Research article
20 Jun 2017
Research article | 20 Jun 2017
A numerical analysis of biogeochemical controls with physical modulation on hypoxia during summer in the Pearl River estuary
Bin Wang et al.
Related authors
Related subject area
Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model
Taylor A. Shropshire, Steven L. Morey, Eric P. Chassignet, Alexandra Bozec, Victoria J. Coles, Michael R. Landry, Rasmus Swalethorp, Glenn Zapfe, and Michael R. Stukel
Biogeosciences, 17, 3385–3407, https://doi.org/10.5194/bg-17-3385-2020,https://doi.org/10.5194/bg-17-3385-2020, 2020
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry
Elena Terzić, Paolo Lazzari, Emanuele Organelli, Cosimo Solidoro, Stefano Salon, Fabrizio D'Ortenzio, and Pascal Conan
Biogeosciences, 16, 2527–2542, https://doi.org/10.5194/bg-16-2527-2019,https://doi.org/10.5194/bg-16-2527-2019, 2019
Short summary
Biogeochemical response of the Mediterranean Sea to the transient SRES-A2 climate change scenario
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019,https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: a wavelet analysis
Jenny Hieronymus, Kari Eilola, Magnus Hieronymus, H. E. Markus Meier, Sofia Saraiva, and Bengt Karlson
Biogeosciences, 15, 5113–5129, https://doi.org/10.5194/bg-15-5113-2018,https://doi.org/10.5194/bg-15-5113-2018, 2018
Short summary
Modelling N2 fixation related to Trichodesmium sp.: driving processes and impacts on primary production in the tropical Pacific Ocean
Cyril Dutheil, Olivier Aumont, Thomas Gorguès, Anne Lorrain, Sophie Bonnet, Martine Rodier, Cécile Dupouy, Takuhei Shiozaki, and Christophe Menkes
Biogeosciences, 15, 4333–4352, https://doi.org/10.5194/bg-15-4333-2018,https://doi.org/10.5194/bg-15-4333-2018, 2018
Short summary
Seasonal patterns in phytoplankton biomass across the northern and deep Gulf of Mexico: a numerical model study
Fabian A. Gomez, Sang-Ki Lee, Yanyun Liu, Frank J. Hernandez Jr., Frank E. Muller-Karger, and John T. Lamkin
Biogeosciences, 15, 3561–3576, https://doi.org/10.5194/bg-15-3561-2018,https://doi.org/10.5194/bg-15-3561-2018, 2018
Short summary
Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach
Anne Marx, Marcus Conrad, Vadym Aizinger, Alexander Prechtel, Robert van Geldern, and Johannes A. C. Barth
Biogeosciences, 15, 3093–3106, https://doi.org/10.5194/bg-15-3093-2018,https://doi.org/10.5194/bg-15-3093-2018, 2018
Short summary
Modelling potential production of macroalgae farms in UK and Dutch coastal waters
Johan van der Molen, Piet Ruardij, Karen Mooney, Philip Kerrison, Nessa E. O'Connor, Emma Gorman, Klaas Timmermans, Serena Wright, Maeve Kelly, Adam D. Hughes, and Elisa Capuzzo
Biogeosciences, 15, 1123–1147, https://doi.org/10.5194/bg-15-1123-2018,https://doi.org/10.5194/bg-15-1123-2018, 2018
Short summary
Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic
Hakase Hayashida, Nadja Steiner, Adam Monahan, Virginie Galindo, Martine Lizotte, and Maurice Levasseur
Biogeosciences, 14, 3129–3155, https://doi.org/10.5194/bg-14-3129-2017,https://doi.org/10.5194/bg-14-3129-2017, 2017
Short summary
Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017,https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Manganese in the west Atlantic Ocean in the context of the first global ocean circulation model of manganese
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017,https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Marine regime shifts in ocean biogeochemical models: a case study in the Gulf of Alaska
Claudie Beaulieu, Harriet Cole, Stephanie Henson, Andrew Yool, Thomas R. Anderson, Lee de Mora, Erik T. Buitenhuis, Momme Butenschön, Ian J. Totterdell, and J. Icarus Allen
Biogeosciences, 13, 4533–4553, https://doi.org/10.5194/bg-13-4533-2016,https://doi.org/10.5194/bg-13-4533-2016, 2016
Short summary
Modeling pCO2 variability in the Gulf of Mexico
Zuo Xue, Ruoying He, Katja Fennel, Wei-Jun Cai, Steven Lohrenz, Wei-Jen Huang, Hanqin Tian, Wei Ren, and Zhengchen Zang
Biogeosciences, 13, 4359–4377, https://doi.org/10.5194/bg-13-4359-2016,https://doi.org/10.5194/bg-13-4359-2016, 2016
Short summary
Seasonal variability of the oxygen minimum zone off Peru in a high-resolution regional coupled model
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016,https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatán, Mexico
Pei-Chuan Chuang, Megan B. Young, Andrew W. Dale, Laurence G. Miller, Jorge A. Herrera-Silveira, and Adina Paytan
Biogeosciences, 13, 2981–3001, https://doi.org/10.5194/bg-13-2981-2016,https://doi.org/10.5194/bg-13-2981-2016, 2016
Short summary
Transfer of radiocaesium from contaminated bottom sediments to marine organisms through benthic food chains in post-Fukushima and post-Chernobyl periods
Roman Bezhenar, Kyung Tae Jung, Vladimir Maderich, Stefan Willemsen, Govert de With, and Fangli Qiao
Biogeosciences, 13, 3021–3034, https://doi.org/10.5194/bg-13-3021-2016,https://doi.org/10.5194/bg-13-3021-2016, 2016
Short summary
The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble
P. R. Halloran, B. B. B. Booth, C. D. Jones, F. H. Lambert, D. J. McNeall, I. J. Totterdell, and C. Völker
Biogeosciences, 12, 4497–4508, https://doi.org/10.5194/bg-12-4497-2015,https://doi.org/10.5194/bg-12-4497-2015, 2015
Short summary
Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model
S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows
Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015,https://doi.org/10.5194/bg-12-4447-2015, 2015
Short summary
Cited articles
Boynton, W. and Kemp, W. M.: Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient, Mar. Ecol.-Prog. Ser., 23, 45-55, 1985.
Cai, S. Q., Zheng, S., and Wei, X.: Progress on the hydrodynamic characteristics and the hypoxia phenomenon in the Pearl River Estuary, J. Trop. Oceanog., 32, 1–8, 2013 (in Chinese with English abstract).
Di Toro, D. M.: Optics of turbid estuarine waters: Approximations and applications, Water Res., 12, 1059–1068, 1978.
Du, J. B. and Shen, J.: Decoupling the influence of biological and physical processes on the dissolved oxygen in the Chesapeake Bay, J. Geophys. Res.-Oceans, 120, 78–93, 2015.
Guan, W. B., Wong, L. A., and Xu, D.: Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang River Estuary, part II:Model development, Acta Oceanol. Sin., 20, 504–514, 2001a.
Guan, W. B., Wong, L. A., and Xu, D.: Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang River Estuary, part I: Model results, Acta Oceanol. Sin., 20, 493–504, 2001b.
Guo, W., Ye, F., Xu, S., and Jia, G.: Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China, Estuar. Coast. Shelf S., 167, Part B, 540–548, 2015.
Hagy, J. D., Boynton, W. R., Keefe, C. W., and Wood, K. V.: Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow, Estuaries, 27, 634–658, 2004.
He, B., Dai, M., Zhai, W., Guo, X., and Wang, L.: Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms: A synthesis based on multiple year observations during 2000–2008, Mar. Chem., 167, 13–24, 2014.
Hong, B. and Shen, J.: Linking dynamics of transport timescale and variations of hypoxia in the Chesapeake Bay, J. Geophys. Res.-Oceans, 118, 6017–6029, 2013.
Hu, J., Li, S., and Geng, B.: Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China, J. Marine Syst., 88, 252–266, 2011.
Hu, J. T. and Li, S. Y.: Modeling the massfluxes and transformations of nutrients in the Pearl River Delta, China, J. Marine Syst., 78, 146–167, 2009.
HydroQual, Inc.: A Primer for ECOMSED Version 1.3, HydroQual, Inc., Mahwah, NJ, 2002.
HydroQual, Inc.: User's Guide for RCA (Release 3.0), HydroQual, Inc., Mahwah, NJ, 2004.
Liu, D., Hu, J., Li, S., and Huang, J.: Validation and application of a three-dimensional coupled water quality and sediment model of the Pearl River Estuary, Acta Scientiae Circumstantiae, 36, 4025–4036, https://doi.org/10.13671/j.hjkxxb.2016.0145, 2015 (in Chinese with English abstract).
Luo, L., Shi-Yu, L. I., and Wang, D. X.: Modelling of hypoxia in the Pearl River estuary in summer, Adv. Water Sci., 19, 729–735, https://doi.org/10.14042/j.cnki.32.1309.2008.05.011, 2008 (in Chinese with English abstract).
Montes, I., Dewitte, B., Gutknecht, E., Paulmier, A., Dadou, I., Oschlies, A., and Garçon, V.: High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation, J. Geophys. Res.-Oceans, 119, 5515–5532, 2014.
Murrell, M. C. and Lehrter, J. C.: Sediment and Lower Water Column Oxygen Consumption in the Seasonally Hypoxic Region of the Louisiana Continental Shelf, Estuar. Coasts, 34, 912–924, 2011.
Ni, X., Huang, D., Zeng, D., Zhang, T., Li, H., and Chen, J.: The impact of wind mixing on the variation of bottom dissolved oxygen off the Changjiang Estuary during summer, J. Marine Syst., 154, 122–130, 2014.
Rabalais, N. N., Turner, R. E., Gupta, B. K. S., Boesch, D. F., Chapman, P., and Murrell, M. C.: Hypoxia in the northern Gulf of Mexico: Does the science support the Plan to Reduce, Mitigate, and Control Hypoxia?, Estuar. Coasts, 30, 753-772, 2007.
Rabalais, N. N., Díaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J.: Dynamics and distribution of natural and human-caused hypoxia, Biogeosciences, 7, 585–619, https://doi.org/10.5194/bg-7-585-2010, 2010.
Rabouille, C., Conley, D. J., Dai, M. H., Cai, W. J., Chen, C. T. A., Lansard, B., Green, R., Yin, K., Harrison, P. J., Dagg, M., and McKee, B.: Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers, Cont. Shelf Res., 28, 1527–1537, 2008.
Scavia, D., Rabalais, N. N., Turner, R. E., Justic, D., and Wiseman, W. J.: Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load, Limnol. Oceanogr., 48, 951–956, 2003.
Scully, M. E.: Wind Modulation of Dissolved Oxygen in Chesapeake Bay, Estuar. Coasts, 33, 1164–1175, 2010.
Shen, J., Hong, B., and Kuo, A. Y.: Using timescales to interpret dissolved oxygen distributions in the bottom waters of Chesapeake Bay, Limnol. Oceanogr., 58, 2237–2248, 2013.
Wang, B.: Hydromorphological mechanisms leading to hypoxia off the Changjiang estuary, Mar. Environ. Res., 67, 53–58, 2009.
Wang, B., Wei, Q., Chen, J., and Xie, L.: Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary, Mar. Environ. Res., 77, 1–5, 2012.
Ye, H., Chen, C., Sun, Z., Tang, S., Song, X., Yang, C., Tian, L., and Liu, F.: Estimation of the primary productivity in Pearl River Estuary using MODIS data, Estuar. Coasts, 38, 506–518, 2015.
Yin, K. D., Lin, Z. F., and Ke, Z. Y.: Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters, Cont. Shelf Res., 24, 1935–1948, 2004.
Yu, L., Fennel, K., Laurent, A., Murrell, M. C., and Lehrter, J. C.: Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf, Biogeosciences, 12, 2063–2076, https://doi.org/10.5194/bg-12-2063-2015, 2015b.
Zhang, H. and Li, S. Y.: Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer, J. Marine Syst., 79, 65–88, 2010.