Articles | Volume 16, issue 5
Biogeosciences, 16, 1019–1034, 2019
https://doi.org/10.5194/bg-16-1019-2019
Biogeosciences, 16, 1019–1034, 2019
https://doi.org/10.5194/bg-16-1019-2019

Research article 14 Mar 2019

Research article | 14 Mar 2019

Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates

Karin F. Kvale et al.

Related authors

Explicit silicate cycling in the Kiel Marine Biogeochemistry Model, version 3 (KMBM3) embedded in the UVic ESCM version 2.9
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Chris Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-235,https://doi.org/10.5194/gmd-2020-235, 2020
Revised manuscript under review for GMD
Short summary
One size fits all? Calibrating an ocean biogeochemistry model for different circulations
Iris Kriest, Paul Kähler, Wolfgang Koeve, Karin Kvale, Volkmar Sauerland, and Andreas Oschlies
Biogeosciences, 17, 3057–3082, https://doi.org/10.5194/bg-17-3057-2020,https://doi.org/10.5194/bg-17-3057-2020, 2020
Short summary
Primary production sensitivity to phytoplankton light attenuation parameter increases with transient forcing
Karin F. Kvale and Katrin J. Meissner
Biogeosciences, 14, 4767–4780, https://doi.org/10.5194/bg-14-4767-2017,https://doi.org/10.5194/bg-14-4767-2017, 2017
Short summary
Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers
Karin F. Kvale, Samar Khatiwala, Heiner Dietze, Iris Kriest, and Andreas Oschlies
Geosci. Model Dev., 10, 2425–2445, https://doi.org/10.5194/gmd-10-2425-2017,https://doi.org/10.5194/gmd-10-2425-2017, 2017
Short summary
Explicit planktic calcifiers in the University of Victoria Earth System Climate Model
K. F. Kvale, K. J. Meissner, D. P. Keller, M. Eby, and A. Schmittner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-1709-2014,https://doi.org/10.5194/gmdd-7-1709-2014, 2014
Revised manuscript not accepted

Related subject area

Biogeochemistry: Open Ocean
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Bo Liu, Katharina D. Six, and Tatiana Ilyina
Biogeosciences, 18, 4389–4429, https://doi.org/10.5194/bg-18-4389-2021,https://doi.org/10.5194/bg-18-4389-2021, 2021
Short summary
Seasonal cycling of zinc and cobalt in the south-eastern Atlantic along the GEOTRACES GA10 section
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021,https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Comparing CLE-AdCSV applications using SA and TAC to determine the Fe binding characteristics of model ligands in seawater
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-134,https://doi.org/10.5194/bg-2021-134, 2021
Revised manuscript accepted for BG
Short summary
Carbon export and fate beneath a dynamic upwelled filament off the California coast
Hannah L. Bourne, James K. B. Bishop, Elizabeth J. Connors, and Todd J. Wood
Biogeosciences, 18, 3053–3086, https://doi.org/10.5194/bg-18-3053-2021,https://doi.org/10.5194/bg-18-3053-2021, 2021
Short summary
Contrasted release of insoluble elements (Fe, Al, rare earth elements, Th, Pa) after dust deposition in seawater: a tank experiment approach
Matthieu Roy-Barman, Lorna Foliot, Eric Douville, Nathalie Leblond, Fréderic Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, and Cécile Guieu
Biogeosciences, 18, 2663–2678, https://doi.org/10.5194/bg-18-2663-2021,https://doi.org/10.5194/bg-18-2663-2021, 2021
Short summary

Cited articles

Archer, D.: An atlas of the distribution of calcium carbonate in sediments of the deep sea, Global Biogeochem. Cy., 10, 159–174, 1996. a
Armstrong, R., Lee, C., Hedges, J., Honjo, S., and Wakeham, S.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, 2002. a, b, c, d
Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L., and Schulz, K. G.: A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework, Prog. Oceanogr., 135, 125–138, https://doi.org/10.1016/j.pocean.2015.04.012, 2015. a
Balch, W. M.: The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores, Annu. Rev. Mar. Sci., 10, 71–98, https://doi.org/10.1146/annurev-marine-121916-063319, 2018. a, b, c, d
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z., Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C., and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the Southern Ocean and its biogeochemical significance, Global Biogeochem. Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016. a
Download
Short summary
Drivers motivating the evolution of calcifying phytoplankton are poorly understood. We explore differences in global ocean chemistry with and without calcifiers during rapid climate changes. We find the presence of phytoplankton calcifiers stabilizes the volume of low oxygen regions and consequently stabilizes the concentration of nitrate, which is an important nutrient required for photosynthesis. By stabilizing nitrate concentrations, calcifiers improve their growth conditions.
Altmetrics
Final-revised paper
Preprint