Articles | Volume 14, issue 12
https://doi.org/10.5194/bg-14-2979-2017
https://doi.org/10.5194/bg-14-2979-2017
Research article
 | 
20 Jun 2017
Research article |  | 20 Jun 2017

A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary

Bin Wang, Jiatang Hu, Shiyu Li, and Dehong Liu

Related authors

Impacts of anthropogenic inputs on hypoxia and oxygen dynamics in the Pearl River estuary
Bin Wang, Jiatang Hu, Shiyu Li, Liuqian Yu, and Jia Huang
Biogeosciences, 15, 6105–6125, https://doi.org/10.5194/bg-15-6105-2018,https://doi.org/10.5194/bg-15-6105-2018, 2018
Short summary

Related subject area

Biogeochemistry: Modelling, Aquatic
Mixing, spatial resolution and argon saturation in a suite of coupled general ocean circulation biogeochemical models off Mauritania
Heiner Dietze and Ulrike Löptien
Biogeosciences, 22, 1215–1236, https://doi.org/10.5194/bg-22-1215-2025,https://doi.org/10.5194/bg-22-1215-2025, 2025
Short summary
Efficiency metrics for ocean alkalinity enhancements under responsive and prescribed atmospheric pCO2 conditions
Michael D. Tyka
Biogeosciences, 22, 341–353, https://doi.org/10.5194/bg-22-341-2025,https://doi.org/10.5194/bg-22-341-2025, 2025
Short summary
Changes in Arctic Ocean plankton community structure and trophic dynamics on seasonal to interannual timescales
Gabriela Negrete-García, Jessica Y. Luo, Colleen M. Petrik, Manfredi Manizza, and Andrew D. Barton
Biogeosciences, 21, 4951–4973, https://doi.org/10.5194/bg-21-4951-2024,https://doi.org/10.5194/bg-21-4951-2024, 2024
Short summary
Global impact of benthic denitrification on marine N2 fixation and primary production simulated by a variable-stoichiometry Earth system model
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024,https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Modeling the contribution of micronekton diel vertical migrations to carbon export in the mesopelagic zone
Hélène Thibault, Frédéric Ménard, Jeanne Abitbol-Spangaro, Jean-Christophe Poggiale, and Séverine Martini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2074,https://doi.org/10.5194/egusphere-2024-2074, 2024
Short summary

Cited articles

Boynton, W. and Kemp, W. M.: Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient, Mar. Ecol.-Prog. Ser., 23, 45-55, 1985.
Cai, S. Q., Zheng, S., and Wei, X.: Progress on the hydrodynamic characteristics and the hypoxia phenomenon in the Pearl River Estuary, J. Trop. Oceanog., 32, 1–8, 2013 (in Chinese with English abstract).
Chen, J. C., Heinke, G. W., and Zhou, M. J.: The Pearl River Estuary Pollution Project (PREPP), Cont. Shelf Res., 24, 1739–1744, 2004.
Di Toro, D. M.: Optics of turbid estuarine waters: Approximations and applications, Water Res., 12, 1059–1068, 1978.
Di Toro, D. M.: Sediment flux modeling, Soil Sci., 168, 75–76, 2001.
Download
Short summary
We proposed a novel method named the physical modulation method to quantify the contributions of boundary conditions, the source and sink processes occurring in local and adjacent waters to DO conditions. A mass balance analysis of DO based on the physical modulation method indicated that the DO conditions were mainly controlled by source and sink processes, among which the sediment oxygen demand and re-aeration were two main processes controlling the spatial extent and the duration of hypoxia.
Share
Altmetrics
Final-revised paper
Preprint