Articles | Volume 13, issue 21
https://doi.org/10.5194/bg-13-6107-2016
https://doi.org/10.5194/bg-13-6107-2016
Research article
 | 
09 Nov 2016
Research article |  | 09 Nov 2016

The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany

Merit van den Berg, Joachim Ingwersen, Marc Lamers, and Thilo Streck

Related authors

Using automated transparent chambers to quantify CO2 emissions and potential emission reduction by water infiltration systems in drained coastal peatlands in the Netherlands
Ralf C. H. Aben, Daniel van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
EGUsphere, https://doi.org/10.5194/egusphere-2024-403,https://doi.org/10.5194/egusphere-2024-403, 2024
Short summary
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia and Azolla filiculoides
Merit van den Berg, Thomas Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
EGUsphere, https://doi.org/10.5194/egusphere-2023-2826,https://doi.org/10.5194/egusphere-2023-2826, 2023
Short summary
Cutting peatland CO2 emissions with water management practices
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022,https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021,https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Timescale dependence of airborne fraction and underlying climate–carbon-cycle feedbacks for weak perturbations in CMIP5 models
Guilherme L. Torres Mendonça, Julia Pongratz, and Christian H. Reick
Biogeosciences, 21, 1923–1960, https://doi.org/10.5194/bg-21-1923-2024,https://doi.org/10.5194/bg-21-1923-2024, 2024
Short summary
Technical note: Preventing CO2 overestimation from mercuric or copper(II) chloride preservation of dissolved greenhouse gases in freshwater samples
François Clayer, Jan Erik Thrane, Kuria Ndungu, Andrew King, Peter Dörsch, and Thomas Rohrlack
Biogeosciences, 21, 1903–1921, https://doi.org/10.5194/bg-21-1903-2024,https://doi.org/10.5194/bg-21-1903-2024, 2024
Short summary
Exploring temporal and spatial variation of nitrous oxide flux using several years of peatland forest automatic chamber data
Helena Rautakoski, Mika Korkiakoski, Jarmo Mäkelä, Markku Koskinen, Kari Minkkinen, Mika Aurela, Paavo Ojanen, and Annalea Lohila
Biogeosciences, 21, 1867–1886, https://doi.org/10.5194/bg-21-1867-2024,https://doi.org/10.5194/bg-21-1867-2024, 2024
Short summary
Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany
Matthias Koschorreck, Norbert Kamjunke, Uta Koedel, Michael Rode, Claudia Schuetze, and Ingeborg Bussmann
Biogeosciences, 21, 1613–1628, https://doi.org/10.5194/bg-21-1613-2024,https://doi.org/10.5194/bg-21-1613-2024, 2024
Short summary
Regional assessment and uncertainty analysis of carbon and nitrogen balances at cropland scale using the ecosystem model LandscapeDNDC
Odysseas Sifounakis, Edwin Haas, Klaus Butterbach-Bahl, and Maria P. Papadopoulou
Biogeosciences, 21, 1563–1581, https://doi.org/10.5194/bg-21-1563-2024,https://doi.org/10.5194/bg-21-1563-2024, 2024
Short summary

Cited articles

Aerts, R. and Ludwig, F.: Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils, Soil Biol. Biochem., 29, 11–12, 1997.
Afreen, F., Zobayed, S. M. A., Armstrong, J., and Armstrong, W.: Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis, J. Exp. Bot., 58, 1651–1662, 2007.
Arkebauer, T. J., Chanton, J. P., Verma, S. B., and Kim J.: Field measurements of internal pressurization in Phragmites autralis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland, Am. J. Bot., 88, 653–658, 2001.
Armstrong, J. and Armstrong, W.: Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud, New Phytol., 114, 121–128, 1990.
Armstrong, J. and Armstrong, W.: A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud, Aquat. Bot., 39, 75–88, 1991.
Download
Short summary
Peatlands are interesting options for carbon storage but are also natural emitters of the greenhouse gas methane. Peatlands dominated by common reed are interesting because of their global abundance as a wetland plant and their ability to transport gases between the soil and the atmosphere. We found that reed plants highly influenced methane fluxes due to their gas transport mechanism, and that our peatland was a net sink for greenhouse gases in the year 2013.
Altmetrics
Final-revised paper
Preprint