Articles | Volume 13, issue 21
https://doi.org/10.5194/bg-13-6107-2016
https://doi.org/10.5194/bg-13-6107-2016
Research article
 | 
09 Nov 2016
Research article |  | 09 Nov 2016

The role of Phragmites in the CH4 and CO2 fluxes in a minerotrophic peatland in southwest Germany

Merit van den Berg, Joachim Ingwersen, Marc Lamers, and Thilo Streck

Related authors

CO2 emissions of drained coastal peatlands in the Netherlands and potential emission reduction by water infiltration systems
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024,https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
A case study on topsoil removal and rewetting for paludiculture: effect on biogeochemistry and greenhouse gas emissions from Typha latifolia, Typha angustifolia, and Azolla filiculoides
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024,https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Cutting peatland CO2 emissions with water management practices
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022,https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Conventional subsoil irrigation techniques do not lower carbon emissions from drained peat meadows
Stefan Theodorus Johannes Weideveld, Weier Liu, Merit van den Berg, Leon Peter Maria Lamers, and Christian Fritz
Biogeosciences, 18, 3881–3902, https://doi.org/10.5194/bg-18-3881-2021,https://doi.org/10.5194/bg-18-3881-2021, 2021
Short summary

Related subject area

Biogeochemistry: Greenhouse Gases
Eddy-covariance fluxes of CO2, CH4 and N2O in a drained peatland forest after clear-cutting
Olli-Pekka Tikkasalo, Olli Peltola, Pavel Alekseychik, Juha Heikkinen, Samuli Launiainen, Aleksi Lehtonen, Qian Li, Eduardo Martínez-García, Mikko Peltoniemi, Petri Salovaara, Ville Tuominen, and Raisa Mäkipää
Biogeosciences, 22, 1277–1300, https://doi.org/10.5194/bg-22-1277-2025,https://doi.org/10.5194/bg-22-1277-2025, 2025
Short summary
Eddy covariance evaluation of ecosystem fluxes at a temperate saltmarsh in Victoria, Australia, shows large CO2 uptake
Ruth Reef, Edoardo Daly, Tivanka Anandappa, Eboni-Jane Vienna-Hallam, Harriet Robertson, Matthew Peck, and Adrien Guyot
Biogeosciences, 22, 1149–1162, https://doi.org/10.5194/bg-22-1149-2025,https://doi.org/10.5194/bg-22-1149-2025, 2025
Short summary
Interferences caused by the biogeochemical methane cycle in peats during the assessment of abandoned oil wells
Sebastian F. A. Jordan, Stefan Schloemer, Martin Krüger, Tanja Heffner, Marcus A. Horn, and Martin Blumenberg
Biogeosciences, 22, 809–830, https://doi.org/10.5194/bg-22-809-2025,https://doi.org/10.5194/bg-22-809-2025, 2025
Short summary
Carbon sequestration in different urban vegetation types in Southern Finland
Laura Thölix, Leif Backman, Minttu Havu, Esko Karvinen, Jesse Soininen, Justine Trémeau, Olli Nevalainen, Joyson Ahongshangbam, Leena Järvi, and Liisa Kulmala
Biogeosciences, 22, 725–749, https://doi.org/10.5194/bg-22-725-2025,https://doi.org/10.5194/bg-22-725-2025, 2025
Short summary
Proglacial methane emissions driven by meltwater and groundwater flushing in a high-Arctic glacial catchment
Gabrielle E. Kleber, Leonard Magerl, Alexandra V. Turchyn, Stefan Schloemer, Mark Trimmer, Yizhu Zhu, and Andrew Hodson
Biogeosciences, 22, 659–674, https://doi.org/10.5194/bg-22-659-2025,https://doi.org/10.5194/bg-22-659-2025, 2025
Short summary

Cited articles

Aerts, R. and Ludwig, F.: Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils, Soil Biol. Biochem., 29, 11–12, 1997.
Afreen, F., Zobayed, S. M. A., Armstrong, J., and Armstrong, W.: Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis, J. Exp. Bot., 58, 1651–1662, 2007.
Arkebauer, T. J., Chanton, J. P., Verma, S. B., and Kim J.: Field measurements of internal pressurization in Phragmites autralis (Poaceae) and implications for regulation of methane emissions in a midlatitude prairie wetland, Am. J. Bot., 88, 653–658, 2001.
Armstrong, J. and Armstrong, W.: Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud, New Phytol., 114, 121–128, 1990.
Armstrong, J. and Armstrong, W.: A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud, Aquat. Bot., 39, 75–88, 1991.
Download
Short summary
Peatlands are interesting options for carbon storage but are also natural emitters of the greenhouse gas methane. Peatlands dominated by common reed are interesting because of their global abundance as a wetland plant and their ability to transport gases between the soil and the atmosphere. We found that reed plants highly influenced methane fluxes due to their gas transport mechanism, and that our peatland was a net sink for greenhouse gases in the year 2013.
Share
Altmetrics
Final-revised paper
Preprint