Articles | Volume 16, issue 7
https://doi.org/10.5194/bg-16-1447-2019
https://doi.org/10.5194/bg-16-1447-2019
Research article
 | 
09 Apr 2019
Research article |  | 09 Apr 2019

Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal

Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste

Related authors

Ventilation of the Bay of Bengal oxygen minimum zone by the Southwest Monsoon Current
Peter M. F. Sheehan, Benjamin G. M. Webber, Alejandra Sanchez-Franks, and Bastien Y. Queste
EGUsphere, https://doi.org/10.5194/egusphere-2024-3681,https://doi.org/10.5194/egusphere-2024-3681, 2024
Short summary
Turbulent heat flux dynamics along the Dotson and Getz ice-shelf fronts (Amundsen Sea, Antarctica)
Blandine Jacob, Bastien Y. Queste, and Marcel D. du Plessis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2076,https://doi.org/10.5194/egusphere-2024-2076, 2024
Short summary
Evaluation of multi-season convection-permitting atmosphere – mixed-layer ocean simulations of the Maritime Continent
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024,https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
The influence of tides on the marine carbonate chemistry of a coastal polynya in the south-eastern Weddell Sea
Elise S. Droste, Mario Hoppema, Melchor González-Dávila, Juana Magdalena Santana-Casiano, Bastien Y. Queste, Giorgio Dall'Olmo, Hugh J. Venables, Gerd Rohardt, Sharyn Ossebaar, Daniel Schuller, Sunke Trace-Kleeberg, and Dorothee C. E. Bakker
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-2022,https://doi.org/10.5194/os-18-1293-2022, 2022
Short summary
Application of a new net primary production methodology: a daily to annual-scale data set for the North Sea, derived from autonomous underwater gliders and satellite Earth observation
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022,https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
Source-to-sink pathways of dissolved organic carbon in the river–estuary–ocean continuum: a modeling investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024,https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary
Impact of livestock activity on near-surface ground temperatures in central Mongolian grasslands
Robin Benjamin Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
Biogeosciences, 21, 5059–5077, https://doi.org/10.5194/bg-21-5059-2024,https://doi.org/10.5194/bg-21-5059-2024, 2024
Short summary
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024,https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023,https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023,https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary

Cited articles

Anderson, G. C.: Subsurface chlorophyll maximum in the northeast Pacific Ocean, Limnol. Oceanogr., 14, 386–391, 1969. a
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M., and Lizotte, M. P.: Phytoplankton Community Structure and the Drawdown of Nutrients and CO2 in the Southern Ocean, Science, 283, 365–367, 1999. a
Banse, K.: Should we continue to use the 1 % light depth for estimating the compensation depth of phytoplankton for another 70 years?, Limnol. Oceanogr., 13, 49–52, https://doi.org/10.1002/lob.200413349, 2004. a
Behara, A. and Vinayachandran, P. N.: An OGCM study of the impact of Rain and River Water Forcing on the Bay of Bengal, J. Geophys. Res., 121, 2425–2446, https://doi.org/10.1002/2015JC011325, 2016. a, b
Behrenfeld, M. J. and Boss, E. S.: Student's tutorial on bloom hypotheses in the context ofphytoplankton annual cycles, Glob. Change Biol., 24, 55–77, https://doi.org/10.1111/gcb.13858, 2017. a, b
Download
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Altmetrics
Final-revised paper
Preprint