Articles | Volume 15, issue 16
https://doi.org/10.5194/bg-15-4849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-15-4849-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep-sea benthic communities and oxygen fluxes in the Arctic Fram Strait controlled by sea-ice cover and water depth
Alfred Wegener Institute, Helmholtz Centre for Polar- and Marine
Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Ulrike Braeckman
Ghent University, Marine Biology Research Group, Krijgslaan 281 S8,
9000 Gent, Belgium
Max Planck Institute for Marine Microbiology, Celsiusstraße 1,
28359 Bremen, Germany
Christiane Hasemann
Alfred Wegener Institute, Helmholtz Centre for Polar- and Marine
Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Frank Wenzhöfer
Alfred Wegener Institute, Helmholtz Centre for Polar- and Marine
Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
Max Planck Institute for Marine Microbiology, Celsiusstraße 1,
28359 Bremen, Germany
Related authors
No articles found.
Xuefeng Peng, David J. Yousavich, Annie Bourbonnais, Frank Wenzhöfer, Felix Janssen, Tina Treude, and David L. Valentine
Biogeosciences, 21, 3041–3052, https://doi.org/10.5194/bg-21-3041-2024, https://doi.org/10.5194/bg-21-3041-2024, 2024
Short summary
Short summary
Biologically available (fixed) nitrogen (N) is a limiting nutrient for life in the ocean. Under low-oxygen conditions, fixed N is either removed via denitrification or retained via dissimilatory nitrate reduction to ammonia (DNRA). Using in situ incubations in the Santa Barbara Basin, which undergoes seasonal anoxia, we found that benthic denitrification was the dominant nitrate reduction process, while nitrate availability and organic carbon content control the relative importance of DNRA.
De'Marcus Robinson, Anh L. D. Pham, David J. Yousavich, Felix Janssen, Frank Wenzhöfer, Eleanor C. Arrington, Kelsey M. Gosselin, Marco Sandoval-Belmar, Matthew Mar, David L. Valentine, Daniele Bianchi, and Tina Treude
Biogeosciences, 21, 773–788, https://doi.org/10.5194/bg-21-773-2024, https://doi.org/10.5194/bg-21-773-2024, 2024
Short summary
Short summary
The present study suggests that high release of ferrous iron from the seafloor of the oxygen-deficient Santa Barabara Basin (California) supports surface primary productivity, creating positive feedback on seafloor iron release by enhancing low-oxygen conditions in the basin.
David J. Yousavich, De'Marcus Robinson, Xuefeng Peng, Sebastian J. E. Krause, Frank Wenzhöfer, Felix Janssen, Na Liu, Jonathan Tarn, Franklin Kinnaman, David L. Valentine, and Tina Treude
Biogeosciences, 21, 789–809, https://doi.org/10.5194/bg-21-789-2024, https://doi.org/10.5194/bg-21-789-2024, 2024
Short summary
Short summary
Declining oxygen (O2) concentrations in coastal oceans can threaten people’s ways of life and food supplies. Here, we investigate how mats of bacteria that proliferate on the seafloor of the Santa Barbara Basin sustain and potentially worsen these O2 depletion events through their unique chemoautotrophic metabolism. Our study shows how changes in seafloor microbiology and geochemistry brought on by declining O2 concentrations can help these mats grow as well as how that growth affects the basin.
Sebastian J. E. Krause, Jiarui Liu, David J. Yousavich, DeMarcus Robinson, David W. Hoyt, Qianhui Qin, Frank Wenzhöfer, Felix Janssen, David L. Valentine, and Tina Treude
Biogeosciences, 20, 4377–4390, https://doi.org/10.5194/bg-20-4377-2023, https://doi.org/10.5194/bg-20-4377-2023, 2023
Short summary
Short summary
Methane is a potent greenhouse gas, and hence it is important to understand its sources and sinks in the environment. Here we present new data from organic-rich surface sediments below an oxygen minimum zone off the coast of California (Santa Barbara Basin) demonstrating the simultaneous microbial production and consumption of methane, which appears to be an important process preventing the build-up of methane in these sediments and the emission into the water column and atmosphere.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data, 14, 3635–3648, https://doi.org/10.5194/essd-14-3635-2022, https://doi.org/10.5194/essd-14-3635-2022, 2022
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica, during the PS124 COSMUS expedition with the research icebreaker RV Polarstern in 2021. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Massimiliano Molari, Felix Janssen, Tobias R. Vonnahme, Frank Wenzhöfer, and Antje Boetius
Biogeosciences, 17, 3203–3222, https://doi.org/10.5194/bg-17-3203-2020, https://doi.org/10.5194/bg-17-3203-2020, 2020
Short summary
Short summary
Industrial-scale mining of deep-sea polymetallic nodules will remove nodules in large areas of the sea floor. We describe community composition of microbes associated with nodules of the Peru Basin. Our results show that nodules provide a unique ecological niche, playing an important role in shaping the diversity of the benthic deep-sea microbiome and potentially in element fluxes. We believe that our findings are highly relevant to expanding our knowledge of the impact associated with mining.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Ulrike Braeckman, Felix Janssen, Gaute Lavik, Marcus Elvert, Hannah Marchant, Caroline Buckner, Christina Bienhold, and Frank Wenzhöfer
Biogeosciences, 15, 6537–6557, https://doi.org/10.5194/bg-15-6537-2018, https://doi.org/10.5194/bg-15-6537-2018, 2018
Short summary
Short summary
Global warming has altered Arctic phytoplankton communities, with unknown effects on deep-sea communities that depend strongly on food produced at the surface. We compared the responses of Arctic deep-sea benthos to input of phytodetritus from diatoms and coccolithophorids. Coccolithophorid carbon was 5× less recycled than diatom carbon. The utilization of the coccolithophorid carbon may be less efficient, so a shift from diatom to coccolithophorid blooms could entail a delay in carbon cycling.
Sebastiaan Mestdagh, Leila Bagaço, Ulrike Braeckman, Tom Ysebaert, Bart De Smet, Tom Moens, and Carl Van Colen
Biogeosciences, 15, 2587–2599, https://doi.org/10.5194/bg-15-2587-2018, https://doi.org/10.5194/bg-15-2587-2018, 2018
Short summary
Short summary
We studied how invertebrate communities of mudflats are affected by sudden deposition of sediment. We applied sediment layers of different thickness to mudflat communities and studied how their densities, diversity, and behaviour and the exchange of oxygen between the bottom and the water column changed. We found that some species easily diminish in numbers, while others become more active after deposition. The interaction of all species effects influences the environment, i.e. oxygen exchange.
H. Brenner, U. Braeckman, M. Le Guitton, and F. J. R. Meysman
Biogeosciences, 13, 841–863, https://doi.org/10.5194/bg-13-841-2016, https://doi.org/10.5194/bg-13-841-2016, 2016
Short summary
Short summary
Alkalinity released from sediments of the southern North Sea can play an important role in the carbon cycle of the North Sea by lowering the pCO2 of the seawater and thus increasing the CO2 flux between the atmosphere and the water. However, not every single mole alkalinity generated in sediments leads to an additional CO2 uptake, as certain reactions in the water column can negate the respective alkalinity release.
J. Felden, A. Lichtschlag, F. Wenzhöfer, D. de Beer, T. Feseker, P. Pop Ristova, G. de Lange, and A. Boetius
Biogeosciences, 10, 3269–3283, https://doi.org/10.5194/bg-10-3269-2013, https://doi.org/10.5194/bg-10-3269-2013, 2013
Related subject area
Biogeochemistry: Open Ocean
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Hydrological cycle amplification imposes spatial pattern on climate change response of ocean pH and carbonate chemistry
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Sedimentary organic matter signature hints at the phytoplankton-driven Biological Carbon Pump in the Central Arabian Sea
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Hotspots and drivers of compound marine heatwaves and low net primary production extremes
Ecosystem impacts of marine heat waves in the northeast Pacific
Tracing the role of Arctic shelf processes in Si and N cycling and export through the Fram Strait: insights from combined silicon and nitrate isotopes
Controls on the relative abundances and rates of nitrifying microorganisms in the ocean
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Influence of GEOTRACES data distribution and misfit function choice on objective parameter retrieval in a marine zinc cycle model
Physiological flexibility of phytoplankton impacts modelled chlorophyll and primary production across the North Pacific Ocean
Observation-constrained estimates of the global ocean carbon sink from Earth system models
Early winter barium excess in the southern Indian Ocean as an annual remineralisation proxy (GEOTRACES GIPr07 cruise)
Controlling factors on the global distribution of a representative marine non-cyanobacterial diazotroph phylotype (Gamma A)
Summer trends and drivers of sea surface fCO2 and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019)
Global nutrient cycling by commercially targeted marine fish
Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Allison Hogikyan and Laure Resplandy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1189, https://doi.org/10.5194/egusphere-2024-1189, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, and not by the direct effect of warming on carbon chemistry and pH. This rainfall/evaporation effect opposes acidification in saltier parts of the ocean and enhances acidification in fresher regions.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
EGUsphere, https://doi.org/10.5194/egusphere-2024-845, https://doi.org/10.5194/egusphere-2024-845, 2024
Short summary
Short summary
We analyzed the sea surface temperature (SST) proxy and plankton biomarkers in sediments, that accumulate sinking materials signatures from surface waters in the Central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoon. We noticed a north-south SST gradient and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were high in the south. These trends were related to ocean-atmospheric processes and oxygen availability.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
EGUsphere, https://doi.org/10.5194/egusphere-2023-2947, https://doi.org/10.5194/egusphere-2023-2947, 2023
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to represent the primary production and sea-air CO2 flux in terms of climatology, seasonal cycle, and responses to climate variability.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Natacha Le Grix, Jakob Zscheischler, Keith B. Rodgers, Ryohei Yamaguchi, and Thomas L. Frölicher
Biogeosciences, 19, 5807–5835, https://doi.org/10.5194/bg-19-5807-2022, https://doi.org/10.5194/bg-19-5807-2022, 2022
Short summary
Short summary
Compound events threaten marine ecosystems. Here, we investigate the potentially harmful combination of marine heatwaves with low phytoplankton productivity. Using satellite-based observations, we show that these compound events are frequent in the low latitudes. We then investigate the drivers of these compound events using Earth system models. The models share similar drivers in the low latitudes but disagree in the high latitudes due to divergent factors limiting phytoplankton production.
Abigale M. Wyatt, Laure Resplandy, and Adrian Marchetti
Biogeosciences, 19, 5689–5705, https://doi.org/10.5194/bg-19-5689-2022, https://doi.org/10.5194/bg-19-5689-2022, 2022
Short summary
Short summary
Marine heat waves (MHWs) are a frequent event in the northeast Pacific, with a large impact on the region's ecosystems. Large phytoplankton in the North Pacific Transition Zone are greatly affected by decreased nutrients, with less of an impact in the Alaskan Gyre. For small phytoplankton, MHWs increase the spring small phytoplankton population in both regions thanks to reduced light limitation. In both zones, this results in a significant decrease in the ratio of large to small phytoplankton.
Margot C. F. Debyser, Laetitia Pichevin, Robyn E. Tuerena, Paul A. Dodd, Antonia Doncila, and Raja S. Ganeshram
Biogeosciences, 19, 5499–5520, https://doi.org/10.5194/bg-19-5499-2022, https://doi.org/10.5194/bg-19-5499-2022, 2022
Short summary
Short summary
We focus on the exchange of key nutrients for algae production between the Arctic and Atlantic oceans through the Fram Strait. We show that the export of dissolved silicon here is controlled by the availability of nitrate which is influenced by denitrification on Arctic shelves. We suggest that any future changes in the river inputs of silica and changes in denitrification due to climate change will impact the amount of silicon exported, with impacts on Atlantic algal productivity and ecology.
Emily J. Zakem, Barbara Bayer, Wei Qin, Alyson E. Santoro, Yao Zhang, and Naomi M. Levine
Biogeosciences, 19, 5401–5418, https://doi.org/10.5194/bg-19-5401-2022, https://doi.org/10.5194/bg-19-5401-2022, 2022
Short summary
Short summary
We use a microbial ecosystem model to quantitatively explain the mechanisms controlling observed relative abundances and nitrification rates of ammonia- and nitrite-oxidizing microorganisms in the ocean. We also estimate how much global carbon fixation can be associated with chemoautotrophic nitrification. Our results improve our understanding of the controls on nitrification, laying the groundwork for more accurate predictions in global climate models.
Zuozhu Wen, Thomas J. Browning, Rongbo Dai, Wenwei Wu, Weiying Li, Xiaohua Hu, Wenfang Lin, Lifang Wang, Xin Liu, Zhimian Cao, Haizheng Hong, and Dalin Shi
Biogeosciences, 19, 5237–5250, https://doi.org/10.5194/bg-19-5237-2022, https://doi.org/10.5194/bg-19-5237-2022, 2022
Short summary
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Claudia Eisenring, Sophy E. Oliver, Samar Khatiwala, and Gregory F. de Souza
Biogeosciences, 19, 5079–5106, https://doi.org/10.5194/bg-19-5079-2022, https://doi.org/10.5194/bg-19-5079-2022, 2022
Short summary
Short summary
Given the sparsity of observational constraints on micronutrients such as zinc (Zn), we assess the sensitivities of a framework for objective parameter optimisation in an oceanic Zn cycling model. Our ensemble of optimisations towards synthetic data with varying kinds of uncertainty shows that deficiencies related to model complexity and the choice of the misfit function generally have a greater impact on the retrieval of model Zn uptake behaviour than does the limitation of data coverage.
Yoshikazu Sasai, Sherwood Lan Smith, Eko Siswanto, Hideharu Sasaki, and Masami Nonaka
Biogeosciences, 19, 4865–4882, https://doi.org/10.5194/bg-19-4865-2022, https://doi.org/10.5194/bg-19-4865-2022, 2022
Short summary
Short summary
We have investigated the adaptive response of phytoplankton growth to changing light, nutrients, and temperature over the North Pacific using two physical-biological models. We compare modeled chlorophyll and primary production from an inflexible control model (InFlexPFT), which assumes fixed carbon (C):nitrogen (N):chlorophyll (Chl) ratios, to a recently developed flexible phytoplankton functional type model (FlexPFT), which incorporates photoacclimation and variable C:N:Chl ratios.
Jens Terhaar, Thomas L. Frölicher, and Fortunat Joos
Biogeosciences, 19, 4431–4457, https://doi.org/10.5194/bg-19-4431-2022, https://doi.org/10.5194/bg-19-4431-2022, 2022
Short summary
Short summary
Estimates of the ocean sink of anthropogenic carbon vary across various approaches. We show that the global ocean carbon sink can be estimated by three parameters, two of which approximate the ocean ventilation in the Southern Ocean and the North Atlantic, and one of which approximates the chemical capacity of the ocean to take up carbon. With observations of these parameters, we estimate that the global ocean carbon sink is 10 % larger than previously assumed, and we cut uncertainties in half.
Natasha René van Horsten, Hélène Planquette, Géraldine Sarthou, Thomas James Ryan-Keogh, Nolwenn Lemaitre, Thato Nicholas Mtshali, Alakendra Roychoudhury, and Eva Bucciarelli
Biogeosciences, 19, 3209–3224, https://doi.org/10.5194/bg-19-3209-2022, https://doi.org/10.5194/bg-19-3209-2022, 2022
Short summary
Short summary
The remineralisation proxy, barite, was measured along 30°E in the southern Indian Ocean during early austral winter. To our knowledge this is the first reported Southern Ocean winter study. Concentrations throughout the water column were comparable to observations during spring to autumn. By linking satellite primary production to this proxy a possible annual timescale is proposed. These findings also suggest possible carbon remineralisation from satellite data on a basin scale.
Zhibo Shao and Ya-Wei Luo
Biogeosciences, 19, 2939–2952, https://doi.org/10.5194/bg-19-2939-2022, https://doi.org/10.5194/bg-19-2939-2022, 2022
Short summary
Short summary
Non-cyanobacterial diazotrophs (NCDs) may be an important player in fixing N2 in the ocean. By conducting meta-analyses, we found that a representative marine NCD phylotype, Gamma A, tends to inhabit ocean environments with high productivity, low iron concentration and high light intensity. It also appears to be more abundant inside cyclonic eddies. Our study suggests a niche differentiation of NCDs from cyanobacterial diazotrophs as the latter prefers low-productivity and high-iron oceans.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Claude Mignon, and Léa Benito
Biogeosciences, 19, 2599–2625, https://doi.org/10.5194/bg-19-2599-2022, https://doi.org/10.5194/bg-19-2599-2022, 2022
Short summary
Short summary
Decadal trends of fugacity of CO2 (fCO2), total alkalinity (AT), total carbon (CT) and pH in surface waters are investigated in different domains of the southern Indian Ocean (45°S–57°S) from ongoing and station observations regularly conducted in summer over the period 1998–2019. The fCO2 increase and pH decrease are mainly driven by anthropogenic CO2 estimated just below the summer mixed layer, as well as by a warming south of the polar front or in the fertilized waters near Kerguelen Island.
Priscilla Le Mézo, Jérôme Guiet, Kim Scherrer, Daniele Bianchi, and Eric Galbraith
Biogeosciences, 19, 2537–2555, https://doi.org/10.5194/bg-19-2537-2022, https://doi.org/10.5194/bg-19-2537-2022, 2022
Short summary
Short summary
This study quantifies the role of commercially targeted fish biomass in the cycling of three important nutrients (N, P, and Fe), relative to nutrients otherwise available in water and to nutrients required by primary producers, and the impact of fishing. We use a model of commercially targeted fish biomass constrained by fish catch and stock assessment data to assess the contributions of fish at the global scale, at the time of the global peak catch and prior to industrial fishing.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Cited articles
Ambrose, W. G. and Renaud, P. E.: Benthic response to water column productivity patterns: Evidence for benthic-pelagic coupling in the Northeast Water Polynya, J. Geophys. Res., 100, 4411, https://doi.org/10.1029/94JC01982, 1995.
Anderson, M. J.: PERMANOVA: Permutational multivariate analysis of variance, Auckland, Department of Statistics, 2005.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, https://doi.org/10.1029/93GB03318, 1994.
Anderson, M. J., Gorley, R. N., and Clarke, K. R.: PERMANOVA+ for PRIMER: guide to software and statistical methods, PRIMER-E, Plymouth, 2007.
Arrigo, K. R., van Dijken, G., and Pabi, S.: Impact of a shrinking Arctic ice cover on marine primary production, Geophys. Res. Lett., 35, L19603, https://doi.org/10.1029/2008GL035028, 2008.
Arrigo, K. R., Perovich, D. K., Pickart, R. S., Brown, Z. W., van Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bahr, F., Bates, N. R., Benitez-Nelson, C., Bowler, B., Brownlee, E., Ehn, J. K., Frey, K. E., Garley, R., Laney, S. R., Lubelczyk, L., Mathis, J., Matsuoka, A., Mitchell, B. G., Moore, G. W. K., Ortega-Retuerta, E., Pal, S., Polashenski, C. M., Reynolds, R. A., Schieber, B., Sosik, H. M., Stephens, M., and Swift, J. H.: Massive Phytoplankton Blooms Under Arctic Sea Ice, Science, 336, 1408, https://doi.org/10.1126/science.1215065, 2012.
Bauerfeind, E., Garrity, C., Krumbholz, M., Ramseier, R. O., and Voß, M.: Seasonal variability of sediment trap collections in the Northeast Water Polynya. Part 2. Biochemical and microscopic composition of sedimenting matter, J. Mar. Syst., 10, 371–389, https://doi.org/10.1016/S0924-7963(96)00069-3, 1997.
Bauerfeind, E., Leipe, T., and Ramseier, R. O.: Sedimentation at the permanently ice-covered Greenland continental shelf (74°57.7′ N/12°58.7′ W): significance of biogenic and lithogenic particles in particulate matter flux, J. Mar. Syst., 56, 151–166, https://doi.org/10.1016/j.jmarsys.2004.09.007, 2005.
Bauerfeind, E., Nöthig, E.-M., Beszczynska, A., Fahl, K., Kaleschke, L., Kreker, K., Klages, M., Soltwedel, T., Lorenzen, C., and Wegner, J.: Particle sedimentation patterns in the eastern Fram Strait during 2000–2005: Results from the Arctic long-term observatory HAUSGARTEN, Deep-Sea Res. Pt. I, 56, 1471–1487, https://doi.org/10.1016/j.dsr.2009.04.011, 2009.
Belcher, A., Iversen, M., Manno, C., Henson, S. A., Tarling, G. A., and Sanders, R.: The role of particle associated microbes in remineralization of fecal pellets in the upper mesopelagic of the Scotia Sea, Antarctica, Limnol. Oceanogr., 61, 1049–1064, https://doi.org/10.1002/lno.10269, 2016.
Boetius, A. and Damm, E.: Benthic oxygen uptake, hydrolytic potentials and microbial biomass at the Arctic continental slope, Deep-Sea Res. Pt. I, 45, 239–275, https://doi.org/10.1016/S0967-0637(97)00052-6, 1998.
Boetius, A. and Lochte, K.: Regulation of microbial enzymatic degradation of organic matter in deep-sea sediments, Mar. Ecol. Prog. Ser., 104, 299–307, 1994.
Boudreau, B. P.: Diagenetic models and their implementations: Modelling transport and reactions in aquatic sediments with 75 Figs. and 19 Tables, Springer, Berlin, XVI, 414 str., 1997.
Bourgeois, S., Archambault, P., and Witte, U.: Organic matter remineralization in marine sediments: A Pan-Arctic synthesis, Global Biogeochem. Cy., 31, 190–213, https://doi.org/10.1002/2016GB005378, 2017.
Burdige, D. J.: Geochemistry of Marine Sediments, Princeton University Press, Princeton, NJ, xviii, 609, 2006.
Buttigieg, P. L. and Ramette, A.: A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses, FEMS Microbiol. Ecol., 90, 543–550, https://doi.org/10.1111/1574-6941.12437, 2014.
Cathalot, C., Rabouille, C., Sauter, E., Schewe, I., Soltwedel, T., and Vopel, K. C.: Benthic Oxygen Uptake in the Arctic Ocean Margins – A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait), PLoS ONE, 10, e0138339, https://doi.org/10.1371/journal.pone.0138339, 2015.
Cherkasheva, A., Bracher, A., Melsheimer, C., Köberle, C., Gerdes, R., Nöthig, E.-M., Bauerfeind, E., and Boetius, A.: Influence of the physical environment on polar phytoplankton blooms: A case study in the Fram Strait, J. Mar. Syst., 132, 196–207, https://doi.org/10.1016/j.jmarsys.2013.11.008, 2014.
Clarke, K. R. and Gorley, R. N.: Primer v6: User Manual/Tutorial, PRIMER-E, Plymouth, 2006.
Clarke, K. R. and Warwick, R. M.: Similarity-based testing for community pattern: the two-way layout with no replication, Mar. Biol., 118, 167–176, https://doi.org/10.1007/BF00699231, 1994.
Codispoti, L. A., Kelly, V., Thessen, A., Matrai, P., Suttles, S., Hill, V., Steele, M., and Light, B.: Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production, Prog. Oceanogr., 110, 126–150, https://doi.org/10.1016/j.pocean.2012.11.006, 2013.
Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972, 2008.
Donis, D., McGinnis, D. F., Holtappels, M., Felden, J., and Wenzhoefer, F.: Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory), Deep-Sea Res. Pt. I, 111, 1–10, https://doi.org/10.1016/j.dsr.2015.11.007, 2016.
Ezraty, R., Girard-Ardhuin, F., Piollé, J.-F., Kaleschke, L., and Heygster, G.: Arctic and Antarctic Sea Ice concentration and Arctic Sea Ice drift estimated from Special Sensor Microwave Data: User's Manual, Version 2.1, Département d'Océanographie Physique et Spatiale, IFREMER (Brest, France) and Institute of Environmental Physics, University of Bremen, 2007.
Fernández-Méndez, M., Katlein, C., Rabe, B., Nicolaus, M., Peeken, I., Bakker, K., Flores, H., and Boetius, A.: Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012, Biogeosciences, 12, 3525–3549, https://doi.org/10.5194/bg-12-3525-2015, 2015.
Findlay, R. H., King, G. M., and Watling, L.: Efficacy of Phospholipid Analysis in Determining Microbial Biomass in Sediments, Appl. Environ. Microbiol., 55, 2888–2893, 1989.
Flach, E., Muthumbi, A., and Heip, C.: Meiofauna and macrofauna community structure in relation to sediment composition at the Iberian margin compared to the Goban Spur (NE Atlantic), Prog. Oceanogr., 52, 433–457, https://doi.org/10.1016/S0079-6611(02)00018-6, 2002.
Forest, A., Wassmann, P., Slagstad, D., Bauerfeind, E., Nöthig, E.-M., and Klages, M.: Relationships between primary production and vertical particle export at the Atlantic-Arctic boundary (Fram Strait, HAUSGARTEN), Polar Biol., 33, 1733–1746, https://doi.org/10.1007/s00300-010-0855-3, 2010.
Glud, R. N.: Oxygen dynamics of marine sediments, Mar. Biol. Res., 4, 243–289, https://doi.org/10.1080/17451000801888726, 2008.
Glud, R. N., Gundersen, J. K., Jørgensen, B. B., Revsbech, N. P., and Schulz, H. D.: Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean:in situ and laboratory measurements, Deep-Sea Res. Pt. I, 41, 1767–1788, https://doi.org/10.1016/0967-0637(94)90072-8, 1994.
Górska, B., Grzelak, K., Kotwicki, L., Hasemann, C., Schewe, I., Soltwedel, T., and Włodarska-Kowalczuk, M.: Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic ocean (HAUSGARTEN, Fram strait), Deep-Sea Res. Pt. I, 91, 36–49, https://doi.org/10.1016/j.dsr.2014.05.010, 2014.
Gradinger, R.: Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002, Deep-Sea Res. Pt. II, 56, 1201–1212, https://doi.org/10.1016/j.dsr2.2008.10.016, 2009.
Graeve, M. and Ludwichowski, K.-U.: Inorganic nutrients measured on water bottle samples during POLARSTERN cruise PS85 (ARK-XXVIII/2), PANGAEA, doi.org/10.1594/PANGAEA.882217, 2017a.
Graeve, M. and Ludwichowski, K.-U.: Inorganic nutrients measured on water bottle samples during POLARSTERN cruise PS93.2 (ARK-XXIX/2.2), PANGAEA, doi.org/ 10.1594/PANGAEA.884130, 2017b.
Graf, G.: Benthic-pelagic coupling in a deep-sea benthic community, Nature, 341, 437–439, https://doi.org/10.1038/341437a0, 1989.
Graf, G., Gerlach, S., Linke, P., Queisser, W., Ritzrau, W., Scheltz, A., Thomsen, L., and Witte, U.: Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record, Geol. Rundsch., 84, 49–58, https://doi.org/10.1007/BF00192241, 1995.
Grebmeier, J. M. and Barry, J. P.: Chapter 11 Benthic Processes in Polynyas, in: Polynyas: Windows to the World, Elsevier Oceanography Series, Elsevier, 363–390, 2007.
Grebmeier, J. M., McRoy, P. C., and Feder, H. M.: Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. I. Food supply source and benthic biomass, Mar. Ecol. Prog. Ser., 48, 57–67, 1988.
Greiser, N. and Faubel, A.: Biotic factors, in: Introduction to the study of meiofauna, edited by: Higgins, R. P. and Thiel, H., Smithsonian Institution Press, Washington, DC, 79–114, 1988.
Harada, N.: Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems, Glob. Planet. Change, 136, 1–17, https://doi.org/10.1016/j.gloplacha.2015.11.005, 2015.
Heip, C., Vincx, M., and Vranken, G.: The Ecology of marine nematodes, in: Oceanography and Marine Biology: An Annual Review, edited by: Barnes, M., Oceanography and Marine Biology – An Annual Review, 23, 399–489, 1985.
Henson, S. A., Beaulieu, C., and Lampitt, R.: Observing climate change trends in ocean biogeochemistry: when and where, Glob. Change Biol., 22, 1561–1571, https://doi.org/10.1111/gcb.13152, 2016.
Hobbie, J. E., Daley, R. J., and Jasper, S.: Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, 1225–1228, 1977.
Hoffmann, R., Braeckman, U., and Wenzhöfer, F.: In situ and ex situ oxygen profiles and resulting diffusive oxygen uptake; in situ and ex situ total oxygen flux; benthic community density and biomass, bioturbation potential and solute exchange in the Hausgarten area, Arctic Fram Strait (2014/2015), PANGAEA, https://doi.org/10.1594/PANGAEA.883410, 2017.
Hop, H., Falk-Petersen, S., Svendsen, H., Kwasniewski, S., Pavlov, V., Pavlova, O., and Søreide, J. E.: Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden, Prog. Oceanogr., 71, 182–231, https://doi.org/10.1016/j.pocean.2006.09.007, 2006.
Jacob, M., Soltwedel, T., Boetius, A., Ramette, A., and Gilbert, J. A.: Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic), PLoS ONE, 8, e72779, https://doi.org/10.1371/journal.pone.0072779, 2013.
Jahnke, R. A.: The global ocean flux of particulate organic carbon: areal distribution and magnitude, Glob Biogeochem. Cy., 10, 71–88, https://doi.org/10.1029/95GB03525, 1996.
Jahnke, R. A., Reimers, C. E., Craven, D. B.: Intensification of recycling of organic matter at the sea floor near ocean margins, Nature, 348, 50–54, https://doi.org/10.1038/348050a0, 1990.
Jones, D. O., Yool, A., Wei, C.-L., Henson, S. A., Ruhl, H. A., Watson, R. A., and Gehlen, M.: Global reductions in seafloor biomass in response to climate change, Glob. Change Biol., 20, 1861–1872, https://doi.org/10.1111/gcb.12480, 2014.
Kirk, J. T. O.: Light and photosynthesis in aquatic ecosystems, Third edition, Cambridge University Press, Cambridge, 645 pp., 2011.
Klages, M., Boetius, A., Christensen, J. P., Deubel, H., Piepenburg, D., Schewe, I., and Soltwedel, T.: The Benthos of Arctic Seas and its Role for the Organic Carbon Cycle at the Seafloor, in: The Organic Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and MacDonald, R. W., Springer Berlin Heidelberg, Berlin, Heidelberg, 139–167, 2004.
Köster, M., Jensen, P., and Meyer-Reil, L.-A.: Hydrolytic Activities of Organisms and Biogenic Structures in Deep-Sea Sediments, in: Microbial Enzymes in Aquatic Environments, edited by: Chróst, R. J. Springer New York, New York, NY, 298–310, 1991.
Krumpen, T.: Sea Ice and Atmospheric Conditions at HAUSGARTEN between 2000–2016 (daily resolution), link to model results, PANGAEA, 2017.
Krumpen, T., Gerdes, R., Haas, C., Hendricks, S., Herber, A., Selyuzhenok, V., Smedsrud, L., and Spreen, G.: Recent summer sea ice thickness surveys in Fram Strait and associated ice volume fluxes, The Cryosphere, 10, 523–534, https://doi.org/10.5194/tc-10-523-2016, 2016.
Kruskal, J. B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1–27, https://doi.org/10.1007/BF02289565, 1964.
Lalande, C., Nöthig, E.-M., Bauerfeind, E., Hardge, K., Beszczynska-Möller, A., and Fahl, K.: Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait, Deep-Sea Res. Pt. I, 114, 78–89, https://doi.org/10.1016/j.dsr.2016.04.014, 2016.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Ac., 38, 703–714, https://doi.org/10.1016/0016-7037(74)90145-8, 1974.
Manley, T. O.: Branching of Atlantic Water within the Greenland-Spitsbergen Passage: An estimate of recirculation, J. Geophys. Res., 100, 20627, https://doi.org/10.1029/95JC01251, 1995.
Mauritzen, C., Hansen, E., Andersson, M., Berx, B., Beszczynska-Möller, A., Burud, I., Christensen, K. H., Debernard, J., Steur, L. de, Dodd, P., Gerland, S., Godøy, Ø., Hansen, B., Hudson, S., Høydalsvik, F., Ingvaldsen, R., Isachsen, P. E., Kasajima, Y., Koszalka, I., Kovacs, K. M., Køltzow, M., LaCasce, J., Lee, C. M., Lavergne, T., Lydersen, C., Nicolaus, M., Nilsen, F., Nøst, O. A., Orvik, K. A., Reigstad, M., Schyberg, H., Seuthe, L., Skagseth, Ø., Skarðhamar, J., Skogseth, R., Sperrevik, A., Svensen, C., Søiland, H., Teigen, S. H., Tverberg, V., and Wexels Riser, C.: Closing the loop – Approaches to monitoring the state of the Arctic Mediterranean during the International Polar Year 2007–2008, Prog. Oceanogr., 90, 62–89, https://doi.org/10.1016/j.pocean.2011.02.010, 2011.
Neukermans, G., Oziel, L., and Babin, M.: Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic, Glob. Change Biol., 24, 2545–2553, https://doi.org/10.1111/gcb.14075, 2018.
Nicolaus, M., Katlein, C., Maslanik, J., and Hendricks, S.: Changes in Arctic sea ice result in increasing light transmittance and absorption, Geophys. Res. Lett., 39, L24501, https://doi.org/10.1029/2012GL053738, 2012.
Pabi, S., vanDijken, G. L., and Arrigo, K. R.: Primary production in the Arctic Ocean, 1998–2006, J. Geophys. Res., 113, C08005, https://doi.org/10.1029/2007JC004578, 2008.
Piepenburg, D., Ambrose, W. G., Brandt, A., Renaud, P. E., Ahrens, M. J., and Jensen, P.: Benthic community patterns reflect water column processes in the Northeast Water polynya (Greenland), J. Mar. Syst., 10, 467–482, https://doi.org/10.1016/S0924-7963(96)00050-4, 1997.
Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K.W., Sathyendranath, S., Smith, R. E., and Venzina, A. F.: Biological production of the oceans: the case of a concensus, Mar. Ecol. Prog. Ser., 52, 77–88, 1989.
Queirós, A. M., Birchenough, Silvana N. R., Bremner, J., Godbold, J. A., Parker, R. E., Romero-Ramirez, A., Reiss, H., Solan, M., Somerfield, P. J., van Colen, C., van Hoey, G., and Widdicombe, S.: A bioturbation classification of European marine infaunal invertebrates, Ecol. Evol., 3, 3958–3985, https://doi.org/10.1002/ece3.769, 2013.
Quéric, N.-V., Soltwedel, T., and Arntz, W. E.: Application of a rapid direct viable count method to deep-sea sediment bacteria, J. Microbiol. Method., 57, 351–367, https://doi.org/10.1016/j.mimet.2004.02.005, 2004.
Redfield, A. C.: On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton, University Press of Liverpool, 1934.
Reimers, C. E.: An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean, Deep-Sea Res. Pt. A, 34, 2019–2035, https://doi.org/10.1016/0198-0149(87)90096-3, 1987.
Renaud, P. E., Morata, N., Ambrose, W. G., Bowie, J. J., and Chiuchiolo, A.: Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf, J. Exp. Mar. Biol. Ecol., 349, 248–260, https://doi.org/10.1016/j.jembe.2007.05.021, 2007.
Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G., and Reigstad, M.: Pelagic–benthic coupling in the western Barents Sea: Processes and time scales, Deep-Sea Res. Pt. II, 55, 2372–2380, https://doi.org/10.1016/j.dsr2.2008.05.017, 2008.
Renner, A. H., Gerland, S., Haas, C., Spreen, G., Beckers, J. F., Hansen, E., Nicolaus, M., and Goodwin, H.: Evidence of Arctic sea ice thinning from direct observations, Geophys. Res. Lett., 41, 5029–5036, https://doi.org/10.1002/2014GL060369, 2014.
Revsbech, N. P.: An oxygen microsensor with a guard cathode, Limnol. Oceangr., 34, 474–478, https://doi.org/10.4319/lo.1989.34.2.0474, 1989.
Rullkötter, J.: Organic Matter: The Driving Force for Early Diagenesis, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer Berlin Heidelberg, Berlin, Heidelberg, 125–168, 2006.
Sakshaug, E.: Primary and Secondary Production in the Arctic Seas, in: The Organic Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and MacDonald, R. W., Springer Berlin Heidelberg, Berlin, Heidelberg, 57–81, 2004.
Sauter, E. J., Schlüter, M., and Suess, E.: Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles, Deep-Sea Res. Pt. I, 48, 529–553, https://doi.org/10.1016/S0967-0637(00)00061-3, 2001.
Schauer, U., Fahrbach, E., Osterhus, S. and Rohardt, G.: Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements, J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823, 2004.
Schewe, I. and Soltwedel, T.: Benthic response to ice-edge-induced particle flux in the Arctic Ocean, Pol. Biol., 26, 610–620, https://doi.org/10.1007/s00300-003-0526-8, 2003.
Schulz, H. D.: Quantification of Early Diagenesis: Dissolved Constituents in Pore Water and Signals in the Solid Phase, in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer Berlin Heidelberg, Berlin, Heidelberg, 73–124, 2006.
Shuman, F. R. and Lorenzen, C. J.: Quantitative degradation of chlorophyll by a marine herbivore, Limnol. Oceangr., 20, 580–586, https://doi.org/10.4319/lo.1975.20.4.0580, 1975.
Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., and Arbizu, P. M.: Abyssal food limitation, ecosystem structure and climate change, Trends Ecol. Evol., 23, 518–528, https://doi.org/10.1016/j.tree.2008.05.002, 2008.
Smith, K. L., Ruhl, H. A., Kahru, M., Huffard, C. L., and Sherman, A. D.: Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean, P. Natl. Acad. Sci., 110, 19838–19841, https://doi.org/10.1073/pnas.1315447110, 2013.
Smith, K. L., Huffard, C. L., Sherman, A. D., and Ruhl, H. A.: Decadal Change in Sediment Community Oxygen Consumption in the Abyssal Northeast Pacific, Aquat. Geochem., 22, 401–417, https://doi.org/10.1007/s10498-016-9293-3, 2016.
Soltwedel, T., Bauerfeind, E., Bergmann, M., Budaeva, N., Hoste, E., Jaeckisch, N., Juterzenka, K. von, Matthiesson, J., Moekievsky, V., Nöthig, E.-M., Quéric, N.-V., Sablotny, B., Sauter, E., Schewe, I., Urban-Malinga, B., Wegner, J., Maria Wlodarska-Kowalczuk, M., and Klages, M.: HAUSGARTEN: Multidisciplinary Investigations at a Deep-Sea, Long-Term Observatory in the Arctic Ocean, Oceanography, 18, 46–61, https://doi.org/10.5670/oceanog.2005.24, 2005.
Soltwedel, T., Bauerfeind, E., Bergmann, M., Bracher, A., Budaeva, N., Busch, K., Cherkasheva, A., Fahl, K., Grzelak, K., Hasemann, C., Jacob, M., Kraft, A., Lalande, C., Metfies, K., Nöthig, E.-M., Meyer, K., Quéric, N.-V., Schewe, I., Włodarska-Kowalczuk, M., and Klages, M.: Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN, Ecol. Indic., 65, 89–102, https://doi.org/10.1016/j.ecolind.2015.10.001, 2015.
Spielhagen, R. F., Müller, J., Wagner, A., Werner, K., Lohmann, G., Prange, M., and Stein, R.: Holocene Environmental Variability in the Arctic Gateway, in: Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), edited by: Schulz, M. and Paul, A., SpringerBriefs in Earth System Sciences, Springer International Publishing, Cham, 37–42, 2015.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Takahashi, T., Broecker, W. S., and Langer, S.: Redfield ratio based on chemical data from isopycnal surfaces, J. Geophys. Res., 90, 6907–6924, https://doi.org/10.1029/JC090iC04p06907, 1985.
Thamdrup, B. and Canfield, D. E.: Benthic Respiration in Aquatic Sediments, in: Methods in Ecosystem Science, edited by: Sala, O. E., Jackson, R. B., Mooney, H. A., and Howarth, R. W., Springer New York, New York, NY, 86–103, 2000.
Thiel, H.: Benthos in Upwelling Regions, in: Upwelling Ecosystems, edited by: Boje, R. and Tomczak, M., Springer Berlin Heidelberg, Berlin, Heidelberg, 124–138, 1978.
Tremblay, J.-É., Simpson, K., Martin, J., Miller, L., Gratton, Y., Barber, D., and Price, N. M.: Vertical stability and the annual dynamics of nutrients and chlorophyll fluorescence in the coastal, southeast Beaufort Sea, J. Geophys. Res., 113, C07S90, https://doi.org/10.1029/2007JC004547, 2008.
Vanreusel, A., Vincx, M., Schram, D., and van Gansbeke, D.: On the Vertical Distribution of the Metazoan Meiofauna in Shelf Break and Upper Slope Habitats of the NE Atlantic, Int. Revue Ges. Hydrobiol. Hydrogr., 80, 313–326, https://doi.org/10.1002/iroh.19950800218, 1995.
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., Amyot, M., Billet, M. F., Canário, J., Cory, R. M., Deshpande, B. N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., MacMillan, G., Rautio, M., Walter Anthony, K. M., and Wickland, K. P.: Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosciences, 12, 7129–7167, https://doi.org/10.5194/bg-12-7129-2015, 2015.
van Oevelen, D., Bergmann, M., Soetaert, K., Bauerfeind, E., Hasemann, C., Klages, M., Schewe, I., Soltwedel, T., and Budaeva, N. E.: Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait), Deep-Sea Res. Pt. I, 58, 1069–1083, https://doi.org/10.1016/j.dsr.2011.08.002, 2011.
Walsh, J. E., Chapman, W. L., and Fetterer F.: Gridded monthly sea ice extent and concentration, 1850 Onward, Version 1, NSIDC: National Snow and Ice Data Center (Boulder, Colorado USA), available at: https://doi.org/10.7265/N5833PZ5 (last access: 13 August 2018), 2015.
Wassmann, P.: Arctic marine ecosystems in an era of rapid climate change, Prog. Oceanogr., 90, 1–17, https://doi.org/10.1016/j.pocean.2011.02.002, 2011.
Wassmann, P., Duarte, C.M., Agustí, S., and Sejr, M. K.: Footprints of climate change in the Arctic marine ecosystem, Glob. Change Biol., 17, 1235–1249, https://doi.org/10.1111/j.1365-2486.2010.02311.x, 2011
Wenzhöfer, F. and Glud, R. N.: Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade, Deep-Sea Res. Pt. I, 49, 1255–1279, https://doi.org/10.1016/S0967-0637(02)00025-0, 2002.
Wheatcroft, R. A.: Experimental tests for particle size-dependent bioturbation in the deep ocean, Limnol. Oceanogr., 37, 90–104, https://doi.org/10.4319/lo.1992.37.1.0090, 1992.
Winkler, L. W.: Die Bestimmung des im Wasser gelösten Sauerstoffes, Ber. Dtsch. Chem. Ges., 21, 2843–2854, https://doi.org/10.1002/cber.188802102122, 1888.
Witte, U., Wenzhöfer, F., Sommer, S., Boetius, A., Heinz, P., Aberle, N., Sand, M., Cremer, A., Abraham, W.-R., Jørgensen, B. B., and Pfannkuche, O.: In situ experimental evidence of the fate of a photodetritus pulse at the abyssal sea floor, Nature, 424, 763–766, https://doi.org/10.1038/nature01799, 2003.
Short summary
Our study links surface sea-ice cover and benthic oxygen fluxes in the Fram Strait via primary production, food supply, benthic community, and their functions. We show that sea-ice cover and water depth are the most important factors influencing the ecosystem. However, in water depths > 1500 m, the effect of sea ice fades out. Further, we discuss primary production and benthic remineralization patterns and developed a potential scenario for the benthic remineralization in a future Arctic Ocean.
Our study links surface sea-ice cover and benthic oxygen fluxes in the Fram Strait via primary...
Altmetrics
Final-revised paper
Preprint