Articles | Volume 16, issue 12
https://doi.org/10.5194/bg-16-2481-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-2481-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region
Lars A. Meier
CORRESPONDING AUTHOR
Department of Geosciences, University of Tübingen, Tübingen, 72070, Germany
Invited contribution by Lars A. Meier, recipient of the EGU Soil System Sciences Outstanding Student Poster and PICO Award 2017.
Patryk Krauze
GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473 Potsdam, Germany
Isabel Prater
Lehrstuhl für Bodenkunde, TU München, 85354 Freising,
Germany
Fabian Horn
GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473 Potsdam, Germany
Carlos E. G. R. Schaefer
Departamento de Solos, Universidade Federal de Viçosa, Viçosa,
36571-000, Brazil
Thomas Scholten
Department of Geosciences, University of Tübingen, Tübingen, 72070, Germany
Dirk Wagner
GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473 Potsdam, Germany
Institute of Geoscience, University of Potsdam, 14476 Potsdam, Germany
Carsten W. Mueller
Lehrstuhl für Bodenkunde, TU München, 85354 Freising,
Germany
School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
Peter Kühn
Department of Geosciences, University of Tübingen, Tübingen, 72070, Germany
Related authors
No articles found.
Corinna Gall, Silvana Oldenburg, Martin Nebel, Thomas Scholten, and Steffen Seitz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2504, https://doi.org/10.5194/egusphere-2024-2504, 2024
Short summary
Short summary
Soil erosion is a major issue in vineyards due to often steep slopes and fallow interlines. While cover crops are typically used for erosion control, moss restoration has not been explored. In this study, moss restoration reduced surface runoff by 71.4 % and sediment discharge by 75.8 % compared to bare soil, similar to cover crops. Mosses could serve as ground cover where mowing is impractical, potentially reducing herbicide use in viticulture, though further research is needed.
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Danilo César de Mello, Clara Glória Oliveira Baldi, Cássio Marques Moquedace, Isabelle de Angeli Oliveira, Gustavo Vieira Veloso, Lucas Carvalho Gomes, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes-Filho, Edgar Batista de Medeiros Júnior, Fabio Soares de Oliveira, José João Lelis Leal de Souza Souza, Tiago Ferreira, and José A. M. Demattê
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-2, https://doi.org/10.5194/gmd-2024-2, 2024
Preprint under review for GMD
Short summary
Short summary
The study explores Maritime Antarctica's geology, shaped by periglacial forces, using pioneering gamma-spectrometric and magnetic surveys on igneous rocks due to limited Antarctic surveys. Machine learning predicts radionuclide and magnetic content based on terrain features, linking their distribution to landscape processes, morphometrics, lithology, and pedogeomorphology. Inaccuracies arise due to complex periglacial processes and landscape complexities.
Nicolás Riveras-Muñoz, Steffen Seitz, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Dirk Wagner, and Thomas Scholten
SOIL, 8, 717–731, https://doi.org/10.5194/soil-8-717-2022, https://doi.org/10.5194/soil-8-717-2022, 2022
Short summary
Short summary
Biological soil crusts (biocrusts) stabilize the soil surface mainly in arid regions but are also present in Mediterranean and humid climates. We studied this stabilizing effect through wet and dry sieving along a large climatic gradient in Chile and found that the stabilization of soil aggregates persists in all climates, but their role is masked and reserved for a limited number of size fractions under humid conditions by higher vegetation and organic matter contents in the topsoil.
Corinna Gall, Martin Nebel, Dietmar Quandt, Thomas Scholten, and Steffen Seitz
Biogeosciences, 19, 3225–3245, https://doi.org/10.5194/bg-19-3225-2022, https://doi.org/10.5194/bg-19-3225-2022, 2022
Short summary
Short summary
Soil erosion is one of the most serious environmental challenges of our time, which also applies to forests when forest soil is disturbed. Biological soil crusts (biocrusts) can play a key role as erosion control. In this study, we combined soil erosion measurements with vegetation surveys in disturbed forest areas. We found that soil erosion was reduced primarily by pioneer bryophyte-dominated biocrusts and that bryophytes contributed more to soil erosion mitigation than vascular plants.
Danilo César de Mello, Tiago Osório Ferreira, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Luis Augusto Di Loreto Di Raimo, Diego Ribeiro Oquendo Cabrero, José João Lelis Leal de Souza, Elpídio Inácio Fernandes-Filho, Márcio Rocha Francelino, Carlos Ernesto Gonçalves Reynaud Schaefer, and José A. M. Demattê
SOIL Discuss., https://doi.org/10.5194/soil-2022-17, https://doi.org/10.5194/soil-2022-17, 2022
Revised manuscript not accepted
Short summary
Short summary
We proposed a different method to evaluate different intensities of weathering in a heterogeneous area (soils, geology and relief) and small number of samples. We use combined data from three geophysical sensors, clustering and machine learning (nested-leave-one-out-cross-validation) to distinguish weathering intensities and assess the relationship of these variables with weathering, relief, geology, and soil types and attributes. and we obtained satisfactory performances of models evaluation.
Danilo César de Mello, Gustavo Vieira Veloso, Marcos Guedes de Lana, Fellipe Alcantara de Oliveira Mello, Raul Roberto Poppiel, Diego Ribeiro Oquendo Cabrero, Luis Augusto Di Loreto Di Raimo, Carlos Ernesto Gonçalves Reynaud Schaefer, Elpídio Inácio Fernandes Filho, Emilson Pereira Leite, and José Alexandre Melo Demattê
Geosci. Model Dev., 15, 1219–1246, https://doi.org/10.5194/gmd-15-1219-2022, https://doi.org/10.5194/gmd-15-1219-2022, 2022
Short summary
Short summary
We used soil parent material, terrain attributes, and geophysical data from the soil surface to test and compare different and unprecedented geophysical sensor combination, as well as different machine learning algorithms to model and predict several soil attributes. Also, we analyzed the importance of pedoenvironmental variables. The soil attributes were modeled throughout different machine learning algorithms and related to different geophysical sensor combinations.
Hao Tang, Susanne Liebner, Svenja Reents, Stefanie Nolte, Kai Jensen, Fabian Horn, and Peter Mueller
Biogeosciences, 18, 6133–6146, https://doi.org/10.5194/bg-18-6133-2021, https://doi.org/10.5194/bg-18-6133-2021, 2021
Short summary
Short summary
We examined if sea-level rise and plant genotype interact to affect soil microbial functioning in a mesocosm experiment using two genotypes of a dominant salt-marsh grass characterized by differences in flooding sensitivity. Larger variability in microbial community structure, enzyme activity, and litter breakdown in soils with the more sensitive genotype supports our hypothesis that effects of climate change on soil microbial functioning can be controlled by plant intraspecific adaptations.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Patryk Krauze, Dirk Wagner, Diogo Noses Spinola, and Peter Kühn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-203, https://doi.org/10.5194/bg-2020-203, 2020
Manuscript not accepted for further review
Short summary
Short summary
Soils from the recently deglaciated foreland of the Ecology Glacier, King George Island, were analyzed using soil chemical and microbiological methods to gain insight into the state of soil formation and its interplay with microbial activity. In the foreland of the Ecology Glacier, acidification, soil carbon/nitrogen accumulation, and changes in microbial communities and vegetation were observable on a decadal timescale, whereas weathering processes occur centuries/millenia after deglaciation.
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020, https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Short summary
Large amounts of soil organic matter stored in permafrost-affected soils from Arctic Russia are present as undecomposed plant residues. This large fibrous organic matter might be highly vulnerable to microbial decay, while small mineral-associated organic matter can most probably attenuate carbon mineralization in a warmer future. Labile soil fractions also store large amounts of nitrogen, which might be lost during permafrost collapse while fostering the decomposition of soil organic matter.
Julia Mitzscherling, Fabian Horn, Maria Winterfeld, Linda Mahler, Jens Kallmeyer, Pier P. Overduin, Lutz Schirrmeister, Matthias Winkel, Mikhail N. Grigoriev, Dirk Wagner, and Susanne Liebner
Biogeosciences, 16, 3941–3958, https://doi.org/10.5194/bg-16-3941-2019, https://doi.org/10.5194/bg-16-3941-2019, 2019
Short summary
Short summary
Permafrost temperatures increased substantially at a global scale, potentially altering microbial assemblages involved in carbon mobilization before permafrost thaws. We used Arctic Shelf submarine permafrost as a natural laboratory to investigate the microbial response to long-term permafrost warming. Our work shows that millennia after permafrost warming by > 10 °C, microbial community composition and population size reflect the paleoenvironment rather than a direct effect through warming.
Jan Johannes Miera, Jessica Henkner, Karsten Schmidt, Markus Fuchs, Thomas Scholten, Peter Kühn, and Thomas Knopf
E&G Quaternary Sci. J., 68, 75–93, https://doi.org/10.5194/egqsj-68-75-2019, https://doi.org/10.5194/egqsj-68-75-2019, 2019
Short summary
Short summary
This study investigates Neolithic settlement dynamics by combining archaeological source criticism and archaeopedological data from colluvial deposits. It is shown that the distribution of Neolithic sites in the Baar region is distorted by superimposition due to erosion. Furthermore, the preservation conditions for pottery are limited by weathering effects. By complementing archaeological data with phases of colluviation we are able to point out settlement dynamics throughout the Neolithic.
Xi Wen, Viktoria Unger, Gerald Jurasinski, Franziska Koebsch, Fabian Horn, Gregor Rehder, Torsten Sachs, Dominik Zak, Gunnar Lischeid, Klaus-Holger Knorr, Michael E. Böttcher, Matthias Winkel, Paul L. E. Bodelier, and Susanne Liebner
Biogeosciences, 15, 6519–6536, https://doi.org/10.5194/bg-15-6519-2018, https://doi.org/10.5194/bg-15-6519-2018, 2018
Short summary
Short summary
Rewetting drained peatlands may lead to prolonged emission of the greenhouse gas methane, but the underlying factors are not well described. In this study, we found two rewetted fens with known high methane fluxes had a high ratio of microbial methane producers to methane consumers and a low abundance of methane consumers compared to pristine wetlands. We therefore suggest abundances of methane-cycling microbes as potential indicators for prolonged high methane emissions in rewetted peatlands.
Steffen Seitz, Martin Nebel, Philipp Goebes, Kathrin Käppeler, Karsten Schmidt, Xuezheng Shi, Zhengshan Song, Carla L. Webber, Bettina Weber, and Thomas Scholten
Biogeosciences, 14, 5775–5788, https://doi.org/10.5194/bg-14-5775-2017, https://doi.org/10.5194/bg-14-5775-2017, 2017
Short summary
Short summary
This study investigated biological soil crusts (biocrusts, e.g. cyanobacteria and mosses) within an early-stage mesic subtropical forest in China, where they were particularly abundant. Biocrust covers significantly decreased soil erosion and were more effective in erosion reduction than stone cover. Hence, they play an important role in mitigating soil erosion under forest and are of particular interest for erosion control in forest plantations.
Robert Bussert, Horst Kämpf, Christina Flechsig, Katja Hesse, Tobias Nickschick, Qi Liu, Josefine Umlauft, Tomáš Vylita, Dirk Wagner, Thomas Wonik, Hortencia Estrella Flores, and Mashal Alawi
Sci. Dril., 23, 13–27, https://doi.org/10.5194/sd-23-13-2017, https://doi.org/10.5194/sd-23-13-2017, 2017
Ramchandra Karki, Shabeh ul Hasson, Lars Gerlitz, Udo Schickhoff, Thomas Scholten, and Jürgen Böhner
Earth Syst. Dynam., 8, 507–528, https://doi.org/10.5194/esd-8-507-2017, https://doi.org/10.5194/esd-8-507-2017, 2017
Short summary
Short summary
Dynamical downscaling of climate fields at very high resolutions (convection- and topography-resolving scales) over the complex Himalayan terrain of the Nepalese Himalayas shows promising results. It clearly demonstrates the potential of mesoscale models to accurately simulate present and future climate information at very high resolutions over remote, data-scarce mountainous regions for the development of adaptation strategies and impact assessments in the context of changing climate.
Juliane Bischoff, Robert B. Sparkes, Ayça Doğrul Selver, Robert G. M. Spencer, Örjan Gustafsson, Igor P. Semiletov, Oleg V. Dudarev, Dirk Wagner, Elizaveta Rivkina, Bart E. van Dongen, and Helen M. Talbot
Biogeosciences, 13, 4899–4914, https://doi.org/10.5194/bg-13-4899-2016, https://doi.org/10.5194/bg-13-4899-2016, 2016
Short summary
Short summary
The Arctic contains a large pool of carbon that is vulnerable to warming and can be released by rivers and coastal erosion. We study microbial lipids (BHPs) in permafrost and shelf sediments to trace the source, transport and fate of this carbon. BHPs in permafrost deposits are released to the shelf by rivers and coastal erosion, in contrast to other microbial lipids (GDGTs) that are transported by rivers. Several further analyses are needed to understand the complex East Siberian Shelf system.
Stephan John, Gerrit Angst, Kristina Kirfel, Sebastian Preusser, Carsten W. Mueller, Christoph Leuschner, Ellen Kandeler, and Janet Rethemeyer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-11, https://doi.org/10.5194/bg-2016-11, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript we investigate chemical, biological and physical soil parameters and their influence on 14C contents and distribution in three nearby soil profiles under beech forest. We found a large heterogeneity in 14C contents in the profiles, mainly caused by the abundance of roots. Our results indicate that 14C analysis of individual soil profiles – as it is done in most studies – may lead to misleading assumptions of SOM turnover in soils when extrapolated on larger areas.
S. Seitz, P. Goebes, Z. Song, H. Bruelheide, W. Härdtle, P. Kühn, Y. Li, and T. Scholten
SOIL, 2, 49–61, https://doi.org/10.5194/soil-2-49-2016, https://doi.org/10.5194/soil-2-49-2016, 2016
Short summary
Short summary
Different tree species affect interrill erosion, but a higher tree species richness does not mitigate soil losses in young subtropical forest stands. Different tree morphologies and tree traits (e.g. crown cover or tree height) have to be considered when assessing erosion in forest ecosystems. If a leaf litter cover is not present, the remaining soil surface cover by stones and biological soil crusts is the most important driver for soil erosion control.
J. Niederberger, B. Todt, A. Boča, R. Nitschke, M. Kohler, P. Kühn, and J. Bauhus
Biogeosciences, 12, 3415–3428, https://doi.org/10.5194/bg-12-3415-2015, https://doi.org/10.5194/bg-12-3415-2015, 2015
Short summary
Short summary
The analysis of soil phosphorus (P) in fractions of different plant availability is a common approach to characterize the P status of forest soils. However, quantification of organic and inorganic P fractions is very labour intensive and therefore rarely applied for large sample numbers. Prediction of P fractions with NIRS can be a promising approach to replace conventional analysis, if models are developed for sets of soil samples with similar physical and chemical properties.
E. L. Poelking, C. E. R. Schaefer, E. I. Fernandes Filho, A. M. de Andrade, and A. A. Spielmann
Solid Earth, 6, 583–594, https://doi.org/10.5194/se-6-583-2015, https://doi.org/10.5194/se-6-583-2015, 2015
U. Schickhoff, M. Bobrowski, J. Böhner, B. Bürzle, R. P. Chaudhary, L. Gerlitz, H. Heyken, J. Lange, M. Müller, T. Scholten, N. Schwab, and R. Wedegärtner
Earth Syst. Dynam., 6, 245–265, https://doi.org/10.5194/esd-6-245-2015, https://doi.org/10.5194/esd-6-245-2015, 2015
Short summary
Short summary
Near-natural Himalayan treelines are usually krummholz treelines, which are relatively unresponsive to climate change. Intense recruitment of treeline trees suggests a great potential for future treeline advance. Competitive abilities of tree seedlings within krummholz thickets and dwarf scrub heaths will be a major source of variation in treeline dynamics. Tree growth-climate relationships show mature treeline trees to be responsive in particular to high pre-monsoon temperature trends.
R. F. M. Michel, C. E. G. R. Schaefer, F. M. B. Simas, M. R. Francelino, E. I. Fernandes-Filho, G. B. Lyra, and J. G. Bockheim
Solid Earth, 5, 1361–1374, https://doi.org/10.5194/se-5-1361-2014, https://doi.org/10.5194/se-5-1361-2014, 2014
A.-K. Schatz, T. Scholten, and P. Kühn
Clim. Past Discuss., https://doi.org/10.5194/cpd-10-469-2014, https://doi.org/10.5194/cpd-10-469-2014, 2014
Revised manuscript not accepted
T. Dahm, P. Hrubcová, T. Fischer, J. Horálek, M. Korn, S. Buske, and D. Wagner
Sci. Dril., 16, 93–99, https://doi.org/10.5194/sd-16-93-2013, https://doi.org/10.5194/sd-16-93-2013, 2013
S. Höfle, J. Rethemeyer, C. W. Mueller, and S. John
Biogeosciences, 10, 3145–3158, https://doi.org/10.5194/bg-10-3145-2013, https://doi.org/10.5194/bg-10-3145-2013, 2013
Related subject area
Biogeochemistry: Soils
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
The effects of land use on soil carbon stocks in the UK
Technical note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Effect of straw retention and mineral fertilization on P speciation and P-transformation microorganisms in water extractable colloids of a Vertisol
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
Biogeosciences, 21, 4395–4411, https://doi.org/10.5194/bg-21-4395-2024, https://doi.org/10.5194/bg-21-4395-2024, 2024
Short summary
Short summary
Soils store organic carbon composed of multiple compounds from plants and microbes for different lengths of time. To understand how soils store these different carbon types, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Peter Levy, Laura Bentley, Peter Danks, Bridget Emmett, Angus Garbutt, Stephen Heming, Peter Henrys, Aidan Keith, Inma Lebron, Niall McNamara, Richard Pywell, John Redhead, David Robinson, and Alexander Wickenden
Biogeosciences, 21, 4301–4315, https://doi.org/10.5194/bg-21-4301-2024, https://doi.org/10.5194/bg-21-4301-2024, 2024
Short summary
Short summary
We collated a large data set (15 790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects was large. This has important implications for agri-environment schemes seeking to sequester carbon in the soil by altering land use because the effect of a given intervention is very hard to verify.
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
Biogeosciences, 21, 4229–4237, https://doi.org/10.5194/bg-21-4229-2024, https://doi.org/10.5194/bg-21-4229-2024, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies focus on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, the Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Shanshan Bai, Yifei Ge, Dongtan Yao, Yifan Wang, Jinfang Tan, Shuai Zhang, Yutao Peng, and Xiaoqian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-983, https://doi.org/10.5194/egusphere-2024-983, 2024
Short summary
Short summary
Mineral fertilization led to increases in total P, available P, high-activity inorganic P fractions and organic P, but decreased the abundances of P cycling genes by decreasing soil pH and increasing P in bulk soil. Straw retention brought increases for organic C, total P, available P concentrations in water-extractable colloids (WECs). Abundances of phoD gene and phoD-harbouring Proteobacteria in WECs increased under straw retention, suggesting that the P mineralizing capacity increased.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Cited articles
Aislabie, J. M., Jordan, S., and Barker, G. M.: Relation between Soil
Classification and Bacterial Diversity in Soils of the Ross Sea Region,
Antarctica, Geoderma, 144, 9–20,
https://doi.org/10.1016/j.geoderma.2007.10.006, 2008.
Arenz, B. and Blanchette, R.: Distribution and Abundance of Soil Fungi in
Antarctica at Sites on the Peninsula, Ross Sea Region and Mcmurdo Dry
Valleys, Soil Biol. Biochem., 43, 308–315, 2011.
Ayton, J., Aislabie, J., Barker, G., Saul, D., and Turner, S.: Crenarchaeota
Affiliated with Group 1.1 B Are Prevalent in Coastal Mineral Soils of the
Ross Sea Region of Antarctica, Environ. Microbiol., 12, 689–703,
2010.
Bajerski, F. and Wagner, D.: Bacterial Succession in Antarctic Soils of Two
Glacier Forefields on Larsemann Hills, East Antarctica, FEMS Microbiol.
Ecol., 85, 128–142, https://doi.org/10.1111/1574-6941.12105, 2013.
Bajerski, F., Ganzert, L., Mangelsdorf, K., Padur, L., Lipski, A., and
Wagner, D.: Chryseobacterium Frigidisoli Sp. Nov., a Psychrotolerant Species
of the Family Flavobacteriaceae Isolated from Sandy Permafrost from a
Glacier Forefield, Int. J. Syst. Evol. Micr., 63, 2666–2671, 2013.
Balks, M. R., López-Martínez, J., Goryachkin, S. V., Mergelov, N.
S., Schaefer, C. E., Simas, F. N., Almond, P. C., Claridge, G. G., Mcleod,
M., and Scarrow, J.: Windows on Antarctic Soil–Landscape Relationships:
Comparison across Selected Regions of Antarctica, Geol. Soc.
Lond. Spec. Publ., 381, 397–410, 2013.
Baumann, F., Schmidt, K., Dörfer, C., He, J.-S., Scholten, T., and
Kühn, P.: Pedogenesis, Permafrost, Substrate and Topography: Plot and
Landscape Scale Interrelations of Weathering Processes on the
Central-Eastern Tibetan Plateau, Geoderma, 226–227, 300–316, https://doi.org/10.1016/j.geoderma.2014.02.019, 2014.
Benassai, S., Becagli, S., Gragnani, R., Magand, O., Proposito, M., Fattori,
I., Traversi, R., and Udisti, R.: Sea-Spray Deposition in Antarctic Coastal
and Plateau Areas from Itase Traverses, Ann. Glaciol., 41, 32–40,
2005.
Blume, H. and Schwertmann, U.: Genetic Evaluation of Profile Distribution
of Aluminum, Iron, and Manganese Oxides, Soil Sci. Soc. Am.
J., 33, 438–444, 1969.
Blume, H.-P., Chen, J., Kalk, E., and Kuhn, D.: Mineralogy and Weathering of
Antarctic Cryosols, in: Cryosols, Springer, Berlin, Heidelberg, 427–445, 2004.
Blume, H.-P., Brümmer, G. W., Horn, R., Kandeler, E., Kögel-Knabner,
I., Kretzschmar, R., Stahr, K., Wilke, B.-M., Thiele-Bruhn, S., and Welp,
G.: Lehrbuch Der Bodenkunde 16. Auflage, edited by: Scheffer, F. and
Schachtschabel, B., Spektrum Akademischer Verlag, Heidelberg, 2010.
Blume, H.-P., Stahr, K., and Leinweber, P.: Bodenkundliches Praktikum: Eine
Einführung in Pedologisches Arbeiten Für Ökologen, Land-Und
Forstwirte, Geo-Und Umweltwissenschaftler, Springer-Verlag, 2011.
Bockheim, J.: Properties and Classification of Cold Desert Soils from
Antarctica, Soil Sci. Soc. Am. J., 61, 224–231, 1997.
Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano,
E., Guglielmin, M., Wilhelm, K., and Nieuwendam, A.: Climate Warming and
Permafrost Dynamics in the Antarctic Peninsula Region, Global Planet.
Change, 100, 215–223, https://doi.org/10.1016/j.gloplacha.2012.10.018, 2013.
Bockheim, J. G., Lupachev, A. V., Blume, H. P., Bölter, M., Simas, F. N.
B., and McLeod, M.: Distribution of Soil Taxa in Antarctica: A Preliminary
Analysis, Geoderma, 245–246, 104–111, https://doi.org/10.1016/j.geoderma.2015.01.017, 2015.
Bolger, A. M., Lohse, M., and Usadel, B.: Trimmomatic: A Flexible Trimmer
for Illumina Sequence Data, Bioinformatics, 30, 2114–2120,
https://doi.org/10.1093/bioinformatics/btu170, 2014.
Borzotta, E. and Trombotto, D.: Correlation between Frozen Ground Thickness
Measured in Antarctica and Permafrost Thickness Estimated on the Basis of
the Heat Flow Obtained from Magnetotelluric Soundings, Cold Reg. Sci.
Technol., 40, 81–96, https://doi.org/10.1016/j.coldregions.2004.06.002, 2004.
Bowman, J. P. and Nichols, D. S.: Novel Members of the Family
Flavobacteriaceae from Antarctic Maritime Habitats Including
Subsaximicrobium Wynnwilliamsii Gen. Nov., Sp. Nov., Subsaximicrobium
Saxinquilinus Sp. Nov., Subsaxibacter Broadyi Gen. Nov., Sp. Nov.,
Lacinutrix Copepodicola Gen. Nov., Sp. Nov., and Novel Species of the Genera
Bizionia, Gelidibacter and Gillisia, Int. J. Syst.
Evol. Micr., 55, 1471–1486, 2005.
Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P.:
Mesophilic Crenarchaeota: Proposal for a Third Archaeal Phylum, the
Thaumarchaeota, Nat. Rev. Microbiol., 6, 245–252, 2008.
Canfield, D. E.: Reactive Iron in Marine Sediments, Geochim.
Cosmochim. Ac., 53, 619–632, 1989.
Cannone, N., Wagner, D., Hubberten, H. W., and Guglielmin, M.: Biotic and
Abiotic Factors Influencing Soil Properties across a Latitudinal Gradient in
Victoria Land, Antarctica, Geoderma, 144, 50–65,
https://doi.org/10.1016/j.geoderma.2007.10.008, 2008.
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.
D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., and Gordon,
J. I.: Qiime Allows Analysis of High-Throughput Community Sequencing Data,
Nat. Methods, 7, 335–336, 2010.
Cary, S. C., McDonald, I. R., Barrett, J. E., and Cowan, D. A.: On the
Rocks: The Microbiology of Antarctic Dry Valley Soils, Nat. Rev.
Microbiol., 8, 129–138, 2010.
Chong, C. W., Pearce, D. A., Convey, P., Tan, G. A., Wong, R. C., and Tan,
I. K.: High Levels of Spatial Heterogeneity in the Biodiversity of Soil
Prokaryotes on Signy Island, Antarctica, Soil Biol. Biochem., 42,
601–610, 2010.
Chong, C. W., Pearce, D., Convey, P., Yew, W. C., and Tan, I.: Patterns in
the Distribution of Soil Bacterial 16s Rrna Gene Sequences from Different
Regions of Antarctica, Geoderma, 181, 45–55, 2012.
Chong, C.-W., Pearce, D. A., and Convey, P.: Emerging Spatial Patterns in
Antarctic Prokaryotes, Front. Microbiol., 6, 1058, https://doi.org/10.3389/fmicb.2015.01058, 2015.
Cowan, D. A., Sohm, J. A., Makhalanyane, T. P., Capone, D. G., Green, T. G.
A., Cary, S. C., and Tuffin, I. M.: Hypolithic Communities: Important
Nitrogen Sources in Antarctic Desert Soils, Env. Microbiol. Rep., 3, 581–586,
https://doi.org/10.1111/j.1758-2229.2011.00266.x, 2011.
Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., and Hopkins, D. W.:
Microbial Ecology and Biogeochemistry of Continental Antarctic Soils,
Front. Microbiol., 5, 154, https://doi.org/10.3389/fmicb.2014.00154, 2014.
Daher, M., Schaefer, C. E. G. R., Fernandes Filho, E. I., Francelino, M. R., and
Senra, E. O.: Semi-arid soils from a topolithosequence at James Ross Island,
Weddell Sea region, Antarctica: Chemistry, mineralogy, genesis and
classification, Geomorphology, 327, 351–364,
https://doi.org/10.1016/j.geomorph.2018.11.003, 2018.
Davies, B. J., Glasser, N. F., Carrivick, J. L., Hambrey, M. J., Smellie, J.
L., and Nývlt, D.: Landscape Evolution and Ice-Sheet Behaviour in a
Semi-Arid Polar Environment: James Ross Island, Ne Antarctic Peninsula,
Geol. Soc. Lond. Spec. Publ., 381, 353–395, 2013.
DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., and Radosevich,
M.: Global Biogeography and Quantitative Seasonal Dynamics of
Gemmatimonadetes in Soil, Appl. Environ. Microbiol., 77, 6295–6300, 2011.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L.: Greengenes,
a Chimera-Checked 16s Rrna Gene Database and Workbench Compatible with Arb,
Appl. Environ. Microbiol., 72, 5069–5072, 2006.
Edgar, R. C.: Search and Clustering Orders of Magnitude Faster Than Blast,
Bioinformatics, 26, 2460–2461, 2010.
Engel, Z., Nývlt, D., and Láska, K.: Ice Thickness, Bed Topography
and Glacier Volume Changes on James Ross Island, Antarctic Peninsula,
J. Glaciol., 58, 904–914, 2012.
Food and Agriculture Organization of the United Nations (FAO): Fao
Guidelines for Soil Description, 4th Ed., edited by: Food and Agriculture
Organization of the United Nations, Rome, 2006.
Frey, B., Rieder, S. R., Brunner, I., Plötze, M., Koetzsch, S., Lapanje, A., Brandl, H., and Furrer, G.: Weathering-Associated Bacteria from the Damma Glacier Forefield: Physiological Capabilities and Impact on Granite Dissolution, Appl. Environ. Microbiol., 76, 4788–4796, 2010.
Ganzert, L., Lipski, A., Hubberten, H.-W., and Wagner, D.: The Impact of
Different Soil Parameters on the Community Structure of Dominant Bacteria
from Nine Different Soils Located on Livingston Island, South Shetland
Archipelago, Antarctica, FEMS Microbiol. Ecol., 76, 476–491,
https://doi.org/10.1111/j.1574-6941.2011.01068.x, 2011.
Greening, C., Constant, P., Hards, K., Morales, S. E., Oakeshott, J. G.,
Russell, R. J., Taylor, M. C., Berney, M., Conrad, R., and Cook, G. M.:
Atmospheric Hydrogen Scavenging: From Enzymes to Ecosystems, Appl. Environ.
Microbiol., 81, 1190–1199, 2015.
Hallberg, K. B., Hedrich, S., and Johnson, D. B.: Acidiferrobacter
Thiooxydans, Gen. Nov. Sp. Nov.; an Acidophilic, Thermo-Tolerant,
Facultatively Anaerobic Iron-and Sulfur-Oxidizer of the Family
Ectothiorhodospiraceae, Extremophiles, 15, 271–279, 2011.
Hammer, Ø., Harper, D., and Ryan, P.: Past: Paleontological Statistics
Software Package for Education and Data Analysis Palaeontol, Electronica, 4,
1–9, 2001.
Hara, K., Osada, K., Kido, M., Hayashi, M., Matsunaga, K., Iwasaka, Y.,
Yamanouchi, T., Hashida, G., and Fukatsu, T.: Chemistry of Sea-Salt
Particles and Inorganic Halogen Species in Antarctic Regions: Compositional
Differences between Coastal and Inland Stations, J. Geophys.
Res.-Atmos., 109, D20208, https://doi.org/10.1029/2004JD004713, 2004.
Haus, N., Schaefer, C. E., Bockheim, J., and Pereira, T. T. C.: Soils of
Graham and Palmer Lands, Antarctic Peninsula, in: The Soils of Antarctica,
Springer, Cham, Heidelberg, 205–225, 2015.
Hemkemeyer, M., Dohrmann, A. B., Christensen, B. T., and Tebbe, C. C. J. F.
I. M.: Bacterial Preferences for Specific Soil Particle Size Fractions
Revealed by Community Analyses, Front. Microbiol., 9, 149, https://doi.org/10.3389/fmicb.2018.00149, 2018.
Hjort, C., Ingólfsson, Ó., Möller, P., and Lirio, J. M.:
Holocene Glacial History and Sea-Level Changes on James Ross Island,
Antarctic Peninsula, J. Quaternary Sci., 12, 259-273, 1997.
Holmgren, G. G.: A Rapid Citrate-Dithionite Extractable Iron Procedure, Soil
Sci. Soc. Am. J., 31, 210–211, 1967.
Hrbáček, F., Láska, K., and Engel, Z.: Effect of Snow Cover on
the Active-Layer Thermal Regime – a Case Study from James Ross Island,
Antarctic Peninsula, Permafrost Periglac., 27, 307–315, https://doi.org/10.1002/ppp.1871, 2016a.
Hrbáček, F., Láska, K., Nývlt, D., Engel, Z., and Oliva, M.:
Active Layer Thickness Variability on James Ross Island, Eastern Antarctic
Peninsula, International Conference on Permafrost, Potsdam, Germany, 2016b.
Hrbáček, F., Oliva, M., Láska, K., Ruiz-Fernández, J.,
Pablo, M. Á. D., Vieira, G., Ramos, M., and Nývlt, D.: Active Layer
Thermal Regime in Two Climatically Contrasted Sites of the Antarctic
Peninsula Region, Cuadern. Investig., 42,
451–474, https://doi.org/10.18172/cig.2915, 2016c.
Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K.,
Mueller, C. W., and Ondruch, J.: Active Layer Monitoring at Calm-S Site near
J.G.Mendel Station, James Ross Island, Eastern Antarctic Peninsula, Sci. Total Environ., 601, 987–997, https://doi.org/10.1016/j.scitotenv.2017.05.266, 2017a.
Hrbáček, F., Nývlt, D., and Láska, K.: Active Layer Thermal
Dynamics at Two Lithologically Different Sites on James Ross Island, Eastern
Antarctic Peninsula, Catena, 149, 592–602, https://doi.org/10.1016/j.catena.2016.06.020, 2017b.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, Update
2015 International Soil Classification System for Naming Soils and Creating
Legends for Soil Maps, World Soil Resources Reports, FAO, Rome,
2015.
Jensen, H. I.: Report on Antarctic Soils, Reports of Geology 2, Expedition,
William Heinemann, London, 1916.
Ji, M., Greening, C., Vanwonterghem, I., Carere, C. R., Bay, S. K., Steen,
J. A., Montgomery, K., Lines, T., Beardall, J., and van Dorst, J.:
Atmospheric Trace Gases Support Primary Production in Antarctic Desert
Surface Soil, Nature, 552, 400–403, 2017.
Ji, M., van Dorst, J., Bissett, A., Brown, M. V., Palmer, A. S., Snape, I.,
Siciliano, S. D., and Ferrari, B. C.: Microbial diversity at Mitchell Peninsula, Eastern
Antarctica: a potential biodiversity “hotspot”, Polar Biol., 39, 237–249, 2016.
Kaiser, K. and Guggenberger, G.: The Role of Dom Sorption to Mineral
Surfaces in the Preservation of Organic Matter in Soils, Org.
Geochem., 31, 711–725, 2000.
Kirshner, A. E. and Anderson, J. B.: Cenozoic Glacial History of the
Northern Antarctic Peninsula: A Micromorphological Investigation of Quartz
Sand Grains, in: Tectonic, Climatic, and Cryospheric Evolution of the Antarctic Peninsula, American Geophysical Union, Washington, D.C. https://doi.org/10.1029/SP063153-165, 2011.
Könneke, M., Schubert, D. M., Brown, P. C., Hügler, M., Standfest,
S., Schwander, T., von Borzyskowski, L. S., Erb, T. J., Stahl, D. A., and
Berg, I. A.: Ammonia-Oxidizing Archaea Use the Most Energy-Efficient Aerobic
Pathway for CO2 Fixation, P. Natl. Acad. Sci. USA,
111, 8239–8244, https://doi.org/10.1073/pnas.1402028111, 2014.
Kronberg, B. and Nesbitt, H.: Quantification of Weathering, Soil
Geochemistry and Soil Fertility, Eur. J. Soil Sci., 32,
453–459, 1981.
Kühn, P., Lehndorff, E., and Fuchs, M.: Lateglacial to Holocene
Pedogenesis and Formation of Colluvial Deposits in a Loess Landscape of
Central Europe (Wetterau, Germany), Catena, 154, 118–135, 2017.
Láska, K., Barták, M., Hájek, J., Prošek, P., and
Bohuslavová, O.: Climatic and Ecological Characteristics of Deglaciated
Area of James Ross Island, Antarctica, with a Special Respect to Vegetation
Cover, Czech Polar Reports, 1, 49–62, 2011.
Láska, K., Nývlt, D., Engel, Z., and Budík, L.: Seasonal
Variation of Meteorological Variables and Recent Surface
Ablation/Accumulation Rates on Davies Dome and Whisky Glacier, James Ross
Island, Antarctica, Geophys. Res. Abstr.,
EGU2012-5545, EGU General Assembly 2012, Vienna, Austria, 2012.
Liebner, S., Harder, J., and Wagner, D.: Bacterial Diversity and Community
Structure in Polygonal Tundra Soils from Samoylov Island, Lena Delta,
Siberia, Int. Microbiol., 11, 195–202, 2008.
Ma, G.-Y., He, L.-Y., and Sheng, X.-F.: Characterization of Bacterial
Community Inhabiting the Surfaces of Weathered Bricks of Nanjing Ming City
Walls, Sci. Total Environ., 409, 756–762, 2011.
Magalhães, C. M., Machado, A., Frank-Fahle, B., Lee, C. K., and Cary, S.
C.: The Ecological Dichotomy of Ammonia-Oxidizing Archaea and Bacteria in
the Hyper-Arid Soils of the Antarctic Dry Valleys, Front.
Microbiol., 5, 515, https://doi.org/10.3389/fmicb.2014.00515, 2014.
Martin, M.: Cutadapt Removes Adapter Sequences from High-Throughput
Sequencing Reads, EMBnet Journal, 17, 10–12, 2011.
Martin, P. and Peel, D.: The Spatial Distribution of 10 M Temperatures in
the Antarctic Peninsula, J. Glaciol., 20, 311–317, 1978.
Michel, R. F., Schaefer, C. E., López-Martínez, J., Simas, F. N.,
Haus, N. W., Serrano, E., and Bockheim, J. G.: Soils and Landforms from
Fildes Peninsula and Ardley Island, Maritime Antarctica, Geomorphology, 225,
76–86, 2014.
Mirabella, A. and Carnicelli, S.: Iron Oxide Mineralogy in Red and Brown
Soils Developed on Calcareous Rocks in Central Italy, Geoderma, 55, 95–109,
1992.
Moura, P. A., Francelino, M. R., Schaefer, C. E. G. R., Simas, F. N. B., and
de Mendonça, B. A. F.: Distribution and Characterization of Soils and
Landform Relationships in Byers Peninsula, Livingston Island, Maritime
Antarctica, Geomorphology, 155–156, 45–54, https://doi.org/10.1016/j.geomorph.2011.12.011, 2012.
Müller, V. and Oren, A.: Metabolism of Chloride in Halophilic
Prokaryotes, Extremophiles, 7, 261–266, 2003.
Muyzer, G., De Waal, E. C., and Uitterlinden, A. G.: Profiling of Complex
Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of
Polymerase Chain Reaction-Amplified Genes Coding for 16s Rrna, Appl.
Environ. Microbiol., 59, 695–700, 1993.
Nedbalová, L., Nývlt, D., Kopáček, J., Šobr, M., and
Elster, J.: Freshwater Lakes of Ulu Peninsula, James Ross Island, North-East
Antarctic Peninsula: Origin, Geomorphology and Physical and Chemical
Limnology, Antarct. Sci., 25, 358–372, https://doi.org/10.1017/S0954102012000934, 2013.
Nesbitt, H. and Young, G.: Early Proterozoic Climates and Plate Motions
Inferred from Major Element Chemistry of Lutites, Nature, 299, 715–717,
1982.
Niederberger, T. D., Sohm, J. A., Gunderson, T., Tirindelli, J., Capone, D.
G., Carpenter, E. J., and Cary, S. C.: Carbon-Fixation Rates and Associated
Microbial Communities Residing in Arid and Ephemerally Wet Antarctic Dry
Valley Soils, Front. Microbiol., 6, 1347, https://doi.org/10.3389/fmicb.2015.01347, 2015.
Nývlt, D., Braucher, R., Engel, Z., and Mlčoch, B.: Timing of the
Northern Prince Gustav Ice Stream Retreat and the Deglaciation of Northern
James Ross Island, Antarctic Peninsula During the Last Glacial–Interglacial
Transition, Quaternary Res., 82, 441–449, https://doi.org/10.1016/j.yqres.2014.05.003, 2014.
Nývlt, D., Fišáková, M. N., Barták, M., Stachoň, Z.,
Pavel, V., Mlčoch, B., and Láska, K.: Death Age, Seasonality,
Taphonomy and Colonization of Seal Carcasses from Ulu Peninsula, James Ross
Island, Antarctic Peninsula, Antarct. Sci., 28, 3–16, 2016.
Oren, A.: Diversity of Halophilic Microorganisms: Environments, Phylogeny,
Physiology, and Applications, J. Ind. Microbiol.
Biot., 28, 56–63, 2002.
Parnikoza, I., Abakumov, E., Korsun, S., Klymenko, I., Netsyk, M., Kudinova, A., and Kozeretska, I.: Soils of the Argentine Islands, Antarctica: Diversity and Characteristics, Polarforschung, 86, 83–96, 2017.
Pearce, D. A., Newsham, K., Thorne, M., Calvo-Bado, L., Krsek, M., Laskaris,
P., Hodson, A., and Wellington, E. M.: Metagenomic Analysis of a Southern
Maritime Antarctic Soil, Front. Microbiol., 3, 403, https://doi.org/10.3389/fmicb.2012.00403, 2012.
Pereira, J. L., Pereira, P., Padeiro, A., Gonçalves, F., Amaro, E.,
Leppe, M., Verkulich, S., Hughes, K. A., Peter, H.-U., and Canário, J.:
Environmental Hazard Assessment of Contaminated Soils in Antarctica: Using a
Structured Tier 1 Approach to Inform Decision-Making, Sci. Total
Environ., 574, 443–454, https://doi.org/10.1016/j.scitotenv.2016.09.091,
2017.
Pereira, T. T. C., Schaefer, C. E. G. R., Ker, J. C., Almeida, C. C., and
Almeida, I. C. C.: Micromorphological and Microchemical Indicators of
Pedogenesis in Ornithogenic Cryosols (Gelisols) of Hope Bay, Antarctic
Peninsula, Geoderma, 193–194, 311–322, https://doi.org/10.1016/j.geoderma.2012.10.023, 2013.
Prietzel, J., Prater, I., Colocho Hurtarte, L. C., Hrbáček, F.,
Klysubun, W., and Mueller, C. W.: Site Conditions and Vegetation Determine
Phosphorus and Sulfur Speciation in Soils of Antarctica, Geochim.
Cosmochim. Ac., 246, 339–362, https://doi.org/10.1016/j.gca.2018.12.001,
2019.
Ramnarine, R., Voroney, R., Wagner-Riddle, C., and Dunfield, K.: Carbonate
Removal by Acid Fumigation for Measuring the δ13C of Soil Organic
Carbon, Can. J. Soil Sci., 91, 247–250, 2011.
Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gour-bière, F.,
Thioulouse, J., and Nazaret S.: Heterogeneous celldensity and genetic structure
of bacterial pools associatedwith various soil microenvironments as
determined by enu-meration and DNA fingerprint approach (RISA),
Microbiol. Ecol., 39, 263–272, 2000.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.
S.: Carbohydrate-Like Composition of Submicron Atmospheric Particles and
Their Production from Ocean Bubble Bursting, P. Natl.
Acad. Sci. USA, 107, 6652–6657, 2010.
Salzmann, U., Riding, J. B., Nelson, A. E., and Smellie, J. L.: How Likely
Was a Green Antarctic Peninsula During Warm Pliocene Interglacials? A
Critical Reassessment Based on New Palynofloras from James Ross Island,
Palaeogeogr. Palaeocl., 309, 73–82, https://doi.org/10.1016/j.palaeo.2011.01.028, 2011.
Schaefer, C. E. G. R., Simas, F. N. B., Gilkes, R. J., Mathison, C., da
Costa, L. M., and Albuquerque, M. A.: Micromorphology and Microchemistry of
Selected Cryosols from Maritime Antarctica, Geoderma, 144, 104–115,
https://doi.org/10.1016/j.geoderma.2007.10.018, 2008.
Schaefer, C. E. G. R., Pereira, T. T. C., Almeida, I. C. C., Michel, R. F.
M., Corrêa, G. R., Figueiredo, L. P. S., and Ker, J. C.: Penguin
Activity Modify the Thermal Regime of Active Layer in Antarctica: A Case
Study from Hope Bay, Catena, 149, 582–591, https://doi.org/10.1016/j.catena.2016.07.021, 2017.
Schwertmann, U.: Differenzierung Der Eisenoxide Des Bodens Durch Extraktion
Mit Ammoniumoxalat-Lösung, J. Plant Nutr. Soil Sc.,
105, 194–202, 1964.
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The Transient Layer:
Implications for Geocryology and Climate-Change Science, Permafrost
Periglac., 16, 5–17, https://doi.org/10.1002/ppp.518, 2005.
Siciliano, S. D., Palmer, A. S., Winsley, T., Lamb, E., Bissett, A., Brown,
M. V., van Dorst, J., Ji, M., Ferrari, B. C., and Grogan, P.: Soil Fertility
Is Associated with Fungal and Bacterial Richness, Whereas Ph Is Associated
with Community Composition in Polar Soil Microbial Communities, Soil Biol. Biochem., 78, 10–20, 2014.
Sigler, W., Crivii, S., and Zeyer, J.: Bacterial Succession in Glacial
Forefield Soils Characterized by Community Structure, Activity and
Opportunistic Growth Dynamics, Microbial Ecol., 44, 306–316, 2002.
Simas, F. N. B., Schaefer, C. E. G. R., Filho, M. R. A., Francelino, M. R.,
Filho, E. I. F., and da Costa, L. M.: Genesis, Properties and Classification
of Cryosols from Admiralty Bay, Maritime Antarctica, Geoderma, 144, 116–122,
https://doi.org/10.1016/j.geoderma.2007.10.019, 2008.
Simas, F. N., Schaefer, C. E., Michel, R. F., Francelino, M. R., and
Bockheim, J. G.: Soils of the South Orkney and South Shetland Islands,
Antarctica, in: The Soils of Antarctica, Springer, Cham, Heidelberg, 227–273, 2015.
Šmilauer, P. and Lepš, J.: Multivariate Analysis of Ecological Data
Using Canoco 5, Cambridge University Press, New York, 2014.
Souza, K. K. D., Schaefer, C. E. G., Simas, F. N. B., Spinola, D. N., and de
Paula, M. D.: Soil Formation in Seymour Island, Weddell Sea, Antarctica,
Geomorphology, 225, 87–99, 2014.
Spinola, D. N., Portes, R. d. C., Schaefer, C. E. G. R., Solleiro-Rebolledo,
E., Pi-Puig, T., and Kühn, P.: Eocene Paleosols on King George Island,
Maritime Antarctica: Macromorphology, Micromorphology and Mineralogy,
Catena, 152, 69–81, https://doi.org/10.1016/j.catena.2017.01.004, 2017.
Stoops, G.: Guidelines for Analysis and Description of Soil and Regolith
Thin Sections, Soil Science Society of America Inc., Madison, 2003.
Udisti, R., Dayan, U., Becagli, S., Busetto, M., Frosini, D., Legrand, M.,
Lucarelli, F., Preunkert, S., Severi, M., and Traversi, R.: Sea Spray
Aerosol in Central Antarctica. Present Atmospheric Behaviour and
Implications for Paleoclimatic Reconstructions, Atmos. Environ., 52,
109–120, 2012.
Ugolini, F.: A Study of Pedogenic Processes in Antarctica, Final report to
the National Science Foundation, Rutgers University, New Brunswick, NJ,
1964.
Ugolini, F. C.: Ornithogenic Soils of Antarctica, in: Antarctic Terrestrial
Biology, edited by: Llano, G. A., American Geophysical Union, Washington, D.C., 1972.
Ugolini, F. C. and Bockheim, J. G.: Antarctic Soils and Soil Formation in a
Changing Environment: A Review, Geoderma, 144, 1–8, https://doi.org/10.1016/j.geoderma.2007.10.005, 2008.
Uroz, S., Calvaruso, C., Turpault, M.-P., and Frey-Klett, P.: Mineral
Weathering by Bacteria: Ecology, Actors and Mechanisms, Trends
Microbiol., 17, 378–387, https://doi.org/10.1016/j.tim.2009.05.004,
2009.
Vajrala, N., Martens-Habbena, W., Sayavedra-Soto, L. A., Schauer, A.,
Bottomley, P. J., Stahl, D. A., and Arp, D.: Hydroxylamine as an
Intermediate in Ammonia Oxidation by Globally Abundant Marine Archaea,
P. Natl. Acad. Sci. USA, 110, 1006–1011, 2013.
Van Vliet-Lanoë, B.: Frost Effects in Soils, Soils and quaternary
landscape evolution, John Wiley & Sons Ltd., New York, 117–158, 1985.
Van Vliet-Lanoë, B.: Frost Action-6, in: Interpretation of
Micromorphological Features of Soils and Regoliths, edited by: Stoops, G.,
Marcelino, V., and Mees, F., Elsevier, Amsterdam, the Netherlands, 2010.
Van Vliet-Lanoë, B., Fox, C. A., and Gubin, S. V.: Micromorphology of
Cryosols, in: Cryosols, Springer, Berlin, Heidelberg, 365–390, 2004.
Wilhelm, K. R., Bockheim, J. G., and Haus, N. W.: Properties and Processes
of Recently Established Soils from Deglaciation of Cierva Point, Western
Antarctic Peninsula, Geoderma, 277, 10–22, https://doi.org/10.1016/j.geoderma.2016.05.001, 2016.
Yergeau, E., Newsham, K. K., Pearce, D. A., and Kowalchuk, G. A.: Patterns
of Bacterial Diversity across a Range of Antarctic Terrestrial Habitats,
Environ. Microbiol., 9, 2670–2682, 2007.
Zeng, Y., Selyanin, V., Lukeš, M., Dean, J., Kaftan, D., Feng, F., and
Koblížek, M.: Characterization of the Microaerophilic,
Bacteriochlorophyll a-Containing Bacterium Gemmatimonas Phototrophica Sp.
Nov., and Emended Descriptions of the Genus Gemmatimonas and Gemmatimonas
Aurantiaca, Int. J. Syst. Evol. Micr.,
65, 2410–2419, 2015.
Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A.: Pear: A Fast and
Accurate Illumina Paired-End Read Merger, Bioinformatics, 30, 614–620, 2013.
Zvěřina, O., Láska, K., Červenka, R., Kuta, J.,
Coufalík, P., and Komárek, J.: Analysis of Mercury and Other Heavy
Metals Accumulated in Lichen Usnea Antarctica from James Ross Island,
Antarctica, Environ. Monit. Assess., 186, 9089–9100,
https://doi.org/10.1007/s10661-014-4068-z, 2014.
Short summary
James Ross Island offers the opportunity to study the undisturbed interplay of microbial activity and pedogenesis. Soils from two sites representing coastal and inland conditions were chosen and analyzed with a wide range of techniques to describe soil properties. We are able to show that coastal conditions go along with more intense weathering and therefore favor soil formation and that microbial communities are initially more affected by weathering and structure than by chemical parameters.
James Ross Island offers the opportunity to study the undisturbed interplay of microbial...
Altmetrics
Final-revised paper
Preprint