, https://doi.org/10.5194/acp-21-17865-2021, 2021
Short summary
Short summary
We analyze observations from year-long measurements at Athens, Greece. Nighttime wintertime PAH levels are 4 times higher than daytime, and wintertime values are 15 times higher than summertime. Biomass burning aerosol during wintertime pollution events is responsible for these significant wintertime enhancements and accounts for 43 % of the population exposure to PAH carcinogenic risk. Biomass burning poses additional health risks beyond those associated with the high PM levels that develop.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
R. Pedrosa-Pàmies, C. Parinos, A. Sanchez-Vidal, A. Gogou, A. Calafat, M. Canals, I. Bouloubassi, and N. Lampadariou
Biogeosciences, 12, 7379–7402, https://doi.org/10.5194/bg-12-7379-2015, https://doi.org/10.5194/bg-12-7379-2015, 2015
Short summary
Short summary
A multi-proxy approach is applied in surface sediments collected from deep slopes and basins (1018-4087 m depth) of the oligotrophic eastern Mediterranean Sea. This study sheds new light on the sources and transport mechanisms along with the impact of preservation vs. diagenetic processes on the composition of sedimentary organic matter in the deep basins of the oligotrophic eastern Mediterranean Sea.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
C. Parinos, A. Gogou, I. Bouloubassi, R. Pedrosa-Pàmies, I. Hatzianestis, A. Sanchez-Vidal, G. Rousakis, D. Velaoras, G. Krokos, and V. Lykousis
Biogeosciences, 10, 6069–6089, https://doi.org/10.5194/bg-10-6069-2013, https://doi.org/10.5194/bg-10-6069-2013, 2013
C. Theodosi, C. Parinos, A. Gogou, A. Kokotos, S. Stavrakakis, V. Lykousis, J. Hatzianestis, and N. Mihalopoulos
Biogeosciences, 10, 4449–4464, https://doi.org/10.5194/bg-10-4449-2013, https://doi.org/10.5194/bg-10-4449-2013, 2013
D. Kassis, K. Nittis, and L. Perivoliotis
Ocean Sci. Discuss., https://doi.org/10.5194/osd-10-883-2013, https://doi.org/10.5194/osd-10-883-2013, 2013
Revised manuscript not accepted
Related subject area
Biogeochemistry: Biomineralization
The calcitic test growth rate of Spirillina vivipara (Foraminifera)
Impact of seawater sulfate concentration on sulfur concentration and isotopic composition in calcite of two cultured benthic foraminifera
Marked recent declines in boron in Baltic Sea cod otoliths – a bellwether of incipient acidification in a vast hypoxic system?
Ocean acidification enhances primary productivity and nocturnal carbonate dissolution in intertidal rock pools
Biomineralization of amorphous Fe-, Mn- and Si-rich mineral phases by cyanobacteria under oxic and alkaline conditions
Biogenic calcium carbonate as evidence for life
Element ∕ Ca ratios in Nodosariida (Foraminifera) and their potential application for paleoenvironmental reconstructions
Deciphering the origin of dubiofossils from the Pennsylvanian of the Paraná Basin, Brazil
Properties of exopolymeric substances (EPSs) produced during cyanobacterial growth: potential role in whiting events
Inorganic component in oak waterlogged archaeological wood and volcanic lake compartments
Ultradian rhythms in shell composition of photosymbiotic and non-photosymbiotic mollusks
Extracellular enzyme activity in the coastal upwelling system off Peru: a mesocosm experiment
Multi-proxy assessment of brachiopod shell calcite as a potential archive of seawater temperature and oxygen isotope composition
Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma
Do bacterial viruses affect framboid-like mineral formation?
Calcification response of reef corals to seasonal upwelling in the northern Arabian Sea (Masirah Island, Oman)
Growth rate rather than temperature affects the B∕Ca ratio in the calcareous red alga Lithothamnion corallioides
Heavy metal uptake of nearshore benthic foraminifera during multi-metal culturing experiments
A stable ultrastructural pattern despite variable cell size in Lithothamnion corallioides
Decoupling salinity and carbonate chemistry: low calcium ion concentration rather than salinity limits calcification in Baltic Sea mussels
Technical note: A universal method for measuring the thickness of microscopic calcite crystals, based on bidirectional circular polarization
The patterns of elemental concentration (Ca, Na, Sr, Mg, Mn, Ba, Cu, Pb, V, Y, U and Cd) in shells of invertebrates representing different CaCO3 polymorphs: a case study from the brackish Gulf of Gdańsk (the Baltic Sea)
Carbonic anhydrase is involved in calcification by the benthic foraminifer Amphistegina lessonii
Distribution of chlorine and fluorine in benthic foraminifera
Rare earth elements in oyster shells: provenance discrimination and potential vital effects
Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin
Intercomparison of four methods to estimate coral calcification under various environmental conditions
Technical note: The silicon isotopic composition of choanoflagellates: implications for a mechanistic understanding of isotopic fractionation during biosilicification
Insights into architecture, growth dynamics, and biomineralization from pulsed Sr-labelled Katelysia rhytiphora shells (Mollusca, Bivalvia)
Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatán Peninsula, Mexico
Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions
Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite
Planktonic foraminiferal spine versus shell carbonate Na incorporation in relation to salinity
Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments
Mineral formation induced by cable bacteria performing long-distance electron transport in marine sediments
Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions
Weaving of biomineralization framework in rotaliid foraminifera: implications for paleoceanographic proxies
Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta)
Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus
Technical note: A refinement of coccolith separation methods: measuring the sinking characteristics of coccoliths
Improving the strength of sandy soils via ureolytic CaCO3 solidification by Sporosarcina ureae
Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents
Calcification in a marginal sea – influence of seawater [Ca2+] and carbonate chemistry on bivalve shell formation
Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach
Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi
Anatomical structure overrides temperature controls on magnesium uptake – calcification in the Arctic/subarctic coralline algae Leptophytum laeve and Kvaleya epilaeve (Rhodophyta; Corallinales)
Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy
Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress
Ba incorporation in benthic foraminifera
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Yukiko Nagai, Katsuyuki Uematsu, Briony Mamo, and Takashi Toyofuku
Biogeosciences, 21, 1675–1684, https://doi.org/10.5194/bg-21-1675-2024, https://doi.org/10.5194/bg-21-1675-2024, 2024
Short summary
Short summary
This research highlights Spirillina vivipara's calcification strategy, highlighting variability in foraminiferal test formation. By examining its rapid growth and high calcification rate, we explain ecological strategies correlating with its broad coastal distribution. These insights amplify our understanding of foraminiferal ecology and underscore their impact on marine carbon cycling and paleoclimate studies, advocating for a species-specific approach in future research.
Caroline Thaler, Guillaume Paris, Marc Dellinger, Delphine Dissard, Sophie Berland, Arul Marie, Amandine Labat, and Annachiara Bartolini
Biogeosciences, 20, 5177–5198, https://doi.org/10.5194/bg-20-5177-2023, https://doi.org/10.5194/bg-20-5177-2023, 2023
Short summary
Short summary
Our study focuses on one of the most used microfossils in paleoenvironmental reconstructions: foraminifera. We set up a novel approach of long-term cultures under variable and controlled conditions. Our results highlight that foraminiferal tests can be used as a unique record of both SO42−/CaCO3 and δ34S seawater variation. This establishes geological formations composed of biogenic carbonates as a potential repository of paleoenvironmental seawater sulfate chemical and geochemical variation.
Karin E. Limburg, Yvette Heimbrand, and Karol Kuliński
Biogeosciences, 20, 4751–4760, https://doi.org/10.5194/bg-20-4751-2023, https://doi.org/10.5194/bg-20-4751-2023, 2023
Short summary
Short summary
We found a 3-to-5-fold decline in boron in Baltic cod otoliths between the late 1990s and 2021. The trend correlates with declines in oxygen and pH but not with increased salinity. Otolith B : Ca correlated with phosphorus in a healthy out-group (Icelandic cod) but not in Baltic cod. The otolith biomarkers Mn : Mg (hypoxia proxy) and B : Ca in cod otoliths suggest a general increase in both hypoxia and acidification within Baltic intermediate and deep waters in the last decade.
Narimane Dorey, Sophie Martin, and Lester Kwiatkowski
Biogeosciences, 20, 4289–4306, https://doi.org/10.5194/bg-20-4289-2023, https://doi.org/10.5194/bg-20-4289-2023, 2023
Short summary
Short summary
Human CO2 emissions are modifying ocean carbonate chemistry, causing ocean acidification and likely already impacting marine ecosystems. Here, we added CO2 to intertidal pools at the start of emersion to investigate the influence of future ocean acidification on net community production (NCP) and calcification (NCC). By day, adding CO2 fertilized the pools (+20 % NCP). By night, pools experienced net community dissolution, a dissolution that was further increased (+40 %) by the CO2 addition.
Karim Benzerara, Agnès Elmaleh, Maria Ciobanu, Alexis De Wever, Paola Bertolino, Miguel Iniesto, Didier Jézéquel, Purificación López-García, Nicolas Menguy, Elodie Muller, Fériel Skouri-Panet, Sufal Swaraj, Rosaluz Tavera, Christophe Thomazo, and David Moreira
Biogeosciences, 20, 4183–4195, https://doi.org/10.5194/bg-20-4183-2023, https://doi.org/10.5194/bg-20-4183-2023, 2023
Short summary
Short summary
Iron and manganese are poorly soluble in oxic and alkaline solutions but much more soluble under anoxic conditions. As a result, authigenic minerals rich in Fe and/or Mn have been viewed as diagnostic of anoxic conditions. However, here we reveal a new case of biomineralization by specific cyanobacteria, forming abundant Fe(III)- and Mn(IV)-rich amorphous phases under oxic conditions in an alkaline lake. This might be an overlooked biotic contribution to the scavenging of Fe from water columns.
Sara Ronca, Francesco Mura, Marco Brandano, Angela Cirigliano, Francesca Benedetti, Alessandro Grottoli, Massimo Reverberi, Daniele Federico Maras, Rodolfo Negri, Ernesto Di Mauro, and Teresa Rinaldi
Biogeosciences, 20, 4135–4145, https://doi.org/10.5194/bg-20-4135-2023, https://doi.org/10.5194/bg-20-4135-2023, 2023
Short summary
Short summary
The history of Earth is a story of the co-evolution of minerals and microbes. We present the evidence that moonmilk precipitation is driven by microorganisms within the rocks and not only on the rock surfaces. Moreover, the moonmilk produced within the rocks contributes to rock formation. The calcite speleothem moonmilk is the only known carbonate speleothem on Earth with undoubted biogenic origin, thus representing a biosignature of life.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
João Pedro Saldanha, Joice Cagliari, Rodrigo Scalise Horodyski, Lucas Del Mouro, and Mírian Liza Alves Forancelli Pacheco
Biogeosciences, 20, 3943–3979, https://doi.org/10.5194/bg-20-3943-2023, https://doi.org/10.5194/bg-20-3943-2023, 2023
Short summary
Short summary
We analyze a complex and branched mineral structure with an obscure origin, considering form, matrix, composition, and context. Comparisons eliminate controlled biominerals. The structure's intricate history suggests microbial influence and alterations, followed by a thermal event. Complex interactions shaped its forms, making origin classification tougher. This study highlights the elaborated nature of dubiofossils, identifying challenges in distinguishing biominerals from abiotic minerals.
Marlisa Martinho de Brito, Irina Bundeleva, Frédéric Marin, Emmanuelle Vennin, Annick Wilmotte, Laurent Plasseraud, and Pieter T. Visscher
Biogeosciences, 20, 3165–3183, https://doi.org/10.5194/bg-20-3165-2023, https://doi.org/10.5194/bg-20-3165-2023, 2023
Short summary
Short summary
Cyanobacterial blooms are associated with whiting events – natural occurrences of fine-grained carbonate precipitation in the water column. The role of organic matter (OM) produced by cyanobacteria in these events has been overlooked in previous research. Our laboratory experiments showed that OM affects the size and quantity of CaCO3 minerals. We propose a model of OM-associated CaCO3 precipitation during picoplankton blooms, which may have been neglected in modern and ancient events.
Giancarlo Sidoti, Federica Antonelli, Giulia Galotta, Maria Cristina Moscatelli, Davor Kržišnik, Vittorio Vinciguerra, Swati Tamantini, Rosita Marabottini, Natalia Macro, and Manuela Romagnoli
Biogeosciences, 20, 3137–3149, https://doi.org/10.5194/bg-20-3137-2023, https://doi.org/10.5194/bg-20-3137-2023, 2023
Short summary
Short summary
The mineral content in archaeological wood pile dwellings and in the surrounding sediments in a volcanic lake was investigated. Calcium was the most abundant element; the second most abundant element was arsenic in sapwood. Sulfur, iron and potassium were also present. The mineral compounds are linked to the volcanic origin of the lake, to bioaccumulation processes induced by bacteria (i.e. sulfate-reducing bacteria) and to biochemical processes.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Kristian Spilling, Jonna Piiparinen, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Maria T. Camarena-Gómez, Elisabeth von der Esch, Martin A. Fischer, Markel Gómez-Letona, Nauzet Hernández-Hernández, Judith Meyer, Ruth A. Schmitz, and Ulf Riebesell
Biogeosciences, 20, 1605–1619, https://doi.org/10.5194/bg-20-1605-2023, https://doi.org/10.5194/bg-20-1605-2023, 2023
Short summary
Short summary
We carried out an enclosure experiment using surface water off Peru with different additions of oxygen minimum zone water. In this paper, we report on enzyme activity and provide data on the decomposition of organic matter. We found very high activity with respect to an enzyme breaking down protein, suggesting that this is important for nutrient recycling both at present and in the future ocean.
Thomas Letulle, Danièle Gaspard, Mathieu Daëron, Florent Arnaud-Godet, Arnauld Vinçon-Laugier, Guillaume Suan, and Christophe Lécuyer
Biogeosciences, 20, 1381–1403, https://doi.org/10.5194/bg-20-1381-2023, https://doi.org/10.5194/bg-20-1381-2023, 2023
Short summary
Short summary
This paper studies the chemistry of modern marine shells called brachiopods. We investigate the relationship of the chemistry of these shells with sea temperatures to test and develop tools for estimating sea temperatures in the distant past. Our results confirm that two of the investigated chemical markers could be useful thermometers despite some second-order variability independent of temperature. The other chemical markers investigated, however, should not be used as a thermometer.
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022, https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Short summary
This study analyses the production of calcite shells formed by one of the main Arctic pelagic calcifiers, the foraminifera N. pachyderma. Using vertically resolved profiles of shell concentration, size and weight, we show that calcification occurs throughout the upper 300 m with an average production flux below the calcification zone of 8 mg CaCO3 m−2 d−1 representing 23 % of the total pelagic biogenic carbonate production. The production flux is attenuated in the twilight zone by dissolution.
Paweł Działak, Marcin D. Syczewski, Kamil Kornaus, Mirosław Słowakiewicz, Łukasz Zych, and Andrzej Borkowski
Biogeosciences, 19, 4533–4550, https://doi.org/10.5194/bg-19-4533-2022, https://doi.org/10.5194/bg-19-4533-2022, 2022
Short summary
Short summary
Bacteriophages comprise one of the factors that may influence mineralization processes. The number of bacteriophages in the environment usually exceeds the number of bacteria by an order of magnitude. One of the more interesting processes is the formation of framboidal pyrite, and it is not entirely clear what processes determine its formation. Our studies indicate that some bacterial viruses may influence the formation of framboid-like or spherical structures.
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022, https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Short summary
We investigate the calcification rate of reef corals from an upwelling zone, where low seawater pH and high nutrient concentrations represent a recent analogue for the future ocean. Calcification rate of the corals largely relies on extension growth. Variable responses of extension growth to nutrients either compensate or exacerbate negative effects of weak skeletal thickening associated with low seawater pH – a mechanism that is critical for the persistence of coral reefs under global change.
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022, https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022, https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary
Short summary
The study addresses the potential of marine shell-forming organisms as proxy carriers for heavy metal contamination in the environment. The aim is to investigate if the incorporation of heavy metals is a direct function of their concentration in seawater. Culturing experiments with a metal mixture were carried out over a wide concentration range. Our results show shell-forming organisms to be natural archives that enable the determination of metals in polluted and pristine environments.
Valentina Alice Bracchi, Giulia Piazza, and Daniela Basso
Biogeosciences, 18, 6061–6076, https://doi.org/10.5194/bg-18-6061-2021, https://doi.org/10.5194/bg-18-6061-2021, 2021
Short summary
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Trystan Sanders, Jörn Thomsen, Jens Daniel Müller, Gregor Rehder, and Frank Melzner
Biogeosciences, 18, 2573–2590, https://doi.org/10.5194/bg-18-2573-2021, https://doi.org/10.5194/bg-18-2573-2021, 2021
Short summary
Short summary
The Baltic Sea is expected to experience a rapid drop in salinity and increases in acidity and warming in the next century. Calcifying mussels dominate Baltic Sea seafloor ecosystems yet are sensitive to changes in seawater chemistry. We combine laboratory experiments and a field study and show that a lack of calcium causes extremely slow growth rates in mussels at low salinities. Subsequently, climate change in the Baltic may have drastic ramifications for Baltic seafloor ecosystems.
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Anna Piwoni-Piórewicz, Stanislav Strekopytov, Emma Humphreys-Williams, and Piotr Kukliński
Biogeosciences, 18, 707–728, https://doi.org/10.5194/bg-18-707-2021, https://doi.org/10.5194/bg-18-707-2021, 2021
Short summary
Short summary
Calcifying organisms occur globally in almost every environment, and the process of biomineralization is of great importance in the global carbon cycle and use of skeletons as environmental data archives. The composition of skeletons is very complex. It is determined by the mechanisms of biological control on biomineralization and the response of calcifying organisms to varying environmental drivers. Yet for trace elements, such as Cu, Pb and Cd, an impact of environmental factors is pronounced.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020, https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Short summary
Rare earth elements (REEs) in coastal seawater are included in bivalve shells during growth, and a regional fingerprint can be defined for provenance and environmental monitoring studies. We present a large dataset of REE abundances from oysters from six locations in France. The cupped oyster can be discriminated from one locality to another, but this is not the case for the flat oyster. Therefore, provenance studies using bivalve shells based on REEs are not adapted for the flat oyster.
Rosie L. Oakes and Jocelyn A. Sessa
Biogeosciences, 17, 1975–1990, https://doi.org/10.5194/bg-17-1975-2020, https://doi.org/10.5194/bg-17-1975-2020, 2020
Short summary
Short summary
Pteropods are a group of tiny swimming snails whose fragile shells put them at risk from ocean acidification. We investigated the factors influencing the thickness of pteropods shells in the Cariaco Basin, off Venezuela, which is unaffected by ocean acidification. We found that pteropods formed thicker shells when nutrient concentrations, an indicator of food availability, were highest, indicating that food may be an important factor in mitigating the effects of ocean acidification on pteropods.
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020, https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Short summary
In this paper, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of a reef-building coral. Under all conditions (light vs. dark incubations and ambient vs. lowered pH levels), calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated, while significantly different results were obtained with the 13C incorporation technique.
Alan Marron, Lucie Cassarino, Jade Hatton, Paul Curnow, and Katharine R. Hendry
Biogeosciences, 16, 4805–4813, https://doi.org/10.5194/bg-16-4805-2019, https://doi.org/10.5194/bg-16-4805-2019, 2019
Short summary
Short summary
Isotopic signatures of silica fossils can be used as archives of past oceanic silicon cycling, which is linked to marine carbon uptake. However, the biochemistry that lies behind such chemical fingerprints remains poorly understood. We present the first measurements of silicon isotopes in a group of protists closely related to animals, choanoflagellates. Our results highlight a taxonomic basis to silica isotope signatures, possibly via a shared transport pathway in choanoflagellates and animals.
Laura M. Otter, Oluwatoosin B. A. Agbaje, Matt R. Kilburn, Christoph Lenz, Hadrien Henry, Patrick Trimby, Peter Hoppe, and Dorrit E. Jacob
Biogeosciences, 16, 3439–3455, https://doi.org/10.5194/bg-16-3439-2019, https://doi.org/10.5194/bg-16-3439-2019, 2019
Short summary
Short summary
This study uses strontium as a trace elemental marker in combination with high-resolution nano-analytical techniques to label the growth fronts of bivalves in controlled aquaculture conditions. The growing shells incorporate the labels and are used as
snapshotsvisualizing the growth processes across different shell architectures. These observations are combined with structural investigations across length scales and altogether allow for a detailed understanding of this shell.
Simon Michael Ritter, Margot Isenbeck-Schröter, Christian Scholz, Frank Keppler, Johannes Gescher, Lukas Klose, Nils Schorndorf, Jerónimo Avilés Olguín, Arturo González-González, and Wolfgang Stinnesbeck
Biogeosciences, 16, 2285–2305, https://doi.org/10.5194/bg-16-2285-2019, https://doi.org/10.5194/bg-16-2285-2019, 2019
Short summary
Short summary
Unique and spectacular under water speleothems termed as Hells Bells were recently reported from sinkholes (cenotes) of the Yucatán Peninsula, Mexico. However, the mystery of their formation remained unresolved. Here, we present detailed geochemical analyses and delineate that the growth of Hells Bells results from a combination of biogeochemical processes and variable hydraulic conditions within the cenote.
Andrew C. Mitchell, Erika J. Espinosa-Ortiz, Stacy L. Parks, Adrienne J. Phillips, Alfred B. Cunningham, and Robin Gerlach
Biogeosciences, 16, 2147–2161, https://doi.org/10.5194/bg-16-2147-2019, https://doi.org/10.5194/bg-16-2147-2019, 2019
Short summary
Short summary
Microbially induced carbonate mineral precipitation (MICP) is a natural process that is also being investigated for subsurface engineering applications including radionuclide immobilization and microfracture plugging. We demonstrate that rates of MICP from microbial urea hydrolysis (ureolysis) vary with different bacterial strains, but rates are similar in both oxygenated and oxygen-free conditions. Ureolysis MICP is therefore a viable biotechnology in the predominately oxygen-free subsurface.
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019, https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Short summary
Systematics in the incorporation of different elements in shells of marine organisms can be used to test calcification models and thus processes involved in precipitation of calcium carbonates. On different scales, we observe a covariation of sulfur and magnesium incorporation in shells of foraminifera, which provides insights into the mechanics behind shell formation. The observed patterns imply that all species of foraminifera actively take up calcium and carbon in a coupled process.
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019, https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Short summary
Seawater salinity is an important factor when trying to reconstruct past ocean conditions. Foraminifera, small organisms living in the sea, produce shells that incorporate more Na at higher salinities. The accuracy of reconstructions depends on the fundamental understanding involved in the incorporation and preservation of the original Na of the shell. In this study, we unravel the Na composition of different components of the shell and describe the relative contribution of these components.
Hengchao Xu, Xiaotong Peng, Shijie Bai, Kaiwen Ta, Shouye Yang, Shuangquan Liu, Ho Bin Jang, and Zixiao Guo
Biogeosciences, 16, 949–960, https://doi.org/10.5194/bg-16-949-2019, https://doi.org/10.5194/bg-16-949-2019, 2019
Short summary
Short summary
Viruses have been acknowledged as important components of the marine system for the past 2 decades, but understanding of their role in the functioning of the geochemical cycle remains poor. Results show viral lysis of cyanobacteria can influence the carbonate equilibrium system remarkably and promotes the formation and precipitation of carbonate minerals. Amorphous calcium carbonate (ACC) and aragonite are evident in the lysate, implying that different precipitation processes have occurred.
Nicole M. J. Geerlings, Eva-Maria Zetsche, Silvia Hidalgo-Martinez, Jack J. Middelburg, and Filip J. R. Meysman
Biogeosciences, 16, 811–829, https://doi.org/10.5194/bg-16-811-2019, https://doi.org/10.5194/bg-16-811-2019, 2019
Short summary
Short summary
Multicellular cable bacteria form long filaments that can reach lengths of several centimeters. They affect the chemistry and mineralogy of their surroundings and vice versa. How the surroundings affect the cable bacteria is investigated. They show three different types of biomineral formation: (1) a polymer containing phosphorus in their cells, (2) a sheath of clay surrounding the surface of the filament and (3) the encrustation of a filament via a solid phase containing iron and phosphorus.
Facheng Ye, Hana Jurikova, Lucia Angiolini, Uwe Brand, Gaia Crippa, Daniela Henkel, Jürgen Laudien, Claas Hiebenthal, and Danijela Šmajgl
Biogeosciences, 16, 617–642, https://doi.org/10.5194/bg-16-617-2019, https://doi.org/10.5194/bg-16-617-2019, 2019
Yukiko Nagai, Katsuyuki Uematsu, Chong Chen, Ryoji Wani, Jarosław Tyszka, and Takashi Toyofuku
Biogeosciences, 15, 6773–6789, https://doi.org/10.5194/bg-15-6773-2018, https://doi.org/10.5194/bg-15-6773-2018, 2018
Short summary
Short summary
We interpret detailed SEM and time-lapse observations of the calcification process in living foraminifera, which we reveal to be directly linked to the construction mechanism of organic membranes where the calcium carbonate precipitation takes place. We show that these membranes are a highly perforated outline is first woven by skeletal pseudopodia and then later overlaid by a layer of membranous pseudopodia to close the gaps. The chemical composition is related to these structures.
Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 15, 6591–6605, https://doi.org/10.5194/bg-15-6591-2018, https://doi.org/10.5194/bg-15-6591-2018, 2018
Short summary
Short summary
The unicellular microalga Tetraselmis cordiformis (Chlorophyta) was recently discovered to form intracellular mineral inclusions, called micropearls, which had been previously overlooked. The present study shows that 10 Tetraselmis species out of the 12 tested share this biomineralization capacity, producing amorphous calcium carbonate inclusions often enriched in Sr. This novel biomineralization process can take place in marine, brackish or freshwater and is therefore a widespread phenomenon.
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018, https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Short summary
Global warming has altered Arctic phytoplankton communities, with unknown effects on deep-sea communities that depend strongly on food produced at the surface. We compared the responses of Arctic deep-sea benthos to input of phytodetritus from diatoms and coccolithophorids. Coccolithophorid carbon was 5× less recycled than diatom carbon. The utilization of the coccolithophorid carbon may be less efficient, so a shift from diatom to coccolithophorid blooms could entail a delay in carbon cycling.
Hongrui Zhang, Heather Stoll, Clara Bolton, Xiaobo Jin, and Chuanlian Liu
Biogeosciences, 15, 4759–4775, https://doi.org/10.5194/bg-15-4759-2018, https://doi.org/10.5194/bg-15-4759-2018, 2018
Short summary
Short summary
The sinking speeds of coccoliths are relevant for laboratory methods to separate coccoliths for geochemical analysis. However, in the absence of estimates of coccolith settling velocity, previous implementations have depended mainly on time-consuming method development by trial and error. In this study, the sinking velocities of cocooliths were carefully measured for the first time. We also provide an estimation of coccolith sinking velocity by shape, which will make coccolith separation easier.
Justin Michael Whitaker, Sai Vanapalli, and Danielle Fortin
Biogeosciences, 15, 4367–4380, https://doi.org/10.5194/bg-15-4367-2018, https://doi.org/10.5194/bg-15-4367-2018, 2018
Short summary
Short summary
Materials, like soils or cements, can require repair. This study used a new bacterium (Sporosarcina ureae) in a repair method called "microbially induced carbonate precipitation" (MICP). In three trials, benefits were shown: S. ureae could make a model sandy soil much stronger by MICP, in fact better than a lot of other bacteria. However, MICP-treated samples got weaker in three trials of acid rain. In conclusion, S. ureae in MICP repair shows promise when used in appropriate climates.
Esmee Geerken, Lennart Jan de Nooijer, Inge van Dijk, and Gert-Jan Reichart
Biogeosciences, 15, 2205–2218, https://doi.org/10.5194/bg-15-2205-2018, https://doi.org/10.5194/bg-15-2205-2018, 2018
Jörn Thomsen, Kirti Ramesh, Trystan Sanders, Markus Bleich, and Frank Melzner
Biogeosciences, 15, 1469–1482, https://doi.org/10.5194/bg-15-1469-2018, https://doi.org/10.5194/bg-15-1469-2018, 2018
Short summary
Short summary
The distribution of mussel in estuaries is limited but the mechanisms are not well understood. We document for the first time that reduced Ca2+ concentration in the low saline, brackish Baltic Sea affects the ability of mussel larvae to calcify the first larval shell. As complete formation of the shell is a prerequisite for successful development, impaired calcification during this sensitive life stage can have detrimental effects on the species' ability to colonize habitats.
Sha Ni, Isabelle Taubner, Florian Böhm, Vera Winde, and Michael E. Böttcher
Biogeosciences, 15, 1425–1445, https://doi.org/10.5194/bg-15-1425-2018, https://doi.org/10.5194/bg-15-1425-2018, 2018
Short summary
Short summary
Spirorbis tube worms are common epibionts on brown algae in the Baltic Sea. We made experiments with Spirorbis in the
Kiel Outdoor Benthocosmsat CO2 and temperature conditions predicted for the year 2100. The worms were able to grow tubes even at CO2 levels favouring shell dissolution but did not survive at mean temperatures over 24° C. This indicates that Spirorbis worms will suffer from future excessive ocean warming and from ocean acidification fostering corrosion of their protective tubes.
Andrea C. Gerecht, Luka Šupraha, Gerald Langer, and Jorijntje Henderiks
Biogeosciences, 15, 833–845, https://doi.org/10.5194/bg-15-833-2018, https://doi.org/10.5194/bg-15-833-2018, 2018
Short summary
Short summary
Calcifying phytoplankton play an import role in long-term CO2 removal from the atmosphere. We therefore studied the ability of a representative species to continue sequestrating CO2 under future climate conditions. We show that CO2 sequestration is negatively affected by both an increase in temperature and the resulting decrease in nutrient availability. This will impact the biogeochemical cycle of carbon and may have a positive feedback on rising CO2 levels.
Merinda C. Nash and Walter Adey
Biogeosciences, 15, 781–795, https://doi.org/10.5194/bg-15-781-2018, https://doi.org/10.5194/bg-15-781-2018, 2018
Short summary
Short summary
Past seawater temperatures can be reconstructed using magnesium / calcium ratios of biogenic carbonates. As temperature increases, so does magnesium. Here we show that for these Arctic/subarctic coralline algae, anatomy is the first control on Mg / Ca, not temperature. When using coralline algae for temperature reconstruction, it is first necessary to check for anatomical influences on Mg / Ca.
Thomas M. DeCarlo, Juan P. D'Olivo, Taryn Foster, Michael Holcomb, Thomas Becker, and Malcolm T. McCulloch
Biogeosciences, 14, 5253–5269, https://doi.org/10.5194/bg-14-5253-2017, https://doi.org/10.5194/bg-14-5253-2017, 2017
Short summary
Short summary
We present a new technique to quantify the chemical conditions under which corals build their skeletons by analysing them with lasers at a very fine resolution, down to 1/100th the width of a human hair. Our first applications to laboratory-cultured and wild corals demonstrates the complex interplay among seawater conditions (temperature and acidity), calcifying fluid chemistry, and bulk skeleton accretion, which will define the sensitivity of coral calcification to 21st century climate change.
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017, https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Short summary
The main goal of this study was to understand if, similarly to the fossil record, high quantities of toxic metals induce coccolith dwarfism in coccolithophore species. We investigated, for the first time, the effects of trace metals on coccolithophore species other than E. huxleyi and on coccolith morphology and size. Our data show a species-specific sensitivity to trace metal concentration, allowing the recognition of the most-, intermediate- and least-tolerant taxa to trace metal enrichments.
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017, https://doi.org/10.5194/bg-14-3387-2017, 2017
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017, https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Short summary
It is still unclear whether foraminifera (calcifying plankton that play an important role in cycling carbon) will have difficulty in making their shells in more acidic oceans, with different studies often reporting apparently conflicting results. We used live lab cultures, mathematical models, and fossil measurements to test this question, and found low pH does reduce calcification. However, we find this response is likely size-dependent, which may have obscured this response in other studies.
Cited articles
Aït-Ameur, N. and Goyet, C.: Distribution and transport of natural and anthropogenic CO2 in the Gulf of Cádiz, Deep-Sea Res. Pt. II, 53, 1329–1343, 2006.
Álvarez, M., Pérez, F., Shoosmith, D. R., and Bryden, H. L.: Unaccounted role of Mediterranean Water in the drawdown of anthropogenic carbon, J. Geophys. Res., 110, C09S03, https://doi.org/10.1029/2004jc002633, 2005.
Antoine, D., Morel, A., and Andre, J. M.: Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations, J. Geophys. Res., 100, 16193–116209, 1995.
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002.
Betzer, P. R., Showers, W. J., Laws, E. A., Winn, C. D., DiTullio, G. R., and Kroopnick, P. M.: Primary productivity and particle fluxes on a transect of the equator at 153° W in the Pacific Ocean, Deep-Sea Res. Pt. I, 31, 1–11, 1984.
Bianchi, F., Boldrin, A., Civitarese, G., Del Negro, P., Giordani, P., Malaguti, A., Socal, G., Rabitti, S., and Turchetto, M. M.: Biogenic particulate matter and primary productivity in the Southern Adriatic and Northern Ionian seas. 4th MTP-Workshop MATER, Perpignan (France), Abstracts Volume, Les Presses Littéraires, Saint-Esteve, 120–121, 1999.
Bishop, J. K. B.: Regional extremes in particulate matter composition and flux: effects on the chemistry of the ocean interior, in: Productivity of the Ocean: Present and Past, edited by: Berger, W. H., Smetacek, V. S., Wefer, G., John Wiley & Sons Limited, 117–137, 1989.
Bishop, J. K. B., Stepien, J. C., and Wiebe, P. H.: Particulate matter distributions, chemistry and flux in the panama basin: response to environment forcing, Progr. Oceanogr., 17, 1–59, 1986.
Boldrin, A., Miserocchi, S., Rabitti, S., Turchetto, M. M., Balboni, V., and Socal, G.: Particulate matter in the southern Adriatic and Ionian Sea: Characterisation and downward fluxes, J. Mar. Syst., 33–34, 389–410, 2002.
Borzelli, G. L. E., Gačič, M., Cardin, V., and Civitarese, G.: Eastern Mediterranean transient and reversal of the Ionian Sea circulation, Geophys. Res. Lett., 36, L15108, https://doi.org/10.1029/2009gl039261, 2009.
Bosc, E., Bricaud, A., and Antoine, D.: Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem. Cy., 18, GB1005, https://doi.org/10.1029/2003GB002034, 2004.
Boyd, P. and Newton, P.: Evidence of the potential influence of planktonic community structure on the interannual variability of particulate organic carbon flux, Deep-Sea Res. Pt. I, 42, 619–639, 1995.
Bricaud, A., Bosc, E., and Antoine, D.: Algal biomass and sea surface temperature in the Mediterranean Basin Intercomparison of data from various satellite sensors, and implications for primary production estimates, Remote Sens. Environ., 81, 163–178, 2002.
Broecker W. S. and Peng T. H.:. Tracers in the Sea. Lamont-Doherty Geological Observatory, Palisades, NY, 1982.
Buesseler, K. O.: The decoupling of production and particulate export in the surface ocean, Global Biogeochem. Cy., 12, 297–310, 1998.
Buesseler, K. O. and Boyd, P. W.: Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean, Limnol. Oceanogr., 54, 1210–1232, 2009.
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., Bishop, J. K. B., Casciotti, K. L., Dehairs, F., Elskens, M., Honda, M., Karl, D. M., Siegel, D. A., Silver, M. W., Steinberg, D. K., Valdes, J., Van Mooy, B., and Wilson, S.: Revisiting carbon flux through the ocean's twilight zone, Science, 316, 567–570, 2007.
Canals, M., Puig, P., De Madron, X. D., Heussner, S., Palanques, A., and Fabres, J.: Flushing submarine canyons, Nature, 444, 354–357, 2006.
Casotti, R., Landolfi, A., Brunet, C., D'Ortenzio, F., Mangoni, O., Ribera d'Alcala, M., and Denis, M.: Composition and dynamics of the phytoplankton of the Ionian Sea (eastern Mediterranean), J. Geophys. Res., 108, 8116, https://doi.org/10.1029/2002JC001541, 2003.
Civitarese, G., Gačić, M., Lipizer, M., and Eusebi Borzelli, G. L.: On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean), Biogeosciences, 7, 3987–3997, https://doi.org/10.5194/bg-7-3987-2010, 2010.
Colella, S., D'Ortenzio, F., Marullo, S., Santoleri, R., Ragni, M., and Ribera d'Alcala, M.: Primary production variability in the Mediterranean Sea from SeaWiFS data, Proc. SPIE 5233, P. Soc. Photo.-Opt. Ins., 371-393, https://doi.org/10.1117/12.516791, 2004.
Conte, M. H., Ralph, N., and Ross, E. H.: Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda, Deep-Sea Res. Pt. II, 48, 1471–1505, 2001.
Crombet, Y., Leblanc, K., Quéguiner, B., Moutin, T., Rimmelin, P., Ras, J., Claustre, H., Leblond, N., Oriol, L., and Pujo-Pay, M.: Deep silicon maxima in the stratified oligotrophic Mediterranean Sea, Biogeosciences, 8, 459–475, https://doi.org/10.5194/bg-8-459-2011, 2011.
Cutter, G. A. and Radford-Knoery, J. Determination of carbon, nitrogen, sulfur and inorganic sulfur species in marine particles, in: Marine particles: analysis and characterization, edited by: Hurd, D. C. and Spencer, D. W., American Geophysical Union, Geophys. Monogr. Ser., 63, 57–63, 1991.
De Lazzari, A., Boldrin, A., Rabitti, S., and Turchetto, M. M.: Variability and downward fluxes of particulate matter in the Otranto Strait area, J. Mar. Syst., 20, 399–413, 1999.
De La Rocha, C. L., Nowald, N., and Passow, U.: Interactions between diatom aggregates, minerals, particulate organic carbon, and dissolved organic matter: Further implications for the ballast hypothesis, Global Biogeochem. Cy., 22, GB4005, https://doi.org/10.1029/2007GB003156, 2008.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
D'Ortenzio, F., Ragni, M., Marullo, S., and Ribera d'Alcala, M.: Did biological activity in the Ionian Sea change after the Eastern Mediterranean Transient? Results from the analysis of remote sensing observations, J. Geophys. Res., 108, 8113, https://doi.org/10.1029/2002JC001556, 2003.
Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E., Zondervan, I.: Polysaccharide aggregation as a potential sink of marine dissolved organic carbon, Nature, 428, 929–932, 2004.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677–680, https://doi.org/10.1038/282677a0, 1979.
Fabres, J., Tesi, T., Velez, J., Batista, F., Lee, C., Calafat, A., Heussner, S., Palanques, A., and Miserocchi, S.: Seasonal and event-controlled export of organic matter from the shelf towards the Gulf of Lions continental slope, Cont. Shelf Res., 28, 1971–1983, 2008.
Fischer, G., Donner, B., Ratmeyer, V., Davenport, R., and Wefer, G.: Distinct year-to-year particle flux variations off Cape Blanc during 1988–1991: Relation to δ18O-deduced sea-surface temperatures and trade winds, J. Mar. Res., 54, 73–98, 1996.
Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean, Global Biogeochem. Cy., 16, 34–31, 2002.
Gkikas, A., Hatzianastassiou, N., Mihalopoulos, N., Katsoulis, V., Kazadzis, S., Pey, J., Querol, X., and Torres, O.: The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements, Atmos. Chem. Phys. Discuss., 13, 16247–16299, https://doi.org/10.5194/acpd-13-16247-2013, 2013.
Gogou, A. and Repeta, D. J.: Particulate-dissolved transformations as a sink for semi-labile dissolved organic matter: Chemical characterization of high molecular weight dissolved and surface-active organic matter in seawater and in diatom cultures, Mar. Chem., 121, 215–223, 2010.
Gogou, A., Sanchez-Vidal, A., Durrieu de Madron, X., Stavrakakis, S., Calafat, A., Stabholz, M., Psarra, S., Canals, M., Heussner, S., Stavrakaki, I., and Papathanassiou, V.: Carbon Flux to the Deep in three open sites of the Southern European Seas (SES), J. Mar. Syst., in press, https://doi.org/10.1016/j.jmarsys.2013.05.013, 2013.
Guerzoni, S., Chester, R., Dulac, F., Herut, B., Loÿe-Pilot, M. D., Measures, C., Migon, C., Molinaroli, E., Moulin, C., Rossini, P., Saydam, C., Soudine, A., and Ziveri, P.: The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea, Progr. Oceanogr., 44, 147–190, 1999.
Haake, B., Ittekkot, V., Rixen, T., Ramaswamy, V., Nair, R. R., and Curry, W. B.: Seasonality and interannual variability of particle fluxes to the deep Arabian sea, Deep-Sea Res. Pt. I, 40, 1323–1344, 1993.
Herut, B., Collier, R., and Krom, M. D.: The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean, Limnol. Oceanogr., 47, 870–878, 2002.
Heussner, S., Ratti, C., and Carbonne, J.: The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment, Cont. Shelf Res., 10, 943–958, 1990.
Heussner, S., Durrieu de Madron, X., Calafat, A., Canals, M., Carbonne, J., Delsaut, N., and Saragoni, G.: Spatial and temporal variability of downward particle fluxes on a continental slope: Lessons from an 8-yr experiment in the Gulf of Lions (NW Mediterranean), Mar. Geol., 234, 63–92, 2006.
Honda, M. C.: Biological Pump in Northwestern North Pacific, J. Oceanogr., 59, 671–684, 2003
Honda, M. C., Kusakabe, M., Nakabayashi, S., Manoanini, S. J., and Honjo, S.: Change in pCO2 through biological activity in the marginal seas of the western North Pacific: The efficiency of the biological pump estimated by a sediment Trap experiment, J. Oceanogr., 53, 645–662, 1997.
Honjo, S., Manganini, S. J., Krishfield, R. A., and Francois, R.: Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983, Progr. Oceanogr., 76, 217–285, 2008.
Ignatiades, L., Gotsis-Skretas, O., Pagou, K., and Krasakopoulou, E.: Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east-west transect of the Mediterranean Sea, J. Plankton Res., 31, 411–428, 2009.
Ittekkot, V., Haake, B., Bartsch, M., Nair, R. R., and Ramaswamy, V.: Organic carbon removal in the sea: The continental connection, in: Upwelling Systems: Evolution Since the Early Miocene, edited by: Prell, C. P. and Emeis, K. C., Geological Society Special Publication No. 64, 167–176, 1992.
Kalivitis, N., A. Bougiatioti, A., Kouvarakis, G., and Mihalopoulos, N.: Long term measurements of atmospheric aerosol optical properties in the Eastern Mediterranean, Atmos. Res., 102, 351–357, 2011.
Karageorgis, A. P.: Suspended particulate matter distribution at the NESTOR site, using optical methods and bottle data, Km3NeT Collaboration Meeting 16–18 April 2007, Pylos, Greece, 2007.
Karageorgis, A. P., Gardner, W. D., Georgopoulos, D., Mishonov, A.V., Krasakopoulou, E., and Anagnostou, C.: Particle dynamics in the Eastern Mediterranean Sea: a synthesis based on light transmission, PMC, and POC archives (1991–2001), Deep-Sea Res. Pt. I, 55, 177–202, 2008.
Karageorgis, A. P., Georgopoulos, D., Kanellopoulos, T. D., Mikkelsen, O. A., Pagou, K., Kontoyiannis, H., Pavlidou, A., and Anagnostou, C.: Spatial and seasonal variability of particulate matter optical and size properties in the Eastern Mediterranean Sea, J. Mar. Syst., 105–108, 123–134, 2012.
Karl, D. M., Christian, J. R., Dore, J. E., Hebel, D. V., Letelier, R. M., Tupas, L. M., and Winn, C. D.: Seasonal and interannual variability in primary production and particle flux at station ALOHA, Deep-Sea Res. Pt. II, 43, 539–568, 1996.
Karl, D. M., Dore, J. E., Lukas, R., Michaels, A. F., Bates, N. R., and Knap, A.: Building the long-term picture: The U.S. JGOFS time-series programs, Oceanography, 14, 6–17, 2001.
Kerhervé, P., Heussner, S., Charrière, B., Stavrakakis, S., Ferrand, J. L., Monaco, A., and Delsaut, N.: Biogeochemistry and dynamics of settling particle fluxes at the Antikythira Strait (Eastern Mediterranean), Progr. Oceanogr., 44, 651–675, 1999.
Klaas, C. and Archer, D. E.: Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio, Global Biogeochem. Cy., 16, 63–61, 2002.
Klein, B., Roether, W., Manca, B. B., Bregant, D., Beitzel, V., Kovacevic, V., and Luchetta, A.: The large deep water transient in the eastern Mediterranean, Deep-Sea Res. Pt. II, 46, 371–414, 1999.
Km3NeT Collaboration: Report on evaluation of existing water, oceanographic, biological and geological data from candidate sites, Km3NeT Report, WP5, Deliverable 5.1, 2007.
Knauer, G. A., Karl, D. M., Martin, J. H., and Hunter, C. N.: In situ effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps, J. Mar. Res., 42, 445–462, 1984.
Kontoyiannis, H.: The status of the deep hydrography and eddy field during 2006–2009 at the southeast Ionian tentative neutrino-telescope site, 39th CIESM Congress, Venice, Italy, 2010.
Kontoyiannis, H., and Lykousis, V.: Was the East Mediterranean deep thermohaline cell weakening during 2006–2009?, Nucl. Instrum. Meth. A, 626–627, S91–S93, 2011.
Kouvarakis, G., Mihalopoulos, N., Tselepides, A., and Stavrakakis, S.: On the importance of atmospheric inputs of inorganic nitrogen species on the productivity of the Eastern Mediterranean sea, Global Biogeochem. Cy., 15, 805–817, 2001.
Krasakopoulou, E., Souvermezoglou, E., and Goyet, C.: Anthropogenic CO2 fluxes in the Otranto Strait (E. Mediterranean) in February 1995, Deep-Sea Res. Pt. I, 58, 1103–1114, 2011.
Krom, M. D., Kress, N., Brenner, S., and Gordon, L. I.: Phosphorus limitation of primary productivity in the eastern Mediterranean Sea, Limnol. Oceanogr., 36, 424–432, 1991.
Lampitt, R. S. and Antia, A. N.: Particle flux in deep seas: Regional characteristics and temporal variability, Deep-Sea Res. Pt. I, 44, 1377–1403, 1997.
Larnicol, G., Ayoub, N., and Le Traon, P. Y.: Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data, J. Mar. Syst., 33–34, 63–89, 2002.
Laws, E. A., Falkowski, P. G., Smith Jr, W. O., Ducklow, H., and McCarthy, J. J.: Temperature effects on export production in the open ocean, Global Biogeochem. Cy., 14, 1231–1246, 2000.
Lee, C., Peterson, M. L., Wakeham, S. G., Armstrong, R. A., Cochran, J. K., Miquel, J. C., Fowler, S. W., Hirschberg, D., Beck, A., and Xue, J.: Particulate organic matter and ballast fluxes measured using time-series and settling velocity sediment traps in the northwestern Mediterranean Sea, Deep-Sea Res. Pt. II, 56, 1420–1436, 2009.
Lepore, K., Moran, S. B., Burd, A. B., Jackson, G. A., Smith, J. N., Kelly, R. P., Kaberi, H., Stavrakakis, S., and Assimakopoulou, G.: Sediment trap and in-situ pump size-fractionated POC/234Th ratios in the Mediterranean Sea and Northwest Atlantic: Implications for POC export, Deep-Sea Res. Pt. I, 56, 599–613, 2009.
Loÿe-Pilot, M. D., Martin, J. M., and Morelli, J.: Atmospheric input of inorganic nitrogen to the Western Mediterranean, Biogeochemistry, 9, 117–134, 1990.
Lutz, M., Dunbar, R., and Caldeira, K.: Regional variability in the vertical flux of particulate organic carbon in the ocean interior, Global Biogeochem. Cy., 16, 1037, https://doi.org/10.1029/2000GB001383, 2002.
Malanotte-Rizzoli, P., Manca, B., Ribera D'Alcala, M., Theocharis, A., Bergamasco, A., Bregant, D., Budillon, G., Civitarese, G., Georgopoulos, D., Michelato, A., Sansone, E., Scarazzato, P., and Souvermezoglou, E.: A synthesis of the Ionian Sea hydrography, circulation and water mass pathways during POEM-Phase I, Progr. Oceanogr., 39, 153–204, 1997.
Malanotte-Rizzoli, P., Manca, B. B., Ribera d'Alcala, M., Theocharis, A., Brenner, S., Budillon, G., and Özsoy, E.: The Eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations, Dynam. Atmos. Oceans, 29, 365–395, 1999.
Malinverno, E., Triantaphyllou, M. V., Stavrakakis, S., Ziveri, P., and Lykousis, V.: Seasonal and spatial variability of coccolithophore export production at the South-Western margin of Crete (Eastern Mediterranean), Mar. Micropaleontol., 71, 131–147, 2009.
Manca, B. B., Budillon, G., Scarazzato, P., and Ursella, L.: Evolution of dynamics in the eastern Mediterranean affecting water mass structures and properties in the Ionian and Adriatic Seas, J. Geophys. Res., 108, 8102, https://doi.org/10.1029/2002JC001664, 2003.
Markaki, Z., Oikonomou, K., Kocak, M., Kouvarakis, G., Chaniotaki, A., Kubilay, N., and Mihalopoulos, N.: Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: Spatial and temporal variability and its role in seawater productivity, Limnol. Oceanogr., 48, 1557–1568, 2003.
Markaki, Z., Loÿe-Pilot, M. D., Violaki, K., Benyahya, L., and Mihalopoulos, N.: Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio, Mar. Chem., 120, 187–194, 2010.
Ternon, E., Guieu, C., Loÿe-Pilot, M.-D., Leblond, N., Bosc, E., Gasser, B., Miquel, J.-C., and Martín, J.: The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea, Biogeosciences, 7, 809–826, https://doi.org/10.5194/bg-7-809-2010, 2010.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. I, 34, 267–285, 1987.
Martin, J., Miquel, J. C., and Khripounoff, A.: Impact of open sea deep convection on sediment remobilization in the western Mediterranean, Geophys. Res. Lett., 37, L13604, https://doi.org/10.1029/2010GL043704, 2010.
Mazzocchi, M. G., Nervegna, D., D'Elia, G., Di Capua, I., Aguzzi, L., and Boldrin, A.: Spring mesozooplankton communities in the epipelagic Ionian Sea in relation to the Eastern Mediterranean Transient, J. Geophys. Res., 108, 8114, https://doi.org/10.1029/2002JC001640, 2003.
Meador, T. B., Gogou, A., Spyres, G., Herndl, G. J., Krasakopoulou, E., Psarra, S., Yokokawa, T., De Corte, D., Zervakis, V., Repeta, D. J.: Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea, Deep-Sea Res. Pt. II, 57, 1460–1477, 2010.
Miquel, J. C., Martín, J., Gasser, B., Rodriguez-y-Baena, A., Toubal, T., and Fowler, S. W.: Dynamics of particle flux and carbon export in the northwestern Mediterranean Sea: A two decade time-series study at the DYFAMED site, Progr. Oceanogr., 91, 461–481, 2011.
Monaco, A., Durrieu de Madron, X., Radakovitch, O., Heussner, S., and Carbonne, J.: Origin and variability of downward biogeochemical fluxes on the Rhone continental margin (NW Mediterranean), Deep-Sea Res. Pt. I, 46, 1483–1511, 1999.
Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid determination of biogenic opal in pelagic marine sediments, Deep-Sea Res., 36, 1415–1426, 1989.
Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), J. Mar. Syst., 33–34, 273–288, 2002.
Moulin, C., Lamber, C. E., Dayan, U., Masson, V., Ramone, M., Bousque, P., Legrand, M., Balkanski, Y., Guellel, W., Marticorena, B. Bergametti, G., and Dulac, F.: Satellite climatology of African dust transport in the Mediterranean atmosphere, J. Geophys. Res., 103, 13137–13144, 1998.
Nieuwenhuize, J., Maas, Y. E. M., and Middelburg, J. J.: Rapid analysis of organic carbon and nitrogen in particulate materials, Mar. Chem., 45, 217–224, 1994.
Nittis, K., Pinardi, N., and Lascaratos, A.: Characteristics of the summer 1987 flow field in the Ionian Sea, J. Geophys. Res., 98, 10171–10184, 1993.
Özsoy, E., Kubilay, N., Nickovic, S., and Moulin C.: A hemisphere dust storm affecting the Atlantic and Mediterranean in April 1994: Analyses, modeling, ground-based measurements and satellite observations, J. Geophys. Res., 106, 18439–18460, 2001
Pace, M. L., Knauer, G. A., Karl, D. M., and Martin, J. H.: Primary production, new production and vertical flux in the eastern Pacific Ocean, Nature, 325, 803–804, 1987.
Pasqual, C., Sanchez-Vidal, A., Zúñiga, D., Calafat, A., Canals, M., Durrieu de Madron, X., Puig, P., Heussner, S., Palanques, A., and Delsaut, N.: Flux and composition of settling particles across the continental margin of the Gulf of Lion: the role of dense shelf water cascading, Biogeosciences, 7, 217–231, https://doi.org/10.5194/bg-7-217-2010, 2010.
Passow, U.: Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa?, Geochem. Geophys. Geosy., 5, 1-5, https://doi.org/10.1029/2003gc000670, 2004.
Passow, U., Shipe, R. F., Murray, A., Pak, D. K., Brzezinski, M. A., and Alldredge, A. L.: Origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter, Cont. Shelf Res., 21, 327–346, 2001.
Patara, L., Pinardi, N., Corselli, C., Malinverno, E., Tonani, M., Santoleri, R., and Masina, S.: Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities, Biogeosciences, 6, 333–348, https://doi.org/10.5194/bg-6-333-2009, 2009.
Polymeris G. S., George Kitis, Liolios, A. K., Sakalis, A., Zioutas, K., Anassontzis, E. G., and Tsirliganis, N. C.: Luminescence dating of the top of a deep water core from the NESTOR site near the Hellenic Trench, east Mediterranean Sea, Quat. Geochronol., 4, 68–81, 2009.
Rabitti, S., Bianchi, F., Boldrin, A., Da Ros, L., Socal, G. and Totti, C.: Particulate matter and phytoplankton in the Ionian Sea, Oceanol. Acta, 17, 297–307, 1994.
Ridame, C. and Guieu, C.: Saharan input of phosphate to the oligotrophic water of the open western Mediterranean sea, Limnol. Oceanogr., 47, 856–869, 2002.
Sabine, C. L. and Tanhua, T.: Estimation of anthropogenic CO2 inventories in the ocean, Annu. Rev. Mar. Sci., 2, 175–198, 2010.
Sanchez-Vidal, A., Calafat, A., Canals, M., and Fabres, J.: Particle fluxes in the Almeria-Oran Front: control by coastal upwelling and sea surface circulation, J. Mar. Syst., 52, 89–106, 2004.
Sanchez-Vidal, A., Calafat, A., Canals, M., Frigola, J., and Fabres, J.: Particle fluxes and organic carbon balance across the Eastern Alboran Sea (SW Mediterranean Sea), Cont. Shelf Res., 25, 609–628, 2005.
Schneider, A., Tanhua, T., Krtzinger, A., and Wallace, D. W. R.: High anthropogenic carbon content in the eastern Mediterranean, J. Geophys. Res., 115, C12050, https://doi.org/10.1029/2010jc006171, 2010.
Siegenthaler, U. and Sarmiento, J. L.: Atmospheric carbon dioxide and the ocean, Nature, 365, 119–125, 1993
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Stavrakakis, S. and Lykousis, V.: Interannual mass flux variations of settling particles in the NESTOR basins, SE. Ionian Sea (E. Mediterranean), Greece, Nucl. Instrum. Meth. A, 626–627, S99–S101, https://doi.org/10.1016/j.nima.2010.04.076, 2011.
Stavrakakis, S., Chronis, G., Tselepides, A., Heussner, S., Monaco, A., and Abassi, A.: Downward fluxes of settling particles in the deep Cretan Sea (NE Mediterranean), Progr. Oceanogr., 46, 217–240, 2000.
Suess, E.: Particulate organic carbon flux in the oceans – Surface productivity and oxygen utilization, Nature, 288, 260–263, 1980.
Taillandier, V., D'Ortenzio, F., and Antoine, D.: Carbon fluxes in the mixed layer of the Mediterranean Sea in the 1980s and the 2000s, Deep-Sea Res. Pt. I, 65, 73-84, 2012.
Takahashi, K., Fujitani, N., Yanada, M., and Maita, Y.: Long-term biogenic particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–1995, Deep-Sea Res. Pt. I, 47, 1723–1759, 2000.
Takahashi, K., Fujitani, N., and Yanada, M.: Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–2000, Progr. Oceanogr., 55, 95–112, 2002.
Theocharis, A., Nittis, K., Kontoyiannis, H., Papageorgiou, M., and Balopoulos, E.: Climatic changes in the Aegean Sea influence the Eastern Mediterranean thermohaline circulation (1986–1997), Geophys. Res. Lett., 26, 1617–1620, 1999.
Theodosi, C., Parinos, C., Gogou, A., Kokotos, A., Stavrakakis, S., Lykousis, V., Hatzianestis, J., and Mihalopoulos, N.: Downward fluxes of elemental carbon, metals and polycyclic aromatic hydrocarbons in settling particles from the deep Ionian Sea (NESTOR site), Eastern Mediterranean, Biogeosciences, 10, 4449–4464, https://doi.org/10.5194/bg-10-4449-2013, 2013.
Thingstad, T. F. and Rassoulzadegan, F.: Nutrient limitations, microbial food webs, and biological C-pumps: Suggested interactions in a P-limited Mediterranean, Mar. Ecol.-Prog. Ser., 117, 299–306, 1995.
Touratier, F. and Goyet, C.: Impact of the Eastern Mediterranean Transient on the distribution of anthropogenic CO2 and first estimate of acidification for the Mediterranean Sea, Deep-Sea Res. Pt. I, 58, 1–15, 2011.
Triantaphyllou, M. V., Ziveri, P., and Tselepides, A.: Coccolithophore export production and response to seasonal surface water variability in the oligotrophic Cretan Sea (NE Mediterranean), Micropaleontology, 50, 127–144, 2004.
Trimonis, E. and Rudenko, M.: Geomorphology and bottom sediments of the Pylos area. In: Proceedings of the 2nd NESTOR International Workshop, edited by: Resvanis, L. K., p. 321, 1992.
Verardo, D. J., Froelich, P. N., and McIntyre, A.: Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer, Deep-Sea Res., 37, 1, 157–165, 1990.
Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., and Santschi, P. H.: The oceanic gel phase: a bridge in the DOM-POM continuum, Mar. Chem., 92, 67–85, 2004.
Volk, T. and Hoffert M.: Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, in: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by: Sundquist, E. T. and Broecker, W. S., AGU, Washington, DC, 99–110, https://doi.org/10.1029/GM032p0099, 1985.
Wong, C. S., Whitney, F. A., Crawford, D. W., Iseki, K., Matear, R. J., Johnson, W. K., Page, J. S., and Timothy, D.: Seasonal and interannual variability in particle fluxes of carbon, nitrogen and silicon from time series of sediment traps at Ocean Station P, 1982–1993: Relationship to changes in subarctic primary productivity, Deep-Sea Res. Pt. II, 46, 2735–2760, 1999.
Yokokawa, T., De Corte, D., Sintes, E., and Gerndl, G. J.: Spatial patterns of bacterial abundance, activity and community composition in relation to water masses in the Eastern Mediterranean Sea, Aquat. Microb. Ecol., 59, 185–195, 2010.
Zúñiga, D., Calafat, A., Sanchez-Vidal, A., Canals, M., Price, B., Heussner, S., and Miserocchi, S.: Particulate organic carbon budget in the open Algero-Balearic Basin (Western Mediterranean): Assessment from a one-year sediment trap experiment, Deep-Sea Res. Pt. I, 54, 1530–1548, 2007.
Special issue
Altmetrics
Final-revised paper
Preprint