Research article
16 Sep 2015
Research article | 16 Sep 2015
Iron encrustations on filamentous algae colonized by Gallionella-related bacteria in a metal-polluted freshwater stream
J. F. Mori et al.
Related authors
Multi-species inversion and IAGOS airborne data for a better constraint of continental-scale fluxes
Fabio Boschetti, Valerie Thouret, Greet Janssens Maenhout, Kai Uwe Totsche, Julia Marshall, and Christoph Gerbig
Atmos. Chem. Phys., 18, 9225–9241, https://doi.org/10.5194/acp-18-9225-2018,https://doi.org/10.5194/acp-18-9225-2018, 2018
Short summary
Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany
Bernd Kohlhepp, Robert Lehmann, Paul Seeber, Kirsten Küsel, Susan E. Trumbore, and Kai U. Totsche
Hydrol. Earth Syst. Sci., 21, 6091–6116, https://doi.org/10.5194/hess-21-6091-2017,https://doi.org/10.5194/hess-21-6091-2017, 2017
Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages
Martin E. Nowak, Valérie F. Schwab, Cassandre S. Lazar, Thomas Behrendt, Bernd Kohlhepp, Kai Uwe Totsche, Kirsten Küsel, and Susan E. Trumbore
Hydrol. Earth Syst. Sci., 21, 4283–4300, https://doi.org/10.5194/hess-21-4283-2017,https://doi.org/10.5194/hess-21-4283-2017, 2017
Short summary
Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches
Valérie F. Schwab, Martina Herrmann, Vanessa-Nina Roth, Gerd Gleixner, Robert Lehmann, Georg Pohnert, Susan Trumbore, Kirsten Küsel, and Kai U. Totsche
Biogeosciences, 14, 2697–2714, https://doi.org/10.5194/bg-14-2697-2017,https://doi.org/10.5194/bg-14-2697-2017, 2017
Short summary
An objective prior error quantification for regional atmospheric inverse applications
P. Kountouris, C. Gerbig, K.-U. Totsche, A. J. Dolman, A. G. C. A. Meesters, G. Broquet, F. Maignan, B. Gioli, L. Montagnani, and C. Helfter
Biogeosciences, 12, 7403–7421, https://doi.org/10.5194/bg-12-7403-2015,https://doi.org/10.5194/bg-12-7403-2015, 2015
Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette
M. E. Nowak, F. Beulig, J. von Fischer, J. Muhr, K. Küsel, and S. E. Trumbore
Biogeosciences, 12, 7169–7183, https://doi.org/10.5194/bg-12-7169-2015,https://doi.org/10.5194/bg-12-7169-2015, 2015
Short summary
Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite
K. Eusterhues, A. Hädrich, J. Neidhardt, K. Küsel, T. F. Keller, K. D. Jandt, and K. U. Totsche
Biogeosciences, 11, 4953–4966, https://doi.org/10.5194/bg-11-4953-2014,https://doi.org/10.5194/bg-11-4953-2014, 2014
Impact of optimized mixing heights on simulated regional atmospheric transport of CO2
R. Kretschmer, C. Gerbig, U. Karstens, G. Biavati, A. Vermeulen, F. Vogel, S. Hammer, and K. U. Totsche
Atmos. Chem. Phys., 14, 7149–7172, https://doi.org/10.5194/acp-14-7149-2014,https://doi.org/10.5194/acp-14-7149-2014, 2014
Related subject area
Rare earth elements in oyster shells: provenance discrimination and potential vital effects
Vincent Mouchi, Camille Godbillot, Vianney Forest, Alexey Ulianov, Franck Lartaud, Marc de Rafélis, Laurent Emmanuel, and Eric P. Verrecchia
Biogeosciences, 17, 2205–2217, https://doi.org/10.5194/bg-17-2205-2020,https://doi.org/10.5194/bg-17-2205-2020, 2020
Short summary
Intercomparison of four methods to estimate coral calcification under various environmental conditions
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020,https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Insights into architecture, growth dynamics, and biomineralization from pulsed Sr-labelled Katelysia rhytiphora shells (Mollusca, Bivalvia)
Laura M. Otter, Oluwatoosin B. A. Agbaje, Matt R. Kilburn, Christoph Lenz, Hadrien Henry, Patrick Trimby, Peter Hoppe, and Dorrit E. Jacob
Biogeosciences, 16, 3439–3455, https://doi.org/10.5194/bg-16-3439-2019,https://doi.org/10.5194/bg-16-3439-2019, 2019
Short summary
Subaqueous speleothems (Hells Bells) formed by the interplay of pelagic redoxcline biogeochemistry and specific hydraulic conditions in the El Zapote sinkhole, Yucatán Peninsula, Mexico
Simon Michael Ritter, Margot Isenbeck-Schröter, Christian Scholz, Frank Keppler, Johannes Gescher, Lukas Klose, Nils Schorndorf, Jerónimo Avilés Olguín, Arturo González-González, and Wolfgang Stinnesbeck
Biogeosciences, 16, 2285–2305, https://doi.org/10.5194/bg-16-2285-2019,https://doi.org/10.5194/bg-16-2285-2019, 2019
Short summary
Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions
Andrew C. Mitchell, Erika J. Espinosa-Ortiz, Stacy L. Parks, Adrienne J. Phillips, Alfred B. Cunningham, and Robin Gerlach
Biogeosciences, 16, 2147–2161, https://doi.org/10.5194/bg-16-2147-2019,https://doi.org/10.5194/bg-16-2147-2019, 2019
Short summary
Coupled calcium and inorganic carbon uptake suggested by magnesium and sulfur incorporation in foraminiferal calcite
Inge van Dijk, Christine Barras, Lennart Jan de Nooijer, Aurélia Mouret, Esmee Geerken, Shai Oron, and Gert-Jan Reichart
Biogeosciences, 16, 2115–2130, https://doi.org/10.5194/bg-16-2115-2019,https://doi.org/10.5194/bg-16-2115-2019, 2019
Short summary
Planktonic foraminiferal spine versus shell carbonate Na incorporation in relation to salinity
Eveline M. Mezger, Lennart J. de Nooijer, Jacqueline Bertlich, Jelle Bijma, Dirk Nürnberg, and Gert-Jan Reichart
Biogeosciences, 16, 1147–1165, https://doi.org/10.5194/bg-16-1147-2019,https://doi.org/10.5194/bg-16-1147-2019, 2019
Short summary
Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments
Hengchao Xu, Xiaotong Peng, Shijie Bai, Kaiwen Ta, Shouye Yang, Shuangquan Liu, Ho Bin Jang, and Zixiao Guo
Biogeosciences, 16, 949–960, https://doi.org/10.5194/bg-16-949-2019,https://doi.org/10.5194/bg-16-949-2019, 2019
Short summary
Variation in brachiopod microstructure and isotope geochemistry under low-pH–ocean acidification conditions
Facheng Ye, Hana Jurikova, Lucia Angiolini, Uwe Brand, Gaia Crippa, Daniela Henkel, Jürgen Laudien, Claas Hiebenthal, and Danijela Šmajgl
Biogeosciences, 16, 617–642, https://doi.org/10.5194/bg-16-617-2019,https://doi.org/10.5194/bg-16-617-2019, 2019
Weaving of biomineralization framework in rotaliid foraminifera: implications for paleoceanographic proxies
Yukiko Nagai, Katsuyuki Uematsu, Chong Chen, Ryoji Wani, Jarosław Tyszka, and Takashi Toyofuku
Biogeosciences, 15, 6773–6789, https://doi.org/10.5194/bg-15-6773-2018,https://doi.org/10.5194/bg-15-6773-2018, 2018
Short summary
Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta)
Agathe Martignier, Montserrat Filella, Kilian Pollok, Michael Melkonian, Michael Bensimon, François Barja, Falko Langenhorst, Jean-Michel Jaquet, and Daniel Ariztegui
Biogeosciences, 15, 6591–6605, https://doi.org/10.5194/bg-15-6591-2018,https://doi.org/10.5194/bg-15-6591-2018, 2018
Short summary
Carbon and nitrogen turnover in the Arctic deep sea: in situ benthic community response to diatom and coccolithophorid phytodetritus
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018,https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy
Thomas M. DeCarlo, Juan P. D'Olivo, Taryn Foster, Michael Holcomb, Thomas Becker, and Malcolm T. McCulloch
Biogeosciences, 14, 5253–5269, https://doi.org/10.5194/bg-14-5253-2017,https://doi.org/10.5194/bg-14-5253-2017, 2017
Short summary
Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress
Giulia Faucher, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell
Biogeosciences, 14, 3603–3613, https://doi.org/10.5194/bg-14-3603-2017,https://doi.org/10.5194/bg-14-3603-2017, 2017
Short summary
Ba incorporation in benthic foraminifera
Lennart J. de Nooijer, Anieke Brombacher, Antje Mewes, Gerald Langer, Gernot Nehrke, Jelle Bijma, and Gert-Jan Reichart
Biogeosciences, 14, 3387–3400, https://doi.org/10.5194/bg-14-3387-2017,https://doi.org/10.5194/bg-14-3387-2017, 2017
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Michael J. Henehan, David Evans, Madison Shankle, Janet E. Burke, Gavin L. Foster, Eleni Anagnostou, Thomas B. Chalk, Joseph A. Stewart, Claudia H. S. Alt, Joseph Durrant, and Pincelli M. Hull
Biogeosciences, 14, 3287–3308, https://doi.org/10.5194/bg-14-3287-2017,https://doi.org/10.5194/bg-14-3287-2017, 2017
Short summary
Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa
Ella L. Howes, Karina Kaczmarek, Markus Raitzsch, Antje Mewes, Nienke Bijma, Ingo Horn, Sambuddha Misra, Jean-Pierre Gattuso, and Jelle Bijma
Biogeosciences, 14, 415–430, https://doi.org/10.5194/bg-14-415-2017,https://doi.org/10.5194/bg-14-415-2017, 2017
Short summary
Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence
Anne Alexandre, Jérôme Balesdent, Patrick Cazevieille, Claire Chevassus-Rosset, Patrick Signoret, Jean-Charles Mazur, Araks Harutyunyan, Emmanuel Doelsch, Isabelle Basile-Doelsch, Hélène Miche, and Guaciara M. Santos
Biogeosciences, 13, 1693–1703, https://doi.org/10.5194/bg-13-1693-2016,https://doi.org/10.5194/bg-13-1693-2016, 2016
Short summary
Impact of seawater [Ca2+] on the calcification and calciteMg / Ca of Amphistegina lessonii
A. Mewes, G. Langer, S. Thoms, G. Nehrke, G.-J. Reichart, L. J. de Nooijer, and J. Bijma
Biogeosciences, 12, 2153–2162, https://doi.org/10.5194/bg-12-2153-2015,https://doi.org/10.5194/bg-12-2153-2015, 2015
Short summary
New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results
A. Alexandre, I. Basile-Doelsch, T. Delhaye, D. Borshneck, J. C. Mazur, P. Reyerson, and G. M. Santos
Biogeosciences, 12, 863–873, https://doi.org/10.5194/bg-12-863-2015,https://doi.org/10.5194/bg-12-863-2015, 2015
Short summary
Limpets counteract ocean acidification induced shell corrosion by thickening of aragonitic shell layers
G. Langer, G. Nehrke, C. Baggini, R. Rodolfo-Metalpa, J. M. Hall-Spencer, and J. Bijma
Biogeosciences, 11, 7363–7368, https://doi.org/10.5194/bg-11-7363-2014,https://doi.org/10.5194/bg-11-7363-2014, 2014
Short summary
Experimental evidence for foraminiferal calcification under anoxia
M. P. Nardelli, C. Barras, E. Metzger, A. Mouret, H. L. Filipsson, F. Jorissen, and E. Geslin
Biogeosciences, 11, 4029–4038, https://doi.org/10.5194/bg-11-4029-2014,https://doi.org/10.5194/bg-11-4029-2014, 2014
Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?
S. Bindschedler, G. Cailleau, O. Braissant, L. Millière, D. Job, and E. P. Verrecchia
Biogeosciences, 11, 2809–2825, https://doi.org/10.5194/bg-11-2809-2014,https://doi.org/10.5194/bg-11-2809-2014, 2014
Downward fluxes of sinking particulate matter in the deep Ionian Sea (NESTOR site), eastern Mediterranean: seasonal and interannual variability
S. Stavrakakis, A. Gogou, E. Krasakopoulou, A. P. Karageorgis, H. Kontoyiannis, G. Rousakis, D. Velaoras, L. Perivoliotis, G. Kambouri, I. Stavrakaki, and V. Lykousis
Biogeosciences, 10, 7235–7254, https://doi.org/10.5194/bg-10-7235-2013,https://doi.org/10.5194/bg-10-7235-2013, 2013
Cited articles
Akiyama, M., Ioriya, T., Imahori, K., Kasaki, H., Kumamoto, S., Kobayashi, H., Takahashi, E., Tsumura, K., Hirano, M., and Hirose, H.: Illustrations of the Japanese Fresh-Water Algae, Uchidarokakuho Publishing Company, Limited, 1977.
Azam, F.: Microbial control of oceanic carbon flux: the plot thickens, Science, 280, 694–695, 1998.
Carlson, L., Bigham, J. M., Schwertmann, U., Kyek, A., and Wagner, F.: Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues, Environ. Sci. Technol., 36, 1712–1719, https://doi.org/10.1021/es0110271, 2002.
Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J., and Edwards, K. J.: Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation, ISME J., 5, 717–727, https://doi.org/10.1038/ismej.2010.173, 2011.
Chapman, V. J.: An introduction to the study of Algae, Cambrige University Press, 387 pp., 1941.
Cleare, M. and Percival, E.: Carbohydrates of the fresh water alga
Tribonema aequale. I. Low molecular weight and polysaccharides, Brit. Phycol. J., 7, 185–193, https://doi.org/10.1080/00071617200650201, 1972.
Cole, J. J.: Interactions between bacteria and algae in aquatic ecosystems, Annu. Rev. Ecol. Syst., 13, 291-3-14, 1982.
Collier, K. and Winterbourn, M.: Structure of epilithon in some acidic and circumneutral streams in South Westland, New Zealand, New Zealand Natural Sciences, 17, 1–11, 1990.
Courtin-Nomade, A., Grosbois, C., Bril, H., and Roussel, C.: Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage, Appl. Geochem., 20, 383–396, https://doi.org/10.1016/j.apgeochem.2004.08.002, 2005.
Das, B. K., Roy, A., Koschorreck, M., Mandal, S. M., Wendt-Potthoff, K., and Bhattacharya, J.: Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization, Water Res., 43, 883–894, https://doi.org/10.1016/j.watres.2008.11.046, 2009.
de Vet, W. W. J. M., Dinkla, I. J. T., Rietveld, L. C., and van Loosdrecht, M. C. M.: Biological iron oxidation by
Gallionella spp. in drinking water production under fully aerated conditions, Water Res., 45, 5389–5398, https://doi.org/10.1016/j.watres.2011.07.028, 2011.
Dorigo, U., Berard, A., and Humbert, J. F.: Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing, Microb. Ecol., 44, 372–380, https://doi.org/10.1007/s00248-002-2024-x, 2002.
Emerson, D. and Moyer, C.: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH, Appl. Environ. Microb., 63, 4784–4792, 1997.
Emerson, D. and Weiss, J. V.: Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory, Geomicrobiol. J., 21, 405–414, 2004.
Emerson, D., Field, E., Chertkov, O., Davenport, K., Goodwin, L., Munk, C., Nolan, M., and Woyke, T.: Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics, Front. Microbiol., 4, 254, https://doi.org/10.3389/fmicb.2013.00254, 2013.
Euringer, K. and Lueders, T.: An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments, J. Microbiol. Meth., 75, 262–268, https://doi.org/10.1016/j.mimet.2008.06.012, 2008.
Fabisch, M., Beulig, F., Akob, D. M., and Küsel, K.: Surprising abundance of
Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations, Front. Microbiol., 4, 390, https://doi.org/10.3389/fmicb.2013.00390, 2013.
Fabisch, M., Freyer, G., Johnson, C. A., Büchel, G., Akob, D. M., Neu, T. R., and Küsel, K.: Dominance of "
Gallionella capsiferriformans" and heavy metal association with
Gallionella-like stalks in metal-rich pH 6 mine water discharge, Geobiology, in press, 2015.
Foster, P. L.: Copper exclusion as a mechanism of heavy metal tolerance in a green alga, Nature, 269, 322–323, 1977.
Foster, P. L.: Metal resistances of
Chlorophyta from rivers polluted by heavy metals, Freshwater Biol., 12, 4-1-61, 1982.
Gebühr, C., Pohlon, E., Schmidt, A., and Küsel, K.: Development of microalgae communities in the phytotelmata of allochthonous populations of
Sarracenia purpurea (Sarraceniaceae), Plant Biol., 8, 849–860, 2006.
Geesey, G., Mutch, R., Costerton, J. T., and Green, R.: Sessile bacteria: an important component of the microbial population in small mountain streams, Limnol. Oceanogr., 23, 1214–1223, 1978.
Greene, B., McPherson, R., and Darnall, D.: Algal sorbents for selective metal ion recovery, in: Metals Speciation, Separation, and Recovery, Lewis Publishers Chelsea, MI, 315–338, 1987.
Gudleifsson, B. E.:
Tribonema viride (
Xanthophyta) on cultivated grassland during winter and spring, Acta Botanica Islandica, 7, 27–30, 1984.
Hallberg, K. B., Coupland, K., Kimura, S., and Johnson, D. B.: Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities, Appl. Environ. Microb., 72, 2022–2030, https://doi.org/10.1128/aem.72.3.2022-2030.2006, 2006.
Hanert, H. H.: The genus
Gallionella, in: The prokaryotes, Springer Verlag, New York, 990–995, 2006.
Hedrich, S., Lunsdorf, H., Keeberg, R., Heide, G., Seifert, J., and Schlomann, M.: Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of
Ferrovum myxofaciens, Environ. Sci. Technol., 45, 7685–7692, https://doi.org/10.1021/es201564g, 2011a.
Hedrich, S., Schlomann, M., and Johnson, D. B.: The iron-oxidizing proteobacteria, Microbiology, 157, 1551–1564, https://doi.org/10.1099/mic.0.045344-0, 2011b.
Hegler, F., Lösekann-Behrens, T., Hanselmann, K., Behrens, S., and Kappler, A.: Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring, Appl. Environ. Microb., 78, 7185–7196, https://doi.org/10.1128/aem.01440-12, 2012.
Heinzel, E., Janneck, E., Glombitza, F., Schlömann, M., and Seifert, J.: Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters, Environ. Sci. Technol., 43, 6138–6144, 2009.
Imlay, J. A.: Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 77, 755–776, https://doi.org/10.1146/annurev.biochem.77.061606.161055, 2008.
Jiao, Y., Cody, G. D., Harding, A. K., Wilmes, P., Schrenk, M., Wheeler, K. E., Banfield, J. F., and Thelen, M. P.: Characterization of extracellular polymeric substances from acidophilic microbial biofilms, Appl. Environ. Microb., 76, 2916–2922, https://doi.org/10.1128/aem.02289-09, 2010.
Johnson, C. A., Freyer, G., Fabisch, M., Caraballo, M. A., Küsel, K., and Hochella, M. F.: Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient, Environ. Chem., 11, 377–391, https://doi.org/10.1071/EN13184, 2014.
Johnson, D. B. and Hallberg, K. B.: Carbon, iron and sulfur metabolism in acidophilic micro-organisms, Adv. Microb. Physiol., 54, 201–255, https://doi.org/10.1016/s0065-2911(08)00003-9, 2009.
Johnsongreen, P. C. and Crowder, A. A.: Iron-oxide deposition on axenic and non-axenic roots of rice seedlings (
Oryza sativa L.), J. Plant Nutr., 14, 375–386, https://doi.org/10.1080/01904169109364209, 1991.
Kozubal, M. A., Macur, R. E., Jay, Z. J., Beam, J. P., Malfatti, S. A., Tringe, S. G., Kocar, B. D., Borch, T., and Inskeep, W. P.: Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms, Front. Microbiol., 3, 109, https://doi.org/10.3389/fmicb.2012.00109, 2012.
Levy, J., Stauber, J. L., Wakelin, S. A., and Jolley, D. F.: The effect of bacteria on the sensitivity of microalgae to copper in laboratory bioassays, Chemosphere, 74, 1266–1274, https://doi.org/10.1016/j.chemosphere.2008.10.049, 2009.
Liu, H. and Buskey, E. J.: Hypersalinity enhances the production of extracellular polymeric substance (EPS) in the Texas brown tide alga,
Aureoumbra lagunensis (Pelagophyceae), J. Phycol., 36, 71–77, 2000.
López-Archilla, A. I., Marin, I., and Amils, R.: Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain, Microb. Ecol., 41, 20–35, 2001.
Lüdecke, C., Reiche, M., Eusterhues, K., Nietzsche, S., and Küsel, K.: Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen, Environ. Microbiol., 12, 2814–2825, https://doi.org/10.1111/j.1462-2920.2010.02251.x, 2010.
Machova, K., Elster, J., and Adamec, L.: Xanthophyceaen assemblages during winter-spring flood: autecology and ecophysiology of
Tribonema fonticolum and
T. monochloron, Hydrobiologia, 600, 155–168, https://doi.org/10.1007/s10750-007-9228-5, 2008.
Malik, A.: Metal bioremediation through growing cells, Environ. Int., 30, 261–278, 2004.
Neubauer, S. C., Emerson, D., and Megonigal, J. P.: Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere, Appl. Environ. Microb., 68, 3988–3995, https://doi.org/10.1128/aem.68.8.3988-3995.2002, 2002.
Peine, A., Tritschler, A., Küsel, K., and Peiffer, S.: Electron flow in an iron-rich acidic sediment – evidence for an acidity-driven iron cycle, Limnol. Oceanogr., 45, 1077–1087, 2000.
Picard, A., Kappler, A., Schmid, G., Quaroni, L., and Obst, M.: Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria, Nat. Comm., 6, 6277, https://doi.org/10.1038/ncomms7277, 2015.
Reed, R. and Gadd, G.: Metal tolerance in eukaryotic and prokaryotic algae, in: Heavy Metal Tolerance in Plants: Evolutionary Aspects, CRC press, Boca Raton, FL, 105–118, 1989.
Roth, R. I., Panter, S. S., Zegna, A. I., and Levin, J.: Bacterial endotoxin (lipopolysaccharide) stimulates the rate of iron oxidation, J. Endotoxin Res., 6, 313–319, 2000.
Rowe, O. F., Sanchez-Espana, J., Hallberg, K. B., and Johnson, D. B.: Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems, Environ. Microbiol., 9, 1761–1771, https://doi.org/10.1111/j.1462-2920.2007.01294.x, 2007.
Schädler, S., Burkhardt, C., Hegler, F., Straub, K. L., Miot, J., Benzerara, K., and Kappler, A.: Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria, Geomicrobiol. J., 26, 93–103, https://doi.org/10.1080/01490450802660573, 2009.
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., and Robinson, C. J.: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microb., 75, 7537–7541, 2009.
Sengbusch, P. V. and Müller, U.: Distribution of glycoconjugates at algal cell surfaces as monitored by FITC-conjugated lectins. Studies on selected species from
Cyanophyta,
Pyrrhophyta,
Raphidophyta,
Euglenophyta,
Chromophyta, and
Chlorophyta, Protoplasma, 114, 103–113, 1983.
Senko, J. M., Wanjugi, P., Lucas, M., Bruns, M. A., and Burgos, W. D.: Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites, ISME J., 2, 1134–1145, 2008.
Smith, G. M.: Cryptogamic Botany, Vol. 1, Algae and Fungi, McGraw-Hill, New York, 169–170, 1938.
Steinberg, P. D., Schneider, R., and Kjelleberg, S.: Chemical defenses of seaweeds against microbial colonization, Biodegradation, 8, 211–220, https://doi.org/10.1023/a:1008236901790, 1997.
Stevenson, R. J., Bothwell, M. L., Lowe, R. L., and Thorp, J. H.: Algal ecology: Freshwater Benthic Ecosystem, Academic press, San Diego, 1996.
Suzuki, T., Hashimoto, H., Matsumoto, N., Furutani, M., Kunoh, H., and Takada, J.: Nanometer-scale visualization and strucural analysis of the inorganic/organic hybrid structures of
Gallionella ferruginea twisted stalks, Appl. Environ. Microb., 77, 2877–2881, https://doi.org/10.1128/aem.02867-10, 2011.
Tabatabai, M. A.: A rapid method for determination of sulfate in water samples, Environ. Lett., 7, 237–243, 1974.
Tamura, H., Goto, K., Yotsuyan, T., and Nagayama, M.: Spectrophotometric determination of iron(II) with 1,10-phenanthroline in presence of large amounts of iron(III), Talanta, 21, 314–318, https://doi.org/10.1016/0039-9140(74)80012-3, 1974.
Tang, Y. Z. and Dobbs, F. C.: Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies, Appl. Environ. Microb., 73, 2306–2313, https://doi.org/10.1128/aem.01741-06, 2007.
Transeau, E. N.: The periodicity of freshwater algae, Am. J. Bot., 3, 121–133, 1916.
Tripathi, R. D., Tripathi, P., Dwivedi, S., Kumar, A., Mishra, A., Chauhan, P. S., Norton, G. J., and Nautiyal, C. S.: Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants, Metallomics, 6, 1789–1800, https://doi.org/10.1039/c4mt00111g, 2014.
Trouwborst, R. E., Johnston, A., Koch, G., Luther, G. W., and Pierson, B. K.: Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: implications for Precambrian Fe(II) oxidation, Geochim. Cosmochim. Acta, 71, 4629–4643, https://doi.org/10.1016/j.gca.2007.07.018, 2007.
Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., and Banfield, J. F.: Community structure and metabolism through reconstruction of microbial genomes from the environment, Nature, 428, 37–43, https://doi.org/10.1038/nature02340, 2004.
Vinocur, A. and Izaguirre, I.: Freshwater algae (excluding
Cyanophyceae) from nine lakes and pools of Hope Bay, Antarctic Peninsula, Antarct. Sci., 6, 483–490, 1994.
Wang, H., Ji, B., Wang, J., Guo, F., Zhou, W., Gao, L., and Liu, T.: Growth and biochemical composition of filamentous microalgae
Tribonema sp. as potential biofuel feedstock, Bioproc. Biosyst. Eng., 37, 2607–2613, 2014.
Wang, J., Sickinger, M., Ciobota, V., Herrmann, M., Rasch, Helfried, Rösch, P., Popp, J., and Küsel, K.: Revealing the microbial community structure of clogging materials in dewatering wells differing in physico-chemical parameters in an open-cast mining area, Water Res., 63, 222–233, https://doi.org/10.1016/j.watres.2014.06.021, 2014.
Warner, R. W.: Distribution of biota in a stream polluted by acid mine-drainage, Ohio J. Sci., 71, 202–215, 1971.
Wiegert, R. G. and Mitchell, R.: Ecology of Yellowstone thermal effluent systems: intersects of blue-green algae, grazing flies (
Paracoenia, Ephydridae) and water mites (
Partnuniella, Hydrachnellae), Hydrobiologia, 41, 251–271, 1973.
Winterbourn, M. J., McDiffett, W. F., and Eppley, S. J.: Aluminium and iron burdens of aquatic biota in New Zealand streams contaminated by acid mine drainage: effects of trophic level, Sci. Total Environ., 254, 45–54, https://doi.org/10.1016/s0048-9697(00)00437-x, 2000.
Wotton, R. S.: The utiquity and many roles of exopolymers (EPS) in aquatic systems, Sci. Mar., 68, 13–21, 2004.
Yu, Q., Matheickal, J. T., Yin, P., and Kaewsarn, P.: Heavy metal uptake capacities of common marine macro algal biomass, Water Res., 33, 1534–1537, 1999.