Chanton, J. P., Martens, C. S., and Kelley, C. A.: Gas transport from methane-saturated, tidal freshwater and wetland sediments, Limnol. Oceanogr., 34, 807–819, 1989.
Coulthard, T., Baird, A., Ramirez, J., and Waddington, J.: Methane dynamics in peat: importance of shallow peats and a novel reduced-complexity approach for modeling ebullition, carbon cycling in Northern Peatlands, Geophys. Monogr. Ser, 184, 173–185, https://doi.org/10.1029/2008GM000811, 2009.
DelSontro, T., McGinnis, D. F., Sobek, S., Ostrovsky, I., and Wehrli, B.: Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments, Environ. Sci. Technol., 44, 2419–2425, https://doi.org/10.1021/es9031369, 2010.
DelSontro, T., Kunz, M. J., Kempter, T., Wüest, A., Wehrli, B., and Senn, D. B.: Spatial heterogeneity of methane ebullition in a large tropical reservoir, Environ. Sci. Technol., 45, 9866–9873, https://doi.org/10.1021/es2005545, 2011.
Duc, N. T., Crill, P., and Bastviken, D.: Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments, Biogeochemistry, 100, 185–196, https://doi.org/10.1007/s10533-010-9415-8, 2010.
Fang, X. and Stefan, H. G.: Dynamics of heat exchange between sediment and water in a lake, Water Resour. Res., 32, 1719–1727, 1996.
Fang, X. and Stefan, H. G.: Temperature variability in lake sediments, Water Resour. Res., 34, 717–729, https://doi.org/10.1029/96WR00274, 1998.
Fechner-Levy, E. and Hemond, H.: Trapped methane volume and potential effects on methane ebullition in a northern peatland, Limnol. Oceanogr., 41, 1375–1383, 1996.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, in: Climate Change, The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Goodrich, J. P., Varner, R. K., Frolking, S., Duncan, B. N., and Crill, P. M.: High-frequency measurements of methane ebullition over a growing season at a temperate peatland site, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL046915, 2011.
Hamblin, P. F. and Hollan, E.: On the gravitational seiches of Lake Constance and their generation, Schweiz. Z. Hydrol., 40, 119–154, https://doi.org/10.1007/BF02502376, 1978.
Hofmann, H., Lorke, A., and Peeters, F.: The relative importance of wind and ship waves in the littoral zone of a large lake, Limnol. Oceanogr., 53, 368, https://doi.org/10.4319/lo.2008.53.1.0368, 2008a.
Hofmann, H., Lorke, A., and Peeters, F.: Temporal and spatial scales of water level fluctuations in lakes and their ecological implications, Hydrobiol., 613, 85–96, https://doi.org/10.1007/s10750-008-9474-1, 2008b.
Hofmann, H., Federwisch, L., and Peeters, F.: Wave-induced release of methane: littoral zones as a source of methane in lakes, Limnol. Oceanogr., 55, 1990–2000, https://doi.org/10.4319/lo.2010.55.5.1990, 2010.
Jöhnk, K. D., Straile, D., and Ostendorp, W.: Water level variability and trends in Lake Constance in the light of the 1999 centennial flood, Limnologica-Ecology and Management of Inland Waters, 34, 15–21, https://doi.org/10.1016/S0075-9511(04)80017-3, 2004.
Johnson, B. D., Boudreau, B. P., Gardiner, B. S., and Maass, R.: Mechanical response of sediments to bubble growth, Mar. Geol., 187, 347–363, https://doi.org/10.1016/S0025-3227(02)00383-3, 2002.
Joyce, J. and Jewell, P. W.: Physical controls on methane ebullition from reservoirs and lakes, Environ. Eng. Geosci., 9, 167–178, https://doi.org/10.2113/9.2.167, 2003.
Kiene, R. P.: Production and consumption of methane in aquatic systems. Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes, American Society for Microbiology, 111–146, 1991.
Leifer, I. and Patro, R. K.: The bubble mechanism for methane transport from the shallow sea bed to the surface: a review and sensitivity study, Cont. Shelf Res., 22, 2409–2428, https://doi.org/10.1016/S0278-4343(02)00065-1, 2002.
Liikanen, A. and Martikainen, P. J.: Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment–water interface in a eutrophic lake, Chemosphere, 52, 1287–1293, https://doi.org/10.1016/S0045-6535(03)00224-8, 2003.
Lorke, A., McGinnis, D. F., Maeck, A., and Fischer, H.: Effects of ship locking on sediment oxygen uptake in impounded rivers, Water Resour. Res., 48, WR012514, https://doi.org/10.1029/2012WR012483, 2012.
Maeck, A. and Lorke, A.: Ship-lock induced surges in an impounded river and their impact on subdaily flow velocity variation, River Res. Appl., https://doi.org/10.1002/rra.2648, 2013.
Maeck, A., DelSontro, T., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P., and Lorke, A.: Sediment trapping by dams creates methane emission hot spots, Environ. Sci. Technol., 47, 8130–8137, https://doi.org/10.1021/es4003907, 2013.
McGinnis, D., Greinert, J., Artemov, Y., Beaubien, S., and Wüest, A.: Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere?, J. Geophys. Res.-Oceans, 111, C09007, 8130–8137, https://doi.org/10.1029/2005JC003183, 2006.
Scandella, B. P., Varadharajan, C., Hemond, H. F., Ruppel, C. and Juanes, R.: A conduit dilation model of methane venting from lake sediments, Geophys. Res. Lett., 38, L06408, https://doi.org/10.1029/2011GL046768, 2011.
Schöl, A.: Die Saar – Auswirkungen der Stauregelung auf den Sauerstoffhaushalt in einem abflussarmen Mittelgebirgsfluss, in: Staugeregelte Flüsse in Deutschland, edited by: Kinzelbach, F. G., Ragnar, Stuttgart, Germany, 2006.
Segers, R.: Methane production and methane consumption: a review of processes underlying wetland methane fluxes, Biogeochemistry, 41, 23–51, https://doi.org/10.1023/A:1005929032764, 1998.
Sobek, S., DelSontro, T., Wongfun, N., and Wehrli, B.: Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir, Geophys. Res. Lett., 39, L01401, https://doi.org/10.1029/2011GL050144, 2012.
UNESCO/IHA: GHG Measurement Guidelines for Freshwater Reservoirs, edited by: Goldenfum, J. A., UNESCO, IHA, 2010.
USACE: Hydaulic design – surges in canals – change 1, in: Engineering and Design, US Army Corps of Engineering, Washington, DC, USA, 1–15, 1949.
Varadharajan, C. and Hemond, H. F.: Time-series analysis of high-resolution ebullition fluxes from a stratified, freshwater lake, J. Geophys. Res.-Biogeo., 117, G02004, https://doi.org/10.1029/2011JG001866, 2012.
Venkiteswaran, J. J., Schiff, S. L., St. Louis, V. L., Matthews, C. J., Boudreau, N. M., Joyce, E. M., Beaty, K. G., and Bodaly, R. A.: Processes affecting greenhouse gas production in experimental boreal reservoirs, Global Biogeochem. Cy., 27, 1–11, https://doi.org/10.1002/gbc.20046, 2013.
Wik M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements of ebullitive methane flux from three subarctic lakes, J. Geophys. Res. Biogeo., 118, 1307–1321, https://doi.org/10.1002/jgrg.20103, 2013