Articles | Volume 12, issue 4
https://doi.org/10.5194/bg-12-905-2015
https://doi.org/10.5194/bg-12-905-2015
Research article
 | 
16 Feb 2015
Research article |  | 16 Feb 2015

Steady-state solutions for subsurface chlorophyll maximum in stratified water columns with a bell-shaped vertical profile of chlorophyll

X. Gong, J. Shi, H. W. Gao, and X. H. Yao

Related authors

Atmospheric Organosulfate Formation Regulated by Continental Outflows and Marine Emissions over East Asian Marginal Seas
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154,https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Seasonality of the North Pacific Ocean Desert area in the past two decades and a modelling perspective for the 21st century
Siyu Meng, Xun Gong, Benjamin Webber, Manoj Joshi, Xiaokun Ding, Xiang Gong, Mingliang Gu, and Huiwang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-13,https://doi.org/10.5194/egusphere-2025-13, 2025
Short summary
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024,https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Investigating the contribution of grown new particles to cloud condensation nuclei with largely varying preexisting particles – Part 2: Modeling chemical drivers and 3-D new particle formation occurrence
Ming Chu, Xing Wei, Shangfei Hai, Yang Gao, Huiwang Gao, Yujiao Zhu, Biwu Chu, Nan Ma, Juan Hong, Yele Sun, and Xiaohong Yao
Atmos. Chem. Phys., 24, 6769–6786, https://doi.org/10.5194/acp-24-6769-2024,https://doi.org/10.5194/acp-24-6769-2024, 2024
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
Phytoplankton blooming mechanisms over the East China Sea during post-El Niño summers
Dong-Geon Lee, Ji-Hoon Oh, Jonghun Kam, and Jong-Seong Kug
Biogeosciences, 22, 3165–3180, https://doi.org/10.5194/bg-22-3165-2025,https://doi.org/10.5194/bg-22-3165-2025, 2025
Short summary
Impact of stratiform liquid water clouds on vegetation albedo quantified by coupling an atmosphere and a vegetation radiative transfer model
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, Alexandra Weigelt, and Manfred Wendisch
Biogeosciences, 22, 2909–2933, https://doi.org/10.5194/bg-22-2909-2025,https://doi.org/10.5194/bg-22-2909-2025, 2025
Short summary
Technical note: Investigating saline water uptake by roots using spectral induced polarization
Solomon Ehosioke, Sarah Garré, Johan Alexander Huisman, Egon Zimmermann, Mathieu Javaux, and Frédéric Nguyen
Biogeosciences, 22, 2853–2869, https://doi.org/10.5194/bg-22-2853-2025,https://doi.org/10.5194/bg-22-2853-2025, 2025
Short summary
Can atmospheric chemistry deposition schemes reliably simulate stomatal ozone flux across global land covers and climates?
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429,https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Source-to-sink pathways of dissolved organic carbon in the river–estuary–ocean continuum: a modeling investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024,https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary

Cited articles

Anderson, G. C.: Subsurface chlorophyll maximum in the northeast Pacific Ocean, Limnol. Oceanogr., 14, 386–391, 1969.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J. E.: Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Ayata, S., Lévy, M., Aumont, O., Sciandra, A., Sainte-Marie, J., Tagliabue, A., and Bernard, O.: Phytoplankton growth formulation in marine ecosystem models: should we take into account photo-acclimation and variable stoichiometry in oligotrophic areas?, J. Marine Syst., 125, 29–40, 2013.
Beckmann, A. and Hense, I.: Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions-A theoretical investigation, Prog. Oceanogr., 75, 771–796, 2007.
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the ecological underpinnings of ocean plankton blooms, Annu. Rev. Mar. Sci., 6, 167–194, 2014.
Download
Short summary
Analytical solutions indicate that subsurface chlorophyll maximum (SCM) occurs at or below the depth of optimal growth of phytoplankton, and the depth of SCM layer deepens logarithmically with an increase in surface light intensity; thickness and intensity of the SCM layer are mainly affected by nutrient supply, but independent of surface light intensity; intensity of the SCM strengthens as a result of this layer being shrunk by a higher light attenuation coefficient or a large sinking velocity
Share
Altmetrics
Final-revised paper
Preprint