Articles | Volume 16, issue 8
https://doi.org/10.5194/bg-16-1845-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-1845-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying energy use efficiency via entropy production: a case study from longleaf pine ecosystems
Susanne Wiesner
Department of Biological Sciences, University of Alabama, Tuscaloosa,
AL 35487, USA
Christina L. Staudhammer
Department of Biological Sciences, University of Alabama, Tuscaloosa,
AL 35487, USA
Paul C. Stoy
Department of Land Resources and Environmental Sciences, Montana State
University, Bozeman, MT 59717, USA
Lindsay R. Boring
Jones Ecological Research Center, Newton, GA 39870, USA
Odum School of Ecology, University of Georgia, Athens, GA 30602,
USA
Department of Biological Sciences, University of Alabama, Tuscaloosa,
AL 35487, USA
Related authors
No articles found.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Paul C. Stoy, Adam A. Cook, John E. Dore, Natascha Kljun, William Kleindl, E. N. Jack Brookshire, and Tobias Gerken
Biogeosciences, 18, 961–975, https://doi.org/10.5194/bg-18-961-2021, https://doi.org/10.5194/bg-18-961-2021, 2021
Short summary
Short summary
The reintroduction of American bison creates multiple environmental benefits. Ruminants like bison also emit methane – a potent greenhouse gas – to the atmosphere, which has not been measured to date in a field setting. We measured methane efflux from an American bison herd during winter using eddy covariance. Automated cameras were used to approximate their location to calculate per-animal flux. From the measurements, bison do not emit more methane than the cattle they often replace.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Tobias Gerken, Gabriel T. Bromley, Benjamin L. Ruddell, Skylar Williams, and Paul C. Stoy
Hydrol. Earth Syst. Sci., 22, 4155–4163, https://doi.org/10.5194/hess-22-4155-2018, https://doi.org/10.5194/hess-22-4155-2018, 2018
Short summary
Short summary
An unprecedented flash drought took place across parts of the US Northern Great Plains and Canadian Prairie Provinces during the summer of 2017 that in some areas was the worst in recorded history. We show that this drought was preceded by a breakdown of land–atmosphere coupling, reducing the likelihood of convective precipitation. It may be useful to monitor land–atmosphere coupling to track and potentially forecast drought development.
Jingfeng Xiao, Shuguang Liu, and Paul C. Stoy
Biogeosciences, 13, 3665–3675, https://doi.org/10.5194/bg-13-3665-2016, https://doi.org/10.5194/bg-13-3665-2016, 2016
Short summary
Short summary
This special issue showcases recent advancements on the impacts of disturbances and extreme events on the carbon (C) cycle. Notable advancements include quantifying harvest impacts on forest structure, recovery, and carbon stocks; observed dissolved organic C and methane increases in thermokarst lakes following summer warming; disentangling the roles of herbivores and fire on forest carbon dioxide flux; and improved atmospheric inversion of regional C flux by incorporating disturbances.
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
Related subject area
Biodiversity and Ecosystem Function: Terrestrial
On the predictability of turbulent fluxes from land: PLUMBER2 MIP experimental description and preliminary results
Crowd-sourced trait data can be used to delimit global biomes
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Enhancing environmental models with a new downscaling method for global radiation in complex terrain
“Blooming” of litter-mixing effects: the role of flower and leaf litter interactions on decomposition in terrestrial and aquatic ecosystems
Combined effects of topography, soil moisture and snow cover regimes on growth responses of grasslands in a low mountain range (Vosges, France)
From simple labels to semantic image segmentation: leveraging citizen science plant photographs for tree species mapping in drone imagery
Plant functional traits modulate the effects of soil acidification on above- and belowground biomass
Regional effects and local climate jointly shape the global distribution of sexual systems in woody flowering plants
Ideas and perspectives: Sensing energy and matter fluxes in a biota-dominated Patagonian landscape through environmental seismology – introducing the Pumalín Critical Zone Observatory
Comparison of carbon and water fluxes and the drivers of ecosystem water use efficiency in a temperate rainforest and a peatland in southern South America
Kilometre-scale simulations over Fennoscandia reveal a large loss of tundra due to climate warming
Microclimate mapping using novel radiative transfer modelling
Root distributions predict shrub–steppe responses to precipitation intensity
Thermophilisation of Afromontane forest stands demonstrated in an elevation gradient experiment
Soil smoldering in temperate forests: A neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Above-treeline ecosystems facing drought: lessons from the 2022 European summer heat wave
Canopy gaps and associated losses of biomass – combining UAV imagery and field data in a central Amazon forest
Ideas and perspectives: Beyond model evaluation – combining experiments and models to advance terrestrial ecosystem science
Primary succession and its driving variables – a sphere-spanning approach applied in proglacial areas in the upper Martell Valley (Eastern Italian Alps)
Contemporary biodiversity pattern is affected by climate change at multiple temporal scales in steppes on the Mongolian Plateau
Quantifying vegetation indices using terrestrial laser scanning: methodological complexities and ecological insights from a Mediterranean forest
Revisiting and attributing the global controls over terrestrial ecosystem functions of climate and plant traits at FLUXNET sites via causal graphical models
Dynamics of short-term ecosystem carbon fluxes induced by precipitation events in a semiarid grassland
Throughfall exclusion and fertilization effects on tropical dry forest tree plantations, a large-scale experiment
Tectonic controls on the ecosystem of the Mara River basin, East Africa, from geomorphological and spectral index analysis
Spruce bark beetles (Ips typographus) cause up to 700 times higher bark BVOC emission rates compared to healthy Norway spruce (Picea abies)
Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory
Observed water and light limitation across global ecosystems
A question of scale: modeling biomass, gain and mortality distributions of a tropical forest
Seed traits and phylogeny explain plants' geographic distribution
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia
Strong influence of trees outside forest in regulating microclimate of intensively modified Afromontane landscapes
Excess radiation exacerbates drought stress impacts on canopy conductance along aridity gradients
Dispersal of bacteria and stimulation of permafrost decomposition by Collembola
Modeling the effects of alternative crop–livestock management scenarios on important ecosystem services for smallholder farming from a landscape perspective
Contrasting strategies of nutrient demand and use between savanna and forest ecosystems in a neotropical transition zone
Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing
Updated estimation of forest biomass carbon pools in China, 1977–2018
Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets
Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion
Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing
Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024, https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Short summary
Biomes are widely used to map vegetation patterns at large spatial scales and to assess impacts of climate change, yet there is no consensus on a generally valid biome classification scheme. We used crowd-sourced species distribution data and trait data to assess whether trait information is suitable for delimiting biomes. Although the trait data were heterogeneous and had large gaps with respect to the spatial distribution, we found that a global trait-based biome classification was possible.
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024, https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Short summary
Riparian areas are subject to environmental issues (nutrient leaching) associated with low productivity. Perennial grasses can improve ecosystem services from riparian zones while producing forage/bioenergy feedstock biomass as potential income for farmers. The forage-type buffer can be an ideal short-term candidate due to its great efficiency of nutrient scavenging; the bioenergy-type buffer showed better sustainability than the forage buffer and a continuous yield supply potential.
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024, https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Short summary
Through an extensive global dataset of leaf nutrient resorption and a multifactorial analysis, we show that the majority of spatial variation in nutrient resorption may be driven by leaf habit and type, with thicker, longer-lived leaves having lower resorption efficiencies. Climate, soil fertility and soil-related factors emerge as strong drivers with an additional effect on its role. These results are essential for comprehending plant nutrient status, plant productivity and nutrient cycling.
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024, https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Short summary
In the Arctic tundra, climate change is transforming the landscape, and this may impact wildlife. We focus on three nesting bird species and the islets they select as refuges from their main predator, the Arctic fox. A geomorphological process, ice-wedge polygon degradation, was found to play a key role in creating these refuges. This process is likely to affect predator–prey dynamics in the Arctic tundra, highlighting the connections between nature's physical and ecological systems.
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024, https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary
Short summary
Understanding the drivers of forest productivity is key for accurately assessing forests’ role in the global carbon cycle. Yet, despite significant research effort, it is not fully understood how the productivity of a forest can be deduced from its stand structure. We suggest tackling this problem by identifying the share and structure of immature trees within forests and show that this approach could significantly improve estimates of forests’ net productivity and carbon uptake.
Arsène Druel, Julien Ruffault, Hendrik Davi, André Chanzy, Olivier Marloie, Miquel De Cáceres, Florent Mouillot, Christophe François, Kamel Soudani, and Nicolas K. Martin-StPaul
EGUsphere, https://doi.org/10.5194/egusphere-2024-1800, https://doi.org/10.5194/egusphere-2024-1800, 2024
Short summary
Short summary
Accurate radiation data are essential for understanding ecosystem growth. Traditional large-scale data lack the precision needed for complex terrains, e.g. mountainous regions. This study introduces a new model to enhance radiation data resolution using elevation maps, which accounts for sub-daily direct and diffuse radiation effects caused by terrain features. Tested on Mont Ventoux, this method significantly improves radiation estimates, benefiting forest growth and climate risk models.
Mery Ingrid Guimarães de Alencar, Rafael D. Guariento, Bertrand Guenet, Luciana S. Carneiro, Eduardo L. Voigt, and Adriano Caliman
Biogeosciences, 21, 3165–3182, https://doi.org/10.5194/bg-21-3165-2024, https://doi.org/10.5194/bg-21-3165-2024, 2024
Short summary
Short summary
Flowers are ephemeral organs for reproduction, and their litter is functionally different from leaf litter. Flowers can affect decomposition and interact with leaf litter, influencing decomposition non-additively. We show that mixing flower and leaf litter from the Tabebuia aurea tree creates reciprocal synergistic effects on decomposition in both terrestrial and aquatic environments. We highlight that flower litter input can generate biogeochemical hotspots in terrestrial ecosystems.
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1935, https://doi.org/10.5194/egusphere-2024-1935, 2024
Short summary
Short summary
Mountain grasslands are impacted by Climate Change and need to adapt. Low mountain grasslands are poorly understood compared to High Mountains massif. Thanks to satellite archives, we found that grasslands occurring in the Vosges Mountains (France) exhibited stable productivity or tended to decrease in specific regions of the massif, a reverse signal observed in High Mountains massif. We also noted a high responsiveness in their growth strategy to soil moisture, snow regimes and topography.
Salim Soltani, Olga Ferlian, Nico Eisenhauer, Hannes Feilhauer, and Teja Kattenborn
Biogeosciences, 21, 2909–2935, https://doi.org/10.5194/bg-21-2909-2024, https://doi.org/10.5194/bg-21-2909-2024, 2024
Short summary
Short summary
In this research, we developed a novel method using citizen science data as alternative training data for computer vision models to map plant species in unoccupied aerial vehicle (UAV) images. We use citizen science plant photographs to train models and apply them to UAV images. We tested our approach on UAV images of a test site with 10 different tree species, yielding accurate results. This research shows the potential of citizen science data to advance our ability to monitor plant species.
Xue Feng, Ruzhen Wang, Tianpeng Li, Jiangping Cai, Heyong Liu, Hui Li, and Yong Jiang
Biogeosciences, 21, 2641–2653, https://doi.org/10.5194/bg-21-2641-2024, https://doi.org/10.5194/bg-21-2641-2024, 2024
Short summary
Short summary
Plant functional traits have been considered as reflecting adaptations to environmental variations, indirectly affecting ecosystem productivity. How soil acidification affects above- and belowground biomass by altering leaf and root traits remains poorly understood. We found divergent trait responses driven by soil environmental conditions in two dominant species, resulting in a decrease in aboveground biomass and an increase in belowground biomass.
Minhua Zhang, Xiaoqing Hu, and Fangliang He
Biogeosciences, 21, 2133–2142, https://doi.org/10.5194/bg-21-2133-2024, https://doi.org/10.5194/bg-21-2133-2024, 2024
Short summary
Short summary
Plant sexual systems are important to understanding the evolution and maintenance of plant diversity. We quantified region effects on their proportions while incorporating local climate factors and evolutionary history. We found regional processes and climate effects both play important roles in shaping the geographic distribution of sexual systems, providing a baseline for predicting future changes in forest communities in the context of global change.
Christian H. Mohr, Michael Dietze, Violeta Tolorza, Erwin Gonzalez, Benjamin Sotomayor, Andres Iroume, Sten Gilfert, and Frieder Tautz
Biogeosciences, 21, 1583–1599, https://doi.org/10.5194/bg-21-1583-2024, https://doi.org/10.5194/bg-21-1583-2024, 2024
Short summary
Short summary
Coastal temperate rainforests, among Earth’s carbon richest biomes, are systematically underrepresented in the global network of critical zone observatories (CZOs). Introducing here a first CZO in the heart of the Patagonian rainforest, Chile, we investigate carbon sink functioning, biota-driven landscape evolution, fluxes of matter and energy, and disturbance regimes. We invite the community to join us in cross-disciplinary collaboration to advance science in this particular environment.
Jorge F. Perez-Quezada, David Trejo, Javier Lopatin, David Aguilera, Bruce Osborne, Mauricio Galleguillos, Luca Zattera, Juan L. Celis-Diez, and Juan J. Armesto
Biogeosciences, 21, 1371–1389, https://doi.org/10.5194/bg-21-1371-2024, https://doi.org/10.5194/bg-21-1371-2024, 2024
Short summary
Short summary
For 8 years we sampled a temperate rainforest and a peatland in Chile to estimate their efficiency to capture carbon per unit of water lost. The efficiency is more related to the water lost than to the carbon captured and is mainly driven by evaporation instead of transpiration. This is the first report from southern South America and highlights that ecosystems might behave differently in this area, likely explained by the high annual precipitation (~ 2100 mm) and light-limited conditions.
Fredrik Lagergren, Robert G. Björk, Camilla Andersson, Danijel Belušić, Mats P. Björkman, Erik Kjellström, Petter Lind, David Lindstedt, Tinja Olenius, Håkan Pleijel, Gunhild Rosqvist, and Paul A. Miller
Biogeosciences, 21, 1093–1116, https://doi.org/10.5194/bg-21-1093-2024, https://doi.org/10.5194/bg-21-1093-2024, 2024
Short summary
Short summary
The Fennoscandian boreal and mountain regions harbour a wide range of ecosystems sensitive to climate change. A new, highly resolved high-emission climate scenario enabled modelling of the vegetation development in this region at high resolution for the 21st century. The results show dramatic south to north and low- to high-altitude shifts of vegetation zones, especially for the open tundra environments, which will have large implications for nature conservation, reindeer husbandry and forestry.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Andrew Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, and Karen H. Beard
Biogeosciences, 21, 131–143, https://doi.org/10.5194/bg-21-131-2024, https://doi.org/10.5194/bg-21-131-2024, 2024
Short summary
Short summary
Warmer air and larger precipitation events are changing the way water moves through the soil and into plants. Here we show that detailed descriptions of root distributions can predict plant growth responses to changing precipitation patterns. Shrubs and forbs increased growth, while grasses showed no response to increased precipitation intensity, and these responses were predicted by plant rooting distributions.
Bonaventure Ntirugulirwa, Etienne Zibera, Nkuba Epaphrodite, Aloysie Manishimwe, Donat Nsabimana, Johan Uddling, and Göran Wallin
Biogeosciences, 20, 5125–5149, https://doi.org/10.5194/bg-20-5125-2023, https://doi.org/10.5194/bg-20-5125-2023, 2023
Short summary
Short summary
Twenty tropical tree species native to Africa were planted along an elevation gradient (1100 m, 5.4 °C difference). We found that early-successional (ES) species, especially from lower elevations, grew faster at warmer sites, while several of the late-successional (LS) species, especially from higher elevations, did not respond or grew slower. Moreover, a warmer climate increased tree mortality in LS species, but not much in ES species.
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
EGUsphere, https://doi.org/10.5194/egusphere-2023-2421, https://doi.org/10.5194/egusphere-2023-2421, 2023
Short summary
Short summary
2022 fire season had a huge impact on European temperate forest, with several large fires exhibiting prolonged soil combustion reported. We analyzed CO and CO2 concentration recorded at nearby atmospheric towers, revealing intense smoldering combustion. We refined a fire emission model to incorporate this process. We estimated 7.95 MteqCO2 fire emission, twice the global estimate. Fires contributed to 1.97 % of the country's annual carbon footprint, reducing forest carbon sink by 30 % this year.
Philippe Choler
Biogeosciences, 20, 4259–4272, https://doi.org/10.5194/bg-20-4259-2023, https://doi.org/10.5194/bg-20-4259-2023, 2023
Short summary
Short summary
The year 2022 was unique in that the summer heat wave and drought led to a widespread reduction in vegetation growth at high elevation in the European Alps. This impact was unprecedented in the southwestern, warm, and dry part of the Alps. Over the last 2 decades, water has become a co-dominant control of vegetation activity in areas that were, so far, primarily controlled by temperature, and the growth of mountain grasslands has become increasingly sensitive to moisture availability.
Adriana Simonetti, Raquel Fernandes Araujo, Carlos Henrique Souza Celes, Flávia Ranara da Silva e Silva, Joaquim dos Santos, Niro Higuchi, Susan Trumbore, and Daniel Magnabosco Marra
Biogeosciences, 20, 3651–3666, https://doi.org/10.5194/bg-20-3651-2023, https://doi.org/10.5194/bg-20-3651-2023, 2023
Short summary
Short summary
We combined 2 years of monthly drone-acquired RGB (red–green–blue) imagery with field surveys in a central Amazon forest. Our results indicate that small gaps associated with branch fall were the most frequent. Biomass losses were partially controlled by gap area, with branch fall and snapping contributing the least and greatest relative values, respectively. Our study highlights the potential of drone images for monitoring canopy dynamics in dense tropical forests.
Silvia Caldararu, Victor Rolo, Benjamin D. Stocker, Teresa E. Gimeno, and Richard Nair
Biogeosciences, 20, 3637–3649, https://doi.org/10.5194/bg-20-3637-2023, https://doi.org/10.5194/bg-20-3637-2023, 2023
Short summary
Short summary
Ecosystem manipulative experiments are large experiments in real ecosystems. They include processes such as species interactions and weather that would be omitted in more controlled settings. They offer a high level of realism but are underused in combination with vegetation models used to predict the response of ecosystems to global change. We propose a workflow using models and ecosystem experiments together, taking advantage of the benefits of both tools for Earth system understanding.
Katharina Ramskogler, Bettina Knoflach, Bernhard Elsner, Brigitta Erschbamer, Florian Haas, Tobias Heckmann, Florentin Hofmeister, Livia Piermattei, Camillo Ressl, Svenja Trautmann, Michael H. Wimmer, Clemens Geitner, Johann Stötter, and Erich Tasser
Biogeosciences, 20, 2919–2939, https://doi.org/10.5194/bg-20-2919-2023, https://doi.org/10.5194/bg-20-2919-2023, 2023
Short summary
Short summary
Primary succession in proglacial areas depends on complex driving forces. To concretise the complex effects and interaction processes, 39 known explanatory variables assigned to seven spheres were analysed via principal component analysis and generalised additive models. Key results show that in addition to time- and elevation-dependent factors, also disturbances alter vegetation development. The results are useful for debates on vegetation development in a warming climate.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
William Rupert Moore Flynn, Harry Jon Foord Owen, Stuart William David Grieve, and Emily Rebecca Lines
Biogeosciences, 20, 2769–2784, https://doi.org/10.5194/bg-20-2769-2023, https://doi.org/10.5194/bg-20-2769-2023, 2023
Short summary
Short summary
Quantifying vegetation indices is crucial for ecosystem monitoring and modelling. Terrestrial laser scanning (TLS) has potential to accurately measure vegetation indices, but multiple methods exist, with little consensus on best practice. We compare three methods and extract wood-to-plant ratio, a metric used to correct for wood in leaf indices. We show corrective metrics vary with tree structure and variation among methods, highlighting the value of TLS data and importance of rigorous testing.
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Josué Delgado-Balbuena, Henry W. Loescher, Carlos A. Aguirre-Gutiérrez, Teresa Alfaro-Reyna, Luis F. Pineda-Martínez, Rodrigo Vargas, and Tulio Arredondo
Biogeosciences, 20, 2369–2385, https://doi.org/10.5194/bg-20-2369-2023, https://doi.org/10.5194/bg-20-2369-2023, 2023
Short summary
Short summary
In the semiarid grassland, an increase in soil moisture at shallow depths instantly enhances carbon release through respiration. In contrast, deeper soil water controls plant carbon uptake but with a delay of several days. Previous soil conditions, biological activity, and the size and timing of precipitation are factors that determine the amount of carbon released into the atmosphere. Thus, future changes in precipitation patterns could convert ecosystems from carbon sinks to carbon sources.
German Vargas Gutiérrez, Daniel Pérez-Aviles, Nanette Raczka, Damaris Pereira-Arias, Julián Tijerín-Triviño, L. David Pereira-Arias, David Medvigy, Bonnie G. Waring, Ember Morrisey, Edward Brzostek, and Jennifer S. Powers
Biogeosciences, 20, 2143–2160, https://doi.org/10.5194/bg-20-2143-2023, https://doi.org/10.5194/bg-20-2143-2023, 2023
Short summary
Short summary
To study whether nutrient availability controls tropical dry forest responses to reductions in soil moisture, we established the first troughfall exclusion experiment in a tropical dry forest plantation system crossed with a fertilization scheme. We found that the effects of fertilization on net primary productivity are larger than the effects of a ~15 % reduction in soil moisture, although in many cases we observed an interaction between drought and nutrient additions, suggesting colimitation.
Alina Lucia Ludat and Simon Kübler
Biogeosciences, 20, 1991–2012, https://doi.org/10.5194/bg-20-1991-2023, https://doi.org/10.5194/bg-20-1991-2023, 2023
Short summary
Short summary
Satellite-based analysis illustrates the impact of geological processes for the stability of the ecosystem in the Mara River basin (Kenya/Tanzania). Newly detected fault activity influences the course of river networks and modifies erosion–deposition patterns. Tectonic surface features and variations in rock chemistry lead to localized enhancement of clay and soil moisture values and seasonally stabilised vegetation growth patterns in this climatically vulnerable region.
Erica Jaakkola, Antje Gärtner, Anna Maria Jönsson, Karl Ljung, Per-Ola Olsson, and Thomas Holst
Biogeosciences, 20, 803–826, https://doi.org/10.5194/bg-20-803-2023, https://doi.org/10.5194/bg-20-803-2023, 2023
Short summary
Short summary
Increased spruce bark beetle outbreaks were recently seen in Sweden. When Norway spruce trees are attacked, they increase their production of VOCs, attempting to kill the beetles. We provide new insights into how the Norway spruce act when infested and found the emitted volatiles to increase up to 700 times and saw a change in compound blend. We estimate that the 2020 bark beetle outbreak in Sweden could have increased the total monoterpene emissions from the forest by more than 10 %.
Georg Wohlfahrt, Albin Hammerle, Felix M. Spielmann, Florian Kitz, and Chuixiang Yi
Biogeosciences, 20, 589–596, https://doi.org/10.5194/bg-20-589-2023, https://doi.org/10.5194/bg-20-589-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (COS), which is taken up by plant leaves in a process very similar to photosynthesis, is thought to be a promising proxy for the gross uptake of carbon dioxide by plants. Here we propose a new framework for estimating a key metric to that end, the so-called leaf relative uptake rate. The values we deduce by applying principles of plant optimality are considerably lower than published values and may help reduce the uncertainty of the global COS budget.
François Jonard, Andrew F. Feldman, Daniel J. Short Gianotti, and Dara Entekhabi
Biogeosciences, 19, 5575–5590, https://doi.org/10.5194/bg-19-5575-2022, https://doi.org/10.5194/bg-19-5575-2022, 2022
Short summary
Short summary
We investigate the spatial and temporal patterns of light and water limitation in plant function at the ecosystem scale. Using satellite observations, we characterize the nonlinear relationships between sun-induced chlorophyll fluorescence (SIF) and water and light availability. This study highlights that soil moisture limitations on SIF are found primarily in drier environments, while light limitations are found in intermediately wet regions.
Nikolai Knapp, Sabine Attinger, and Andreas Huth
Biogeosciences, 19, 4929–4944, https://doi.org/10.5194/bg-19-4929-2022, https://doi.org/10.5194/bg-19-4929-2022, 2022
Short summary
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Kai Chen, Kevin S. Burgess, Fangliang He, Xiang-Yun Yang, Lian-Ming Gao, and De-Zhu Li
Biogeosciences, 19, 4801–4810, https://doi.org/10.5194/bg-19-4801-2022, https://doi.org/10.5194/bg-19-4801-2022, 2022
Short summary
Short summary
Why does plants' distributional range size vary enormously? This study provides evidence that seed mass, intraspecific seed mass variation, seed dispersal mode and phylogeny contribute to explaining species distribution variation on a geographic scale. Our study clearly shows the importance of including seed life-history traits in modeling and predicting the impact of climate change on species distribution of seed plants.
Ying Ying Chen, Huan Yang, Gen Sheng Bao, Xiao Pan Pang, and Zheng Gang Guo
Biogeosciences, 19, 4521–4532, https://doi.org/10.5194/bg-19-4521-2022, https://doi.org/10.5194/bg-19-4521-2022, 2022
Short summary
Short summary
Investigating the effect of the presence of plateau pikas on ecosystem services of alpine meadows is helpful to understand the role of the presence of small mammalian herbivores in grasslands. The results of this study showed that the presence of plateau pikas led to higher biodiversity conservation, soil nitrogen and phosphorus maintenance, and carbon sequestration of alpine meadows, whereas it led to lower forage available to livestock and water conservation of alpine meadows.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Iris Johanna Aalto, Eduardo Eiji Maeda, Janne Heiskanen, Eljas Kullervo Aalto, and Petri Kauko Emil Pellikka
Biogeosciences, 19, 4227–4247, https://doi.org/10.5194/bg-19-4227-2022, https://doi.org/10.5194/bg-19-4227-2022, 2022
Short summary
Short summary
Tree canopies are strong moderators of understory climatic conditions. In tropical areas, trees cool down the microclimates. Using remote sensing and field measurements we show how even intermediate canopy cover and agroforestry trees contributed to buffering the hottest temperatures in Kenya. The cooling effect was the greatest during hot days and in lowland areas, where the ambient temperatures were high. Adopting agroforestry practices in the area could assist in mitigating climate change.
Jing Wang and Xuefa Wen
Biogeosciences, 19, 4197–4208, https://doi.org/10.5194/bg-19-4197-2022, https://doi.org/10.5194/bg-19-4197-2022, 2022
Short summary
Short summary
Excess radiation and low temperatures exacerbate drought impacts on canopy conductance (Gs) among transects. The primary determinant of drought stress on Gs was soil moisture on the Loess Plateau (LP) and the Mongolian Plateau (MP), whereas it was the vapor pressure deficit on the Tibetan Plateau (TP). Radiation exhibited a negative effect on Gs via drought stress within transects, while temperature had negative effects on stomatal conductance on the TP but no effect on the LP and MP.
Sylvain Monteux, Janine Mariën, and Eveline J. Krab
Biogeosciences, 19, 4089–4105, https://doi.org/10.5194/bg-19-4089-2022, https://doi.org/10.5194/bg-19-4089-2022, 2022
Short summary
Short summary
Quantifying the feedback from the decomposition of thawing permafrost soils is crucial to establish adequate climate warming mitigation scenarios. Past efforts have focused on abiotic and to some extent microbial drivers of decomposition but not biotic drivers such as soil fauna. We added soil fauna (Collembola Folsomia candida) to permafrost, which introduced bacterial taxa without affecting bacterial communities as a whole but increased CO2 production (+12 %), presumably due to priming.
Mirjam Pfeiffer, Munir P. Hoffmann, Simon Scheiter, William Nelson, Johannes Isselstein, Kingsley Ayisi, Jude J. Odhiambo, and Reimund Rötter
Biogeosciences, 19, 3935–3958, https://doi.org/10.5194/bg-19-3935-2022, https://doi.org/10.5194/bg-19-3935-2022, 2022
Short summary
Short summary
Smallholder farmers face challenges due to poor land management and climate change. We linked the APSIM crop model and the aDGVM2 vegetation model to investigate integrated management options that enhance ecosystem functions and services. Sustainable intensification moderately increased yields. Crop residue grazing reduced feed gaps but not for dry-to-wet season transitions. Measures to improve soil water and nutrient status are recommended. Landscape-level ecosystem management is essential.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Emma Bousquet, Arnaud Mialon, Nemesio Rodriguez-Fernandez, Stéphane Mermoz, and Yann Kerr
Biogeosciences, 19, 3317–3336, https://doi.org/10.5194/bg-19-3317-2022, https://doi.org/10.5194/bg-19-3317-2022, 2022
Short summary
Short summary
Pre- and post-fire values of four climate variables and four vegetation variables were analysed at the global scale, in order to observe (i) the general fire likelihood factors and (ii) the vegetation recovery trends over various biomes. The main result of this study is that L-band vegetation optical depth (L-VOD) is the most impacted vegetation variable and takes the longest to recover over dense forests. L-VOD could then be useful for post-fire vegetation recovery studies.
Chen Yang, Yue Shi, Wenjuan Sun, Jiangling Zhu, Chengjun Ji, Yuhao Feng, Suhui Ma, Zhaodi Guo, and Jingyun Fang
Biogeosciences, 19, 2989–2999, https://doi.org/10.5194/bg-19-2989-2022, https://doi.org/10.5194/bg-19-2989-2022, 2022
Short summary
Short summary
Quantifying China's forest biomass C pool is important in understanding C cycling in forests. However, most of studies on forest biomass C pool were limited to the period of 2004–2008. Here, we used a biomass expansion factor method to estimate C pool from 1977 to 2018. The results suggest that afforestation practices, forest growth, and environmental changes were the main drivers of increased C sink. Thus, this study provided an essential basis for achieving China's C neutrality target.
Anne Schucknecht, Bumsuk Seo, Alexander Krämer, Sarah Asam, Clement Atzberger, and Ralf Kiese
Biogeosciences, 19, 2699–2727, https://doi.org/10.5194/bg-19-2699-2022, https://doi.org/10.5194/bg-19-2699-2022, 2022
Short summary
Short summary
Actual maps of grassland traits could improve local farm management and support environmental assessments. We developed, assessed, and applied models to estimate dry biomass and plant nitrogen (N) concentration in pre-Alpine grasslands with drone-based multispectral data and canopy height information. Our results indicate that machine learning algorithms are able to estimate both parameters but reach a better level of performance for biomass.
Ramona J. Heim, Andrey Yurtaev, Anna Bucharova, Wieland Heim, Valeriya Kutskir, Klaus-Holger Knorr, Christian Lampei, Alexandr Pechkin, Dora Schilling, Farid Sulkarnaev, and Norbert Hölzel
Biogeosciences, 19, 2729–2740, https://doi.org/10.5194/bg-19-2729-2022, https://doi.org/10.5194/bg-19-2729-2022, 2022
Short summary
Short summary
Fires will probably increase in Arctic regions due to climate change. Yet, the long-term effects of tundra fires on carbon (C) and nitrogen (N) stocks and cycling are still unclear. We investigated the long-term fire effects on C and N stocks and cycling in soil and aboveground living biomass.
We found that tundra fires did not affect total C and N stocks because a major part of the stocks was located belowground in soils which were largely unaltered by fire.
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022, https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Short summary
Forest environments contain a wide variety of airborne biological particles (bioaerosols) important for plant and animal health and biosphere–atmosphere interactions. Using low-cost sensors and a free-air carbon dioxide enrichment (FACE) experiment, we monitor the impact of enhanced CO2 on airborne particles. No effect of the enhanced CO2 treatment on total particle concentrations was observed, but a potential suppression of high concentration bioaerosol events was detected under enhanced CO2.
Melanie S. Verlinden, Hamada AbdElgawad, Arne Ven, Lore T. Verryckt, Sebastian Wieneke, Ivan A. Janssens, and Sara Vicca
Biogeosciences, 19, 2353–2364, https://doi.org/10.5194/bg-19-2353-2022, https://doi.org/10.5194/bg-19-2353-2022, 2022
Short summary
Short summary
Zea mays grows in mesocosms with different soil nutrition levels. At low phosphorus (P) availability, leaf physiological activity initially decreased strongly. P stress decreased over the season. Arbuscular mycorrhizal fungi (AMF) symbiosis increased over the season. AMF symbiosis is most likely responsible for gradual reduction in P stress.
Guoyu Lan, Bangqian Chen, Chuan Yang, Rui Sun, Zhixiang Wu, and Xicai Zhang
Biogeosciences, 19, 1995–2005, https://doi.org/10.5194/bg-19-1995-2022, https://doi.org/10.5194/bg-19-1995-2022, 2022
Short summary
Short summary
Little is known about the impact of rubber plantations on diversity of the Great Mekong Subregion. In this study, we uncovered latitudinal gradients of plant diversity of rubber plantations. Exotic species with high dominance result in loss of plant diversity of rubber plantations. Not all exotic species would reduce plant diversity of rubber plantations. Much more effort should be made to balance agricultural production with conservation goals in this region.
Ulrike Hiltner, Andreas Huth, and Rico Fischer
Biogeosciences, 19, 1891–1911, https://doi.org/10.5194/bg-19-1891-2022, https://doi.org/10.5194/bg-19-1891-2022, 2022
Short summary
Short summary
Quantifying biomass loss rates due to stem mortality is important for estimating the role of tropical forests in the global carbon cycle. We analyse the consequences of long-term elevated stem mortality for tropical forest dynamics and biomass loss. Based on simulations, we developed a statistical model to estimate biomass loss rates of forests in different successional states from forest attributes. Assuming a doubling of tree mortality, biomass loss increased from 3.2 % yr-1 to 4.5 % yr-1.
Jon Cranko Page, Martin G. De Kauwe, Gab Abramowitz, Jamie Cleverly, Nina Hinko-Najera, Mark J. Hovenden, Yao Liu, Andy J. Pitman, and Kiona Ogle
Biogeosciences, 19, 1913–1932, https://doi.org/10.5194/bg-19-1913-2022, https://doi.org/10.5194/bg-19-1913-2022, 2022
Short summary
Short summary
Although vegetation responds to climate at a wide range of timescales, models of the land carbon sink often ignore responses that do not occur instantly. In this study, we explore the timescales at which Australian ecosystems respond to climate. We identified that carbon and water fluxes can be modelled more accurately if we include environmental drivers from up to a year in the past. The importance of antecedent conditions is related to ecosystem aridity but is also influenced by other factors.
Cited articles
Amthor, J. S.: From sunlight to phytomass: On
the potential efficiency of converting solar radiation to phyto-energy, New
Phytol., 188, 939–959, https://doi.org/10.1111/j.1469-8137.2010.03505.x, 2010.
Aoki, I.: Entropy Principle in Living Systems (Min–Max Principle), Entropy
Principle for the Development of Complex Biotic Systems, chap. 2,
87–88, https://doi.org/10.1016/B978-0-12-391493-4.00008-1, 2012.
Baldocchi, D. D., Xu, L., and Kiang, N.: How plant functional-type, weather,
seasonal drought, and soil physical properties alter water and energy fluxes
of an oak–grass savanna and an annual grassland, Agr. Forest Meteorol.,
123, 13–39, https://doi.org/10.1016/j.agrformet.2003.11.006, 2004.
Ban-Weiss, G. A., Bala, G., Cao, L., Pongratz, J., and Caldeira, K.: Climate
forcing and response to idealized changes in surface latent and sensible
heat, Environ. Res. Lett., 6, 034032, https://doi.org/10.1088/1748-9326/6/3/034032,
2011.
Barron-Gafford, G. A., Scott, R. L., Jenerette, G. D., Hamerlynck, E. P., and
Huxman, T. E.: Landscape and environmental controls over leaf and ecosystem
carbon dioxide fluxes under woody plant expansion, J. Ecol., 101, 1471–1483,
https://doi.org/10.1111/1365-2745.12161, 2013.
Basu, S., Ramegowda, V., Kumar, A., and Pereira, A.: Plant adaptation to
drought stress, F1000Research, 5, 1554,
https://doi.org/10.12688/f1000research.7678.1, 2016.
Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D.,
Soussana, J. F., Ammann, C., Buchmann, N., Frank, D., Gianelle, D., Janssens,
I. A., Knohl, A., Köstner, B., Moors, E., Roupsard, O., Verbeeck, H.,
Vesala, T., Williams, C. A., and Wohlfahrt, G.: Temporal and among-site
variability of inherent water use efficiency at the ecosystem level, Global
Biogeochem. Cy., 23, GB2018, https://doi.org/10.1029/2008GB003233, 2009.
Bohn, F. J. and Huth, A.: The importance of forest structure to
biodiversity–productivity relationships, Roy. Soc. Open Sci., 4, 160521,
https://doi.org/10.1098/rsos.160521, 2017.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the
climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Brodribb, T. J., McAdam, S. A. M., Jordan, G. J., and Martins, S. C. V.:
Conifer species adapt to low-rainfall climates by following one of two
divergent pathways, P. Natl. Acad. Sci. USA, 111, 14489–14493,
https://doi.org/10.1073/pnas.1407930111, 2014.
Brunsell, N. A., Schymanski, S. J., and Kleidon, A.: Quantifying the
thermodynamic entropy budget of the land surface: is this useful?, Earth
Syst. Dynam., 2, 87–103, https://doi.org/10.5194/esd-2-87-2011, 2011.
Bürgi, M., Östlund, L., and Mladenoff, D. J.: Legacy effects of human
land use: Ecosystems as time-lagged systems, Ecosystems, 20, 94–103,
https://doi.org/10.1007/s10021-016-0051-6, 2016.
Campbell, G. S. and Norman, C. G.: An introduction to environmental
biophysics, Springer Science & Business Media, 1998.
Clement, R.: EdiRe data software, School of Geosciences, The University of
Edinburgh, Edinburgh, Scotland, 1999.
Dai, A., Qian, T., Dai, A., Trenberth, K. E., and Qian, T.: A Global Dataset
of Palmer Drought Severity Index for 1870–2002: Relationship with Soil
Moisture and Effects of Surface Warming, J. Hydrometeorol., 5, 1117–1130,
https://doi.org/10.1175/JHM-386.1, 2004.
Didan, K.: MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006 [Data set], NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MYD13Q1.006, 2015a.
Didan, K.: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN
Grid V006 [Data set], NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/MODIS/MOD13Q1.006, 2015b.
Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J.,
Walker, B., and Norberg, J.: Response diversity, ecosystem change, and
resilience, Front. Ecol. Environ., 1, 488–494, 2003.
Finzi, A. C., Norby, R. J., Calfapietra, C., Gallet-Budynek, A., Gielen, B.,
Holmes, W. E., Hoosbeek, M. R., Iversen, C. M., Jackson, R. B., Kubiske, M.
E., Ledford, J., Liberloo, M., Oren, R., Polle, A., Pritchard, S., Zak, D.
R., Schlesinger, W. H., and Ceulemans, R.: Increases in nitrogen uptake
rather than nitrogen-use efficiency support higher rates of temperate forest
productivity under elevated CO2, P. Natl. Acad. Sci. USA, 104,
14014–14019, https://doi.org/10.1073/pnas.0706518104, 2007.
Foster, D., Swanson, F., Aber, J., Burke, I., Brokaw, N., Tilman, D., and
Knapp, A.: The importance of land-use legacies to ecology and conservation,
BioScience, 53, 77–88,
https://doi.org/10.1641/0006-3568(2003)053[0077:TIOLUL]2.0.CO;2, 2003.
Fox, J. and Weisberg, S.: car: Companion to Applied Regression, Second
Edition, Thousand Oaks CA, 2011.
Fraedrich, K. and Lunkeit, F.: Diagnosing the entropy budget of a climate
model, Tellus A, 60, 921–931, https://doi.org/10.3402/tellusa.v60i5.15498, 2008.
Franklin, J., Serra-Diaz, J. M., Syphard, A. D., and Regan, H. M.: Global
change and terrestrial plant community dynamics, P. Natl. Acad. Sci. USA,
113, 3725–3734, https://doi.org/10.1073/pnas.1519911113, 2016.
Goebel, P. C., Palik, B. J., Kirkman, L. K., and West, L.: Field guide:
landscape ecosystem types of Ichauway, Joseph W. Jones Ecological Research
Center at Ichauway, Newton, Report number 97–1, 1997.
Goebel, P. C., Palik, B. J., Kirkman, L. K., Drew, M. B., West, L., and
Pederson, D. C.: Forest ecosystems of a Lower Gulf Coastal Plain landscape:
Multifactor classification and analysis, J. Torrey Bot. Soc., 128, 47–75,
https://doi.org/10.2307/3088659, 2001.
Gunawardena, K. R., Wells, M. J., and Kershaw, T.: Utilising green and
bluespace to mitigate urban heat island intensity, Sci. Total Environ.,
584–585, 1040–1055, https://doi.org/10.1016/j.scitotenv.2017.01.158, 2017.
Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki,
N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z.
D., Wada, Y., and Wisser, D.: Global water resources affected by human
interventions and climate change, P. Natl. Acad. Sci. USA, 111, 3251–3256,
https://doi.org/10.1073/pnas.1222475110, 2014.
Hammerle, A., Haslwanter, A., Tappeiner, U., Cernusca, A., and Wohlfahrt, G.:
Leaf area controls on energy partitioning of a temperate mountain grassland,
Biogeosciences, 5, 421–431, https://doi.org/10.5194/bg-5-421-2008,
2008.
Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S., and Curtis, P. S.:
The role of canopy structural complexity in wood net primary production of a
maturing northern deciduous forest, Ecology, 92, 1818–1827,
https://doi.org/10.1890/10-2192.1, 2011.
Holdaway, R. J., Sparrow, A. D., and Coomes, D. A.: Trends in entropy
production during ecosystem development in the Amazon Basin, Philos. T. Roy.
Soc. B, 365, 1437–1447, https://doi.org/10.1098/rstb.2009.0298, 2010.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer,
L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P., and Novick, K.: Separating
the effects of albedo from eco-physiological changes on surface temperature
along a successional chronosequence in the southeastern United States,
Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL031296, 2007.
Kaimal, J. C. and Gaynor, J. E.: Another look at sonic thermometry,
Bound.-Lay. Meteorol., 56, 401–410, https://doi.org/10.1007/BF00119215, 1991.
Khanna, J., Medvigy, D., Fueglistaler, S., and Walko, R.: Regional dry-season
climate changes due to three decades of Amazonian deforestation, Nat. Clim.
Change, 7, 200–204, https://doi.org/10.1038/nclimate3226, 2017.
Kim, Y. and Wang, G.: Soil moisture-vegetation-precipitation feedback over
North America: Its sensitivity to soil moisture climatology, J.
Geophys.-Res.-Atmos., 117, 1–18, https://doi.org/10.1029/2012JD017584, 2012.
Kirkman, L. K., Mitchell, R. J., Helton, R. C., and Drew, M. B.: Productivity
and species richness across an environmental gradient in a fire-dependent
ecosystem, Am. J. Bot., 88, 2119–2128, 2001.
Kirkman, L. K., Giencke, L. M., Taylor, R. S., Boring, L. R., Staudhammer, C.
L., and Mitchel, R. J.: Productivity and species richness in longleaf pine
woodlands: Resource-disturbance influences across an edaphic gradient,
Ecology, 97, 2259–2271, https://doi.org/10.1002/ecy.1456, 2016.
Kleidon, A.: Nonequilibrium thermodynamics and maximum entropy production in
the Earth system, Naturwissenschaften, 96, 1–25,
https://doi.org/10.1007/s00114-009-0509-x, 2009.
Kleidon, A.: A basic introduction to the thermodynamics of the Earth system
far from equilibrium and maximum entropy production, Philos. T. Roy. Soc B,
365, 1303–1315, https://doi.org/10.1098/rstb.2009.0310, 2010.
Kleidon, A. and Lorenz, R. D. (Eds.): Non-equilibrium thermodynamics and the
production of entropy: life, earth, and beyond, Springer Science &
Business Media, 2005.
Kleidon, A., Malhi, Y., and Cox, P. M.: Maximum entropy production in
environmental and ecological systems, Philos. T. Roy. Soc. B, 365,
1297–1302, https://doi.org/10.1098/rstb.2010.0018, 2010.
Klein, T., Shpringer, I., Ben Fikler, Elbaz, G., Cohen, S. and Yakir, D.:
Relationships between stomatal regulation, water-use, and water-use
efficiency of two coexisting key Mediterranean tree species, Forest Ecol.
Manage., 302, 34–42, https://doi.org/10.1016/j.foreco.2013.03.044, 2013.
Kozlowski, T. T.: Soil compaction and growth of woody plants, Scand. J.
Forest Res., 14, 596–619, https://doi.org/10.1080/02827589908540825, 1999.
Kuricheva, O., Mamkin, V., Sandlersky, R., Puzachenko, J., Varlagin, A., and
Kurbatova, J.: Radiative entropy production along the paludification gradient
in the southern taiga, Entropy, 19, 43, https://doi.org/10.3390/e19010043, 2017.
Lauri, P.-É., Marceron, A., Normand, F., Dambreville, A., Hortsys, U. P.
R., and Island, R.: Soil water deficit decreases xylem conductance efficiency
relative to leaf area and mass in the apple, Journal of Plant Hydraulics, 1,
e0003, https://doi.org/10.20870/jph.2014.e003, 2014.
LeMone, M. A., Chen, F., Alfieri, J. G., Tewari, M., Geerts, B., Miao, Q.,
Grossman, R. L., and Coulter, R. L.: Influence of land cover and soil
moisture on the horizontal distribution of sensible and latent heat fluxes in
southeast Kansas during IHOP_2002 and CASES-97, J. Hydrometeorol., 8,
68–87, https://doi.org/10.1175/JHM554.1, 2007.
Lenth, R. V.: Least-Squares Means: The R Package lsmeans, J. Stat. Soft., 69,
1–33, https://doi.org/10.18637/jss.v069.i01, 2016.
Lin, H.: Thermodynamic entropy fluxes reflect ecosystem characteristics and
succession, Ecol. Model., 298, 75–86, https://doi.org/10.1016/j.ecolmodel.2014.10.024,
2015.
Lin, H., Zhang, H., and Song, Q.: Transition from abstract thermodynamic
concepts to perceivable ecological indicators, Ecol. Indic., 88, 37–42,
https://doi.org/10.1016/j.ecolind.2018.01.001, 2018.
Lloyd, J. and Taylor, J. A.: On the Temperature dependence of soil
respiration, Funct. Ecol., 8, 315–323, 1994.
Massmann, A., Gentine, P., and Lin, C.: When does vapor pressure deficit
drive or reduce evapotranspiration?, Hydrol. Earth Syst. Sci. Discuss.,
https://doi.org/10.5194/hess-2018-553, in review, 2018.
Meysman, F. J. R. and Bruers, S.: Ecosystem functioning and maximum entropy
production: a quantitative test of hypotheses, Philos. T. Roy. Soc. B, 365,
1405–1416, https://doi.org/10.1098/rstb.2009.0300, 2010.
Mori, A. S.: Ecosystem management based on natural disturbances: Hierarchical
context and non-equilibrium paradigm, J. Appl. Ecol., 48, 280–292,
https://doi.org/10.1111/j.1365-2664.2010.01956.x, 2011.
Müller, F. and Kroll, F.: Integrating ecosystem theories – Gradients and
orientors as outcomes of self-organized processes, International Journal of
Design and Nature and Ecodynamics, 6, 318–341,
https://doi.org/10.2495/DNE-V6-N4-318-341, 2011.
NCDC: Monthly Station Normals of Temperature, Precipitation, and Heating and
Cooling Degree Days 1981–2010, National Climatic Data center, Asheville, NC,
2011.
Nikolov, N. T., Massman, W. J., and Schoettle, A. W.: Coupling biochemical
and biophysical processes at the leaf level: an equilibrium photosynthesis
model for leaves of C3 plants, Ecol. Model., 80, 205–235,
https://doi.org/10.1016/0304-3800(94)00072-P, 1995.
Norris, C., Hobson, P., and Ibisch, P. L.: Microclimate and vegetation
function as indicators of forest thermodynamic efficiency, J. Appl. Ecol.,
49, 562–570, https://doi.org/10.1111/j.1365-2664.2011.02084.x, 2011.
Odum, H. T.: Self-Organization, transformity, and information, Mon. Weather
Rev., 242, 1132–1139, https://doi.org/10.1126/science.242.4882.1132, 1988.
Osborne, C. P. and Sack, L.: Evolution of C4 plants: A new hypothesis
for an interaction of CO2 and water relations mediated by plant
hydraulics, Philos. T. Roy. Soc. B, 367, 583–600,
https://doi.org/10.1098/rstb.2011.0261, 2012.
Otto, J., Berveiller, D., Bréon, F.-M., Delpierre, N., Geppert, G.,
Granier, A., Jans, W., Knohl, A., Kuusk, A., Longdoz, B., Moors, E., Mund,
M., Pinty, B., Schelhaas, M.-J., and Luyssaert, S.: Forest summer albedo is
sensitive to species and thinning: how should we account for this in Earth
system models?, Biogeosciences, 11, 2411–2427,
https://doi.org/10.5194/bg-11-2411-2014, 2014.
Ozawa, H., Ohmura, A., Lorenz, R. D., and Pujol, T.: The second law of
thermodynamics and the global climate system: A review of the maximum entropy
production principle, Rev. Geophys., 41, 4, https://doi.org/10.1029/2002RG000113, 2003.
Pascale, S., Gregory, J. M., Ambaum, M. H. P., Tailleux, R., and Lucarini,
V.: Vertical and horizontal processes in the global atmosphere and the
maximum entropy production conjecture, Earth Syst. Dynam., 3, 19–32,
https://doi.org/10.5194/esd-3-19-2012, 2012.
Peng, S., Schmid, B., Haase, J., and Niklaus, P. A.: Leaf area increases with
species richness in young experimental stands of subtropical trees, J. Plant
Ecol., 10, 128–135, https://doi.org/10.1093/jpe/rtw016, 2017.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.: “nlme” Linear and
Nonlinear Mixed Effects Models, 3rd ed., 2014.
Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., and
Soong, J. L.: Interactive effects of anthropogenic nitrogen enrichment and
climate change on terrestrial and aquatic biodiversity, Biogeochemistry, 114,
93–120, https://doi.org/10.1007/s10533-012-9803-3, 2012.
Reinmann, A. B. and Hutyra, L. R.: Edge effects enhance carbon uptake and its
vulnerability to climate change in temperate broadleaf forests, P. Natl.
Acad. Sci. USA, 114, 107–112, https://doi.org/10.1073/pnas.1612369114, 2016.
Renninger, H. J., Carlo, N. J., Clark, K. L., and Schäfer, K. V. R.:
Resource use and efficiency, and stomatal responses to environmental drivers
of oak and pine species in an Atlantic Coastal Plain forest, Front. Plant
Sci., 6, 297, https://doi.org/10.3389/fpls.2015.00297, 2015.
Roman, D. T., Novick, K. A., Brzostek, E. R., Dragoni, D., Rahman, F., and
Phillips, R. P.: The role of isohydric and anisohydric species in determining
ecosystem-scale response to severe drought, Oecologia, 179, 641–654,
https://doi.org/10.1007/s00442-015-3380-9, 2015.
Schymanski, S. J., Kleidon, A., Stieglitz, M., and Narula, J.: Maximum
entropy production allows a simple representation of heterogeneity in
semiarid ecosystems, Philos. T. Roy. Soc. B, 365, 1449–1455,
https://doi.org/10.1098/rstb.2009.0309, 2010.
Schneider, E. D. and Kay, J. J.: Complexity and thermodynamics. Towards a new
ecology, Futures, 26, 626–647, https://doi.org/10.1016/0016-3287(94)90034-5, 1994.
Siteur, K., Eppinga, M. B., Doelman, A., Siero, E., and Rietkerk, M.:
Ecosystems off track: rate-induced critical transitions in ecological models,
Oikos, 125, 1689–1699, https://doi.org/10.1111/oik.03112, 2016.
Skene, K. R.: Life's a gas: A thermodynamic theory of biological evolution,
Entropy, 17, 5522–5548, https://doi.org/10.3390/e17085522, 2015.
Starr, G., Staudhammer, C. L., Wiesner, S., Kunwor, S., Loescher, H. W.,
Baron, A. F., Whelan, A., Mitchell, R. J., and Boring, L.: Carbon dynamics of
Pinus palustris ecosystems following drought, Forests, 7, 98,
https://doi.org/10.3390/f7050098, 2016.
Starr, G. and Brantley, S.: US-LL1: Longleaf Pine – Baker (Mesic site), USA,
available at: https://ameriflux.lbl.gov/sites/siteinfo/US-LL1, last
access: 29 April 2019a.
Starr, G. and Brantley, S.: US-LL2: Longleaf Pine – Dubignion (Intermediate
site), USA, https://ameriflux.lbl.gov/sites/siteinfo/US-LL2, last
access: 29 April 2019b.
Starr, G. and Brantley, S.: US-LL3: Longleaf Pine – Red Dirt (Xeric Site),
USA, https://ameriflux.lbl.gov/sites/siteinfo/US-LL3, last access:
29 April 2019c.
Stoy, P. C., Katul, G. G., Siqueira, M. B. S., Juang, J.-Y., Novick, K. A.,
McCarthy, H. R., C. Oishi, A., Uebelherr, J. M., Kim, H.-S., and Oren, R.:
Separating the effects of climate and vegetation on evapotranspiration along
a successional chronosequence in the southeastern US, Glob. Change Biol., 12,
2115–2135, https://doi.org/10.1111/j.1365-2486.2006.01244.x, 2006.
Stoy, P. C., Lin, H., Novick, K. A., Siqueira, M. B. S., and Juang, J.-Y.:
The role of vegetation on the ecosystem radiative entropy budget and trends
along ecological succession, Entropy, 16, 3710–3731, https://doi.org/10.3390/e16073710,
2014.
Taha, H., Akbari, H., Rosenfeld, A., and Huang, J.: Residential cooling loads
and the urban heat island – the effects of albedo, Build. Environ., 23,
271–283, https://doi.org/10.1016/0360-1323(88)90033-9, 1988.
Thom, D., Rammer, W., and Seidl, R.: The impact of future forest dynamics on
climate: interactive effects of changing vegetation and disturbance regimes,
Ecol. Monogr., 87, 665–684, https://doi.org/10.1002/ecm.1272, 2017.
Thomas, R. T., Prentice, I. C., Graven, H., Ciais, P., Fisher, J. B., Hayes,
D. J., Huang, M., Huntzinger, D. N., Ito, A., Jain, A., Mao, J., Michalak, A.
M., Peng, S., Poulter, B., Ricciuto, D. M., Shi, X., Schwalm, C., Tian, H.,
and Zeng, N.: Increased light-use efficiency in northern terrestrial
ecosystems indicated by CO2 and greening observations, Geophys. Res.
Lett., 43, 11339–11349, https://doi.org/10.1002/2016GL070710, 2016.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R.,
Meyers, T. P., Prueger, J. H., and Wesley, M. L.: Correcting eddy covariance
flux underestimates over grassland, Agr. Forest Meteorol., 103, 279–300,
https://doi.org/10.1016/S0168-1923(00)00123-4, 2000.
Urban, J., Ingwers, M. W., McGuire, M. A., and Teskey, R. O.: Increase in
leaf temperature opens stomata and decouples net photosynthesis from stomatal
conductance in Pinus taeda and Populus deltoides × nigra, J. Exp.
Bot., 7, 1757–1767, https://doi.org/10.1093/jxb/erx052, 2017.
Virgo, N. and Harvey, I.: Entropy Production in Ecosystems, in: Advances in
Artificial Life, Springer, Berlin, Heidelberg, 4648, 123–132, 2007.
Ward, J. K., Tissue, D. T., Thomas, R. B., and Strain, B. R.: Comparative
responses of model C3 and C4 plants to drought in low and elevated
CO2, Glob. Change Biol., 5, 857–867,
https://doi.org/10.1046/j.1365-2486.1999.00270.x, 1999.
Whelan, A., Mitchell, R., Staudhammer, C., and Starr, G.: Cyclic occurrence
of fire and its role in carbon dynamics along an edaphic moisture gradient in
longleaf pine ecosystems, edited by B. Bond-Lamberty, PLoS ONE, 8, e54045,
https://doi.org/10.1371/journal.pone.0054045, 2013.
Wiesner, S., Staudhammer, C. L., Loescher, H. W., Baron-Lopez, A., Boring, L.
R., Mitchell, R. J., and Starr, G.: Interactions among abiotic drivers,
disturbance and gross ecosystem carbon exchange on soil respiration from
subtropical pine savannas, Ecosystems, 21, 1639–1658,
https://doi.org/10.1007/s10021-018-0246-0, 2018.
Woodward, G., Perkins, D. M., and Brown, L. E.: Climate change and freshwater
ecosystems: impacts across multiple levels of organization, Philos. T. Roy.
Soc. B, 365, 2093–2106, https://doi.org/10.1098/rstb.2010.0055, 2010.
Wright, J. K., Williams, M., Starr, G., McGee, J., and Mitchell, R. J.:
Measured and modelled leaf and stand-scale productivity across a soil
moisture gradient and a severe drought, Plant, Cell Environ., 36, 467–483,
https://doi.org/10.1111/j.1365-3040.2012.02590.x, 2012.
Wu, W. and Liu, Y.: Radiation entropy flux and entropy production of the
Earth system, Rev. Geophys., 48, 2, https://doi.org/10.1029/2008RG000275, 2008.
Zhu, J., Jiang, L., and Zhang, Y.: Relationships between functional diversity
and aboveground biomass production in the Northern Tibetan alpine grasslands,
Sci. Rep., 6, 1–8, https://doi.org/10.1038/srep34105, 2016.
Short summary
We studied entropy production in longleaf savanna sites with variations in land use legacy, plant diversity, and soil water availability which experienced drought. Sites with greater land use legacy had lower metabolic energy use efficiency, which delayed recovery from drought. Sites with more hardwood captured less solar radiation but more efficiently used absorbed energy. Future management applications could use these methods to quantify energy use efficiency across global ecosystems.
We studied entropy production in longleaf savanna sites with variations in land use legacy,...
Altmetrics
Final-revised paper
Preprint