Articles | Volume 14, issue 1
https://doi.org/10.5194/bg-14-89-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/bg-14-89-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The effect of shell secretion rate on Mg / Ca and Sr / Ca ratios in biogenic calcite as observed in a belemnite rostrum
Clemens Vinzenz Ullmann
CORRESPONDING AUTHOR
Camborne School of Mines and Environment and Sustainability Institute,
University of Exeter, Penryn, TR10 9FE, UK
Philip A. E. Pogge von Strandmann
London Geochemistry and Isotope Centre (LOGIC), Institute of Earth and
Planetary Sciences, University College London and Birkbeck, University of
London, Gower Street, London, WC1E 6BT, UK
Related authors
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Jelle Bijma, Mathilde Hagens, Jens S. Hammes, Noah Planavsky, Philip A. E. Pogge von Strandmann, Tom Reershemius, Christopher T. Reinhard, Phil Renforth, Tim J. Suhrhoff, Sara Vicca, Arthur Vienne, and Dieter Wolf-Gladrow
Biogeosciences, 23, 53–75, https://doi.org/10.5194/bg-23-53-2026, https://doi.org/10.5194/bg-23-53-2026, 2026
Short summary
Short summary
Enhanced rock weathering is a nature based negative emission technology, that permanently stores CO2. It requires rock-flour to be added to arable land with the help of farmers. To be eligible for carbon credits calls for a simple but scientifically solid, so called, Monitoring, Reporting & Verification” (MRV). We demonstrate that the commonly used carbon-based accounting is ill-suited to close the balance in open systems such as arable land, and argue for cation-based accounting strategy.
Jens S. Hammes, Jens Hartmann, Johannes A. C. Barth, Tobias Linke, Ingrid Smet, Mathilde Hagens, Philip A. E. Pogge von Strandmann, Tom Reershemius, Bruno Casimiro, Arthur Vienne, Anna A. Stoeckel, Ralf Steffens, and Dirk Paessler
EGUsphere, https://doi.org/10.5194/egusphere-2025-5402, https://doi.org/10.5194/egusphere-2025-5402, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To test enhanced weathering's efficacy, we ran a two-year greenhouse study under warm, wet conditions, comparing several rock additives across farm soils. We tracked alkalinity and cation soil pools. Soil type was decisive: acidic, low-buffer soils exported more additional alkalinity, while alkaline or pH neutral soils retained it in cation pools. The results point to where enhanced weathering can deliver durable carbon removal and underscore the need for long, well-controlled trials.
Rocio Jaimes-Gutierrez, Marine Prieur, David J. Wilson, Philip A. E. Pogge von Strandmann, Emmanuelle Pucéat, Thierry Adatte, Jorge E. Spangenberg, and Sébastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2025-2619, https://doi.org/10.5194/egusphere-2025-2619, 2025
Short summary
Short summary
This study examines how weathering in the Southern Pyrenees responded to a significant global warming event that occurred 56 million years ago. We found that changes in rainfall and erosion significantly influenced how minerals break down, and that the weathering response evolved from the continental interior to the marine environment. These results highlight regional variations in Earth's surface response to climatic perturbations and the processes at play in response to global warming.
Sune G. Nielsen, Frieder Klein, Horst R. Marschall, Philip A. E. Pogge von Strandmann, and Maureen Auro
Solid Earth, 15, 1143–1154, https://doi.org/10.5194/se-15-1143-2024, https://doi.org/10.5194/se-15-1143-2024, 2024
Short summary
Short summary
Magnesium isotope ratios of arc lavas have been proposed as a proxy for serpentinite subduction, but uncertainties remain regarding their utility. Here we show that bulk serpentinite Mg isotope ratios are identical to the mantle, whereas the serpentinite mineral brucite is enriched in heavy Mg isotopes. Thus, Mg isotope ratios may only be used as serpentinite subduction proxies if brucite is preferentially mobilized from the slab at pressures and temperatures within the arc magma source region.
Madeleine L. Vickers, Morgan T. Jones, Jack Longman, David Evans, Clemens V. Ullmann, Ella Wulfsberg Stokke, Martin Vickers, Joost Frieling, Dustin T. Harper, Vincent J. Clementi, and IODP Expedition 396 Scientists
Clim. Past, 20, 1–23, https://doi.org/10.5194/cp-20-1-2024, https://doi.org/10.5194/cp-20-1-2024, 2024
Short summary
Short summary
The discovery of cold-water glendonite pseudomorphs in sediments deposited during the hottest part of the Cenozoic poses an apparent climate paradox. This study examines their occurrence, association with volcanic sediments, and speculates on the timing and extent of cooling, fitting this with current understanding of global climate during this period. We propose that volcanic activity was key to both physical and chemical conditions that enabled the formation of glendonites in these sediments.
Stephen P. Hesselbo, Aisha Al-Suwaidi, Sarah J. Baker, Giorgia Ballabio, Claire M. Belcher, Andrew Bond, Ian Boomer, Remco Bos, Christian J. Bjerrum, Kara Bogus, Richard Boyle, James V. Browning, Alan R. Butcher, Daniel J. Condon, Philip Copestake, Stuart Daines, Christopher Dalby, Magret Damaschke, Susana E. Damborenea, Jean-Francois Deconinck, Alexander J. Dickson, Isabel M. Fendley, Calum P. Fox, Angela Fraguas, Joost Frieling, Thomas A. Gibson, Tianchen He, Kat Hickey, Linda A. Hinnov, Teuntje P. Hollaar, Chunju Huang, Alexander J. L. Hudson, Hugh C. Jenkyns, Erdem Idiz, Mengjie Jiang, Wout Krijgsman, Christoph Korte, Melanie J. Leng, Timothy M. Lenton, Katharina Leu, Crispin T. S. Little, Conall MacNiocaill, Miguel O. Manceñido, Tamsin A. Mather, Emanuela Mattioli, Kenneth G. Miller, Robert J. Newton, Kevin N. Page, József Pálfy, Gregory Pieńkowski, Richard J. Porter, Simon W. Poulton, Alberto C. Riccardi, James B. Riding, Ailsa Roper, Micha Ruhl, Ricardo L. Silva, Marisa S. Storm, Guillaume Suan, Dominika Szűcs, Nicolas Thibault, Alfred Uchman, James N. Stanley, Clemens V. Ullmann, Bas van de Schootbrugge, Madeleine L. Vickers, Sonja Wadas, Jessica H. Whiteside, Paul B. Wignall, Thomas Wonik, Weimu Xu, Christian Zeeden, and Ke Zhao
Sci. Dril., 32, 1–25, https://doi.org/10.5194/sd-32-1-2023, https://doi.org/10.5194/sd-32-1-2023, 2023
Short summary
Short summary
We present initial results from a 650 m long core of Late Triasssic to Early Jurassic (190–202 Myr) sedimentary strata from the Cheshire Basin, UK, which is shown to be an exceptional record of Earth evolution for the time of break-up of the supercontinent Pangaea. Further work will determine periodic changes in depositional environments caused by solar system dynamics and used to reconstruct orbital history.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Teuntje P. Hollaar, Stephen P. Hesselbo, Jean-François Deconinck, Magret Damaschke, Clemens V. Ullmann, Mengjie Jiang, and Claire M. Belcher
Clim. Past, 19, 979–997, https://doi.org/10.5194/cp-19-979-2023, https://doi.org/10.5194/cp-19-979-2023, 2023
Short summary
Short summary
Palaeoclimatological reconstructions aid our understanding of current and future climate change. In the Pliensbachian (Early Jurassic) a climatic cooling event occurred globally. We show that this cooling event has a significant impact on the depositional environment of the Cardigan Bay basin but that the 405 kyr eccentricity cycle remained the dominant control on terrestrial and marine depositional processes.
Thomas Munier, Jean-François Deconinck, Pierre Pellenard, Stephen P. Hesselbo, James B. Riding, Clemens V. Ullmann, Cédric Bougeault, Mathilde Mercuzot, Anne-Lise Santoni, Émilia Huret, and Philippe Landrein
Clim. Past, 17, 1547–1566, https://doi.org/10.5194/cp-17-1547-2021, https://doi.org/10.5194/cp-17-1547-2021, 2021
Short summary
Short summary
Clay minerals are witnesses of alteration conditions in continental environments. Lacking high-resolution data on clay minerals, this work highlights wet and semi-arid cycles at mid-latitude in the upper Sinemurian. The higher proportion of kaolinite in the upper part of the obtusum zone and in the oxynotum zone indicates an increase in hydrolysis conditions in a warmer period confirmed by carbon isotopes.
Markus Adloff, Andy Ridgwell, Fanny M. Monteiro, Ian J. Parkinson, Alexander J. Dickson, Philip A. E. Pogge von Strandmann, Matthew S. Fantle, and Sarah E. Greene
Geosci. Model Dev., 14, 4187–4223, https://doi.org/10.5194/gmd-14-4187-2021, https://doi.org/10.5194/gmd-14-4187-2021, 2021
Short summary
Short summary
We present the first representation of the trace metals Sr, Os, Li and Ca in a 3D Earth system model (cGENIE). The simulation of marine metal sources (weathering, hydrothermal input) and sinks (deposition) reproduces the observed concentrations and isotopic homogeneity of these metals in the modern ocean. With these new tracers, cGENIE can be used to test hypotheses linking these metal cycles and the cycling of other elements like O and C and simulate their dynamic response to external forcing.
Cited articles
Bailey, T. R., Rosenthal, Y., McArthur, J. M., van de Schootbrugge, B., and Thirlwall, M. F.: Paleoceanographic changes of the Late Pliensbachian-Early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event, Earth Planet. Sc. Lett., 212, 307–320, https://doi.org/10.1016/S0012-821X(03)00278-4, 2003.
Blainville, M. H. D. de.: Mémoire sur les Bélemnites considerées zoologiquement et géologiquement, 136 pp., Paris, 1827.
Brand, U., Azmy, K., Bitner, M. A., Logan, A., Zuschin, M., Came, R., and Ruggiero, E.: Oxygen isotopes and MgCO3 in brachiopod calcite and a new paleotemperature equation, Chem. Geol., 359, 23–31, https://doi.org/10.1016/j.chemgeo.2013.09.014, 2013.
Butler, S., Bailey, T. R., Lear, C. H., Curry, G. B., Cherns, L., and McDonald, I.: The Mg ∕ Ca-temperature relationship in brachiopod shells: Calibrating a potential palaeoseasonality proxy, Chem. Geol., 397, 106–117, https://doi.org/10.1016/j.chemgeo.2015.01.009, 2015.
Chivas, A. R., De Dekker, P., and Shelley, J. M. G.: Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer, Palaeogeogr. Palaeocl., 54, 43–61, 1986.
Dauphin, Y., Williams, C. T., and Barskov, I. S.: Aragonitic rostra of the Turonian belemnitid Goniocamax: Arguments from diagenesis, Acta Palaeontol. Pol., 52, 85–97, 2007.
De Dekker, P., Chivas, A. R., and Shelley, J. M. G.: Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments, Palaeogeogr. Palaeocl., 148, 105–116, 1999.
de Nooijer, L. J., Hathorne, E. C., Reichart, G. J., Langer, G., and Bijma, J.: Variatbility in calcitic Mg ∕ Ca and Sr ∕ Ca ratios in clones of the benthic foraminifer Ammonia tepida, Mar. Micropaleontol., 107, 32–43, https://doi.org/10.1016/j.marmicro.2014.02.002, 2014.
DePaolo, D. J.: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Ac., 75, 1039–1056, https://doi.org/10.1016/j.gca.2010.11.020, 2011.
Dissard, D., Nehrke, G., Reichart, G. J., and Bijma, J.: Impact of seawater pCO2 on calcification and Mg ∕ Ca and Sr ∕ Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida, Biogeosciences, 7, 81–93, https://doi.org/10.5194/bg-7-81-2010, 2010.
Elderfield, H. and Ganssen, G.: Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg ∕ Ca ratios, Nature, 405, 442–445, https://doi.org/10.1038/35013033, 2000.
Freitas, P. S., Clarke, L. J., Kennedy, H., Richardson, C. A., and Abrantes, F.: Environmental and biological controls on elemental (Mg ∕ Ca, Sr ∕ Ca and Mn ∕ Ca) ratios in shells of the king scallop Pecten maximus, Geochim. Cosmochim. Ac., 70, 5119–5133, https://doi.org/10.1016/j.gca.2006.07.029, 2006.
Gabitov, R. I. and Watson, E. B.: Partitioning of strontium between calcite and fluid, Geochem. Geophy. Geosy., 7, Q11004, https://doi.org/10.1029/2005GC001216, 2006.
Gabitov, R. I., Sadekov, A., and Leinweber, A.: Crystal growth effect on Mg ∕ Ca and Sr ∕ Ca partitioning between calcite and fluid: An in situ approach, Chem. Geol., 367, 70–82, https://doi.org/10.1016/j.chemgeo.2013.12.019, 2014.
Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., André, L., Keppens, E., Baeyens, W., Dehairs, F.: Strong biological controls on Sr ∕ Ca ratios in aragonitic marine bivalve shells, Geochem. Geophy. Geosy., 6, Q05009, https://doi.org/10.1029/2004GC000874, 2005.
Hesselbo, S. P. and Jenkyns, H. C.: A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire, in: Field Geology of the British Jurassic, edited by: Taylor, P. D., Geological Society London, London, UK, 105–150, 1995.
Hoffmann, R., Richter, D. K., Neuser, R. D., Jöns, N., Linzmeier, B. J., Lemanis, R. E., Fusseis, F., Xiao, X., and Immenhauser, A.: Evidence for a composite organic-inorganic fabric of belemnite rostra: Implications for palaeoceanography and palaeoecology, Sediment. Geol., 341, 203–215, 2016.
Hönisch, B., Allen, K. A., Lea, D. W., Spero, H. J., Eggins, S. M., Arbuszewski, J., Demenocal, P., Rosenthal, Y., Russel, A. D., and Elderfield, H.: The influence of salinity on Mg ∕ Ca in planktic foraminifers – Evidence from cultures, core-top sediments and complementary δ18O, Geochim. Cosmochim. Ac., 121, 196–213, https://doi.org/10.1016/j.gca.2013.07.028, 2013.
Immenhauser, A., Schöne, B., Hoffmann, R., and Niedermayr, A.: Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment, Sedimentology, 63, 1–59, 2016.
Katz, A.: The interaction of magnesium with calcite during crystal growth at 25–90 °C and one atmosphere, Geochim. Cosmochim. Ac., 37, 1563–1586, 1973.
Kinsman, D. J. J. and Holland, H. D.: The co-precipitation of cations with CaCO3 – IV, The co-precipitation of Sr2+ with aragonite between 16 °C and 96 °C, Geochim. Cosmochim. Ac., 33, 1–17, 1969.
Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Bivalve skeletons record sea-surface temperature and δ18O via Mg ∕ Ca and 18O ∕ 16O ratios, Geology, 24, 415–418, 1996.
Korte, C. and Hesselbo, S. P.: Shallow marine carbon and oxygen isotope and elemental records indicate icehouse-greenhouse cycles during the Early Jurassic, Paleoceanography, 26, PA4219, https://doi.org/10.1029/2011PA002160, 2011.
Lea, D. W., Mashiotta, T. A., and Spero, H. J.: controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing, Geochim. Cosmochim. Ac., 63, 2369–2379, 1999.
Lear, C. H., Rosenthal, Y., and Slowey, N.: Benthic foraminiferal Mg ∕ Ca-paleothermometry: A revised core-top calibration, Geochim. Cosmochim. Ac., 66, 3375–3387, 2002.
Li, Q. McArthur, J. M., and Atkinson, T. C.: Lower Jurassic belemnites as indicators of palaeo-temperature, Palaeogeogr. Palaeocl., 315–316, 38–45, https://doi.org/10.1016/j.palaeo.2011.11.006, 2012.
Lowenstam, H. A.: Mineralogy, O18 ∕ O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans, J. Geol., 69, 241–260, 1961.
Lorens, R. B.: Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate, Geochim. Cosmochim. Ac., 45, 553–561, 1981.
Lorrain, A., Gillikin, D. P., Paulet, Y.-M., Le Mericer, A., Navez, J., and André, L.: Strong kinetic effects on Sr ∕ Ca ratios in the calcitic bivalve Pecten maximus, Geology, 33, 965–968, https://doi.org/10.1130/G22048.1, 2005.
McArthur, J. M., Donovan, D. T., Thirlwall, M. F., Fouke, B. W., and Mattey, D.: Strontium isotope profile of the early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures, Earth Planet. Sc. Lett., 179, 269–285, 2000.
McArthur, J. M., Doyle, P., Leng, M. J., Reeves, K., Williams, C. T., Garcia-Sanchez, R., and Howarth, R. J.: Testing palaeo-environmental proxies in Jurassic belemnites: Mg ∕ Ca, Sr ∕ Ca, Na ∕ Ca, δ18O and δ13C, Palaeogeogr. Palaeocl., 252, 464–480, https://doi.org/10.1016/j.palaeo.2007.05.006, 2007.
Mouchi, V., de Rafélis, M., Lartaud, F., Fialin, M., and Verrecchia, E.: Chemical labelling of oyster shells used for time-calibrated high-resolution Mg ∕ Ca ratios: A tool for estimation of past seasonal temperature variations, Palaeogeogr. Palaeocl., 373, 66–74, https://doi.org/10.1016/j.palaeo.2012.05.023, 2013.
Müller, M. N., Lebrato, M., Riebesell, U., Barcelos e Ramos, J., Schulz, K. G., Blanco-Ameijeiras, S., Sett, S., Eisenhauer, A., and Stoll, H. M.: Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite, Biogeosciences, 11, 1065–1075, https://doi.org/10.5194/bg-11-1065-2014, 2014.
Nedoncelle, K., Lartaud, F., de Rafelis, M., Boulila, S., and Le Bris, N.: A new method for high-resolution bivalve growth rates studies in hydrothermal environments, Mar. Biol., 160, 1427–1439, https://doi.org/10.1007/s00227-013-2195-7, 2013.
Nürnberg, D., Bijma, J., and Hemleben, C.: Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures, Geochim. Cosmochim. Ac., 60, 803–814, https://doi.org/10.1016/0016-7037(95)00446-7, 1996.
Odum, H. T.: The Stability of the World Strontium Cycle, Science, 114, 407–411, https://doi.org/10.1126/science.114.2964.407, 1951.
Oomori, T., Kaneshima, H., and Maezato, Y.: Distribution coefficient of Mg2+ ions between calcite and solution at 10–50 °C, Mar. Chem., 20, 327–336, 1987.
Pérez-Huerta, A., Aldridge, A. E., Endo, K., and Jeffries, T. E.: Brachiopod shell spiral deviations (SSD): Implications for trace element proxies, Chem. Geol., 374–375, 13–24, https://doi.org/10.1016/j.chemgeo.2014.03.002, 2014.
Pilkey, O. H. and Hower, J.: The effect of Environment on the concentration of skeletal magnesium and strontium in dendraster, J. Geol., 68, 203–214, 1960.
Podlaha, O. G., Mutterlose, J., and Veizer, J.: Preservation of δ18O and δ13C in belemnite rostra from the Jurassic/Early Cretaceous successions, Am. J. Sci., 298, 324–347, 1998.
Rimstidt, J. D., Balog, A., and Webb, J.: Distribution of trace elements between carbonate minerals and aqueous solutions, Geochim. Cosmochim. Ac., 62, 1851–1863, 1998.
Rosales, I., Robles, S., and Quesada, S.: Elemental and oxygen isotope composition of Early Jurassic belemnites: Salinity vs. temperature signals, J. Sediment. Res., 74, 342–354, 2004.
Sælen, G.: Diagenesis and construction of the belemnite rostrum, Palaeontology, 32, 765–798, 1989.
Sørensen, A. M., Ullmann, C. V., Thibault, N., and Korte, C.: Geochemical signatures of the early Campanian belemnite Belemnellocamax mammillatus from the Kristianstad Basin in Scania, Sweden, Palaeogeogr. Palaeocl., 433, 191–200, https://doi.org/10.1016/j.palaeo.2015.05.025 2015.
Stoll, H. M., Encinar, J. R., Garcia Alonso, J. I., Rosenthal, Y., Probert, I., and Klaas, C.: A first look at paleotemperature prospects from Mg in coccolith carbonate: Cleaning techniques and culture measurements, Geochem. Geophy. Geosy., 2, 1047, https://doi.org/10.1029/2000GC000144 2001.
Stoll, H. M., Klaas, C. M., Probert, I., Encinar, J. R., and Garcia Alonso, J. I.: Calcification rate and temperature effects on Sr partitioning in coccoliths of multiple species of coccolithophorids in culture, Global Planet. Change, 34, 153–171, 2002.
Tang, J., Köhler, S. J., and Dietzel, M.: Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation, Geochim. Cosmochim. Ac., 72, 3718–3732, https://doi.org/10.1016/j.gca.2008.05.031, 2008.
Tesoriero, A. J. and Pankow, J. F.: Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite, Geochim. Cosmochim. Ac., 60, 1053–1063, 1996.
Turekian, K.: Paleoecological significance of the strontium-calcium ratio in fossils and sediments, Bull. Geol. Soc. Am., 66, 155–158, https://doi.org/10.1130/0016-7606(1955)66[155:PSOTSR]2.0.CO;2, 1955.
Tynan, S., Opdyke, B. N., Walczak, M., Eggins, S., and Dutton, A.: Assessment of Mg ∕ Ca in Saccostrea glomerata (the Sydney rock oyster) shell as a potential temperature record, Palaeogeogr. Palaeocl., https://doi.org/10.1016/j.palaeo.2016.08.009, in press, 2017.
Ullmann, C. V. and Korte, C.: Diagenetic alteration in low-Mg calcite from macrofossils: a review, Geol. Q., 59, 3–20, https://doi.org/10.7306/gq.1217 2015.
Ullmann, C. V., Böhm, F., Rickaby, R. E. M., Wiechert, U., and Korte, C.: The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg ∕ Ca, Sr ∕ Ca, Mn ∕ Ca) proxies, Geochem. Geophy. Geosy., 14, 4109–4120, https://doi.org/10.1002/ggge.20257, 2013a.
Ullmann, C. V., Hesselbo, S. P., and Korte, C.: Tectonic forcing of Early to Middle Jurassic seawater Sr ∕ Ca, Geology, 41, 1211–1214, https://doi.org/10.1130/G34817.1, 2013b.
Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P., and Korte, C.: Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution, P. Natl. Acad. Sci. USA, 111, 10073–10076, https://doi.org/10.1073/pnas.1320156111, 2014.
Ullmann, C. V., Frei, R., Korte, C., and Hesselbo, S. P.: Chemical and isotopic architecture of the belemnite rostrum, Geochim. Cosmochim. Ac. 159, 231–243, https://doi.org/10.1016/j.gca.2015.03.034, 2015.
Wanamaker, A. D., Kreutz, K. J., Wilson, T., Borns Jr., H. W., Introne, D. S., and Feindel, S.: Experimentally determined Mg ∕ Ca and Sr ∕ Ca ratios in juvenile bivalve calcite for Mytilus edulis: implications for paleotemperature reconstructions, Geo-Mar. Lett., 28, 359–368, https://doi.org/10.1007/s00367-008-0112-8 2008.
Watson, E. B. and Liang, Y.: A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks, Am. Mineral., 80, 1179–1187, 1995.
Short summary
This study documents how much control growth rate has on the chemical composition of fossil shell material. Using a series of chemical analyses of the fossil hard part of a belemnite, an extinct marine predator, a clear connection between the rate of calcite formation and its magnesium and strontium contents was found. These findings provide further insight into biomineralization processes and help better understand chemical signatures of fossils as proxies for palaeoenvironmental conditions.
This study documents how much control growth rate has on the chemical composition of fossil...
Altmetrics
Final-revised paper
Preprint