Articles | Volume 16, issue 5
Biogeosciences, 16, 1019–1034, 2019
https://doi.org/10.5194/bg-16-1019-2019
Biogeosciences, 16, 1019–1034, 2019
https://doi.org/10.5194/bg-16-1019-2019

Research article 14 Mar 2019

Research article | 14 Mar 2019

Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates

Karin F. Kvale et al.

Related authors

Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Chris Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-235,https://doi.org/10.5194/gmd-2020-235, 2020
Revised manuscript under review for GMD
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing
Karin F. Kvale and Katrin J. Meissner
Biogeosciences, 14, 4767–4780, https://doi.org/10.5194/bg-14-4767-2017,https://doi.org/10.5194/bg-14-4767-2017, 2017
Short summary
Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017,https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Explicit planktic calcifiers in the University of Victoria Earth System Climate Model
K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby, and A. Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-1709-2014,https://doi.org/10.5194/gmdd-7-1709-2014, 2014
Revised manuscript not accepted

Related subject area

Biogeochemistry: Open Ocean
Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021,https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Oxygen budget of the north-western Mediterranean deep- convection region
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021,https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Fuminori Hashihama, Hiroaki Saito, Taketoshi Kodama, Saori Yasui-Tamura, Jota Kanda, Iwao Tanita, Hiroshi Ogawa, E. Malcolm S. Woodward, Philip W. Boyd, and Ken Furuya
Biogeosciences, 18, 897–915, https://doi.org/10.5194/bg-18-897-2021,https://doi.org/10.5194/bg-18-897-2021, 2021
Short summary
Dynamics of the deep chlorophyll maximum in the Black Sea as depicted by BGC-Argo floats
Florian Ricour, Arthur Capet, Fabrizio D'Ortenzio, Bruno Delille, and Marilaure Grégoire
Biogeosciences, 18, 755–774, https://doi.org/10.5194/bg-18-755-2021,https://doi.org/10.5194/bg-18-755-2021, 2021
Short summary
Nitrate assimilation and regeneration in the Barents Sea: insights from nitrate isotopes
Robyn E. Tuerena, Joanne Hopkins, Raja S. Ganeshram, Louisa Norman, Camille de la Vega, Rachel Jeffreys, and Claire Mahaffey
Biogeosciences, 18, 637–653, https://doi.org/10.5194/bg-18-637-2021,https://doi.org/10.5194/bg-18-637-2021, 2021
Short summary

Cited articles

Archer, D.: An atlas of the distribution of calcium carbonate in sediments of the deep sea, Global Biogeochem. Cy., 10, 159–174, 1996. a
Armstrong, R., Lee, C., Hedges, J., Honjo, S., and Wakeham, S.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002. a, b, c, d
Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., and Schulz, K. G.: A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr., 135, 125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015. a
Balch, W. M.: The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores, Annu. Rev. Mar. Sci., 10, 71–98, https://doi.org/10.1146/annurev-marine-121916-063319, 2018. a, b, c, d
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z., Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C., and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance, Global Biogeochem. Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016. a
Download
Short summary
Drivers motivating the evolution of calcifying phytoplankton are poorly understood. We explore differences in global ocean chemistry with and without calcifiers during rapid climate changes. We find the presence of phytoplankton calcifiers stabilizes the volume of low oxygen regions and consequently stabilizes the concentration of nitrate, which is an important nutrient required for photosynthesis. By stabilizing nitrate concentrations, calcifiers improve their growth conditions.
Altmetrics
Final-revised paper
Preprint