Articles | Volume 16, issue 19
https://doi.org/10.5194/bg-16-3793-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-16-3793-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?
Federico Baltar
CORRESPONDING AUTHOR
Department of Limnology and Bio-Oceanography, University of Vienna,
Althanstraße 14, 1090 Vienna, Austria
Invited contribution by Federico Baltar, recipient of the EGU Biogeosciences Division Outstanding Young Scientists Award 2016.
Gerhard J. Herndl
CORRESPONDING AUTHOR
Department of Limnology and Bio-Oceanography, University of Vienna,
Althanstraße 14, 1090 Vienna, Austria
NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal
Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, 1790
AB Den Burg, the Netherlands
Related authors
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Alexander Braun, Marina Spona-Friedl, Maria Avramov, Martin Elsner, Federico Baltar, Thomas Reinthaler, Gerhard J. Herndl, and Christian Griebler
Biogeosciences, 18, 3689–3700, https://doi.org/10.5194/bg-18-3689-2021, https://doi.org/10.5194/bg-18-3689-2021, 2021
Short summary
Short summary
It is known that CO2 fixation by photoautotrophic organisms is the major sink from the atmosphere. While biologists are aware that CO2 fixation also occurs in heterotrophic organisms, this route of inorganic carbon, and its quantitative role, is hardly recognized in biogeochemistry. We demonstrate that a considerable amount of CO2 is fixed annually through anaplerotic reactions in heterotrophic organisms, and a significant quantity of inorganic carbon is temporally sequestered in biomass.
Mirjana Najdek, Marino Korlević, Paolo Paliaga, Marsej Markovski, Ingrid Ivančić, Ljiljana Iveša, Igor Felja, and Gerhard J. Herndl
Biogeosciences, 17, 3299–3315, https://doi.org/10.5194/bg-17-3299-2020, https://doi.org/10.5194/bg-17-3299-2020, 2020
Short summary
Short summary
The response of Cymodocea nodosa to environmental changes was reported during a 15-month period. The meadow decline was triggered in spring by the simultaneous reduction of available light in the water column and the creation of anoxic conditions in the rooted area. This disturbance was critical for the plant since it took place during its recruitment phase when metabolic needs are maximal and stored reserves minimal. The loss of such habitat-forming seagrass is a major environmental concern.
Related subject area
Biogeochemistry: Open Ocean
Relationships between the concentration of particulate organic nitrogen and the inherent optical properties of seawater in oceanic surface waters
Inadequacies in the representation of sub-seasonal phytoplankton dynamics in Earth system models
Composite model-based estimate of the ocean carbon sink from 1959 to 2022
Phytoplankton community structure in relation to iron and macronutrient fluxes from subsurface waters in the western North Pacific during summer
Intense and localized export of selected marine snow types at eddy edges in the South Atlantic Ocean
Spatial distributions of iron and manganese in surface waters of the Arctic's Laptev and East Siberian seas
Climate-driven shifts in Southern Ocean primary producers and biogeochemistry in CMIP6 models
Ocean acidification trends and carbonate system dynamics across the North Atlantic subpolar gyre water masses during 2009–2019
Pelagic coccolithophore production and dissolution and their impacts on particulate inorganic carbon cycling in the western North Pacific
Marine snow morphology drives sinking and attenuation in the ocean interior
Sedimentary organic matter signature hints at the phytoplankton-driven biological carbon pump in the central Arabian Sea
Hydrological cycle amplification imposes spatial patterns on the climate change response of ocean pH and carbonate chemistry
Assessing the tropical Atlantic biogeochemical processes in the Norwegian Earth System Model
Evolution of oxygen and stratification and their relationship in the North Pacific Ocean in CMIP6 Earth system models
Evaluation of CMIP6 model performance in simulating historical biogeochemistry across the southern South China Sea
Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models
Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020
Ocean alkalinity enhancement impacts: regrowth of marine microalgae in alkaline mineral concentrations simulating the initial concentrations after ship-based dispersions
An upper mesopelagic zone carbon budget for the subarctic North Pacific
Climatic controls on metabolic constraints in the ocean
Effects of grain size and seawater salinity on magnesium hydroxide dissolution and secondary calcium carbonate precipitation kinetics: implications for ocean alkalinity enhancement
Short-term response of Emiliania huxleyi growth and morphology to abrupt salinity stress
Assessing the impact of CO2-equilibrated ocean alkalinity enhancement on microbial metabolic rates in an oligotrophic system
A time series analysis of transparent exopolymer particle distributions and C:N stoichiometry in the subtropical North Pacific: a key process in net community production and preformed nitrate anomalies?
Phosphomonoesterase and phosphodiesterase activities in the eastern Mediterranean in two contrasting seasonal situations
Net primary production annual maxima in the North Atlantic projected to shift in the 21st century
Testing the influence of light on nitrite cycling in the eastern tropical North Pacific
Loss of nitrogen via anaerobic ammonium oxidation (anammox) in the California Current system during the late Quaternary
Technical note: Assessment of float pH data quality control methods – a case study in the subpolar northwest Atlantic Ocean
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Ocean alkalinity enhancement in an open ocean ecosystem: Biogeochemical responses and carbon storage durability
Underestimation of multi-decadal global O2 loss due to an optimal interpolation method
Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats
Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Seasonal dynamics and annual budget of dissolved inorganic carbon in the northwestern Mediterranean deep-convection region
The fingerprint of climate variability on the surface ocean cycling of iron and its isotopes
Reconstructing the ocean's mesopelagic zone carbon budget: sensitivity and estimation of parameters associated with prokaryotic remineralization
Seasonal cycles of biogeochemical fluxes in the Scotia Sea, Southern Ocean: a stable isotope approach
Absence of photophysiological response to iron addition in autumn phytoplankton in the Antarctic sea-ice zone
Optimal parameters for the ocean's nutrient, carbon, and oxygen cycles compensate for circulation biases but replumb the biological pump
Importance of multiple sources of iron for the upper-ocean biogeochemistry over the northern Indian Ocean
Exploring the role of different data types and timescales in the quality of marine biogeochemical model calibration
All about nitrite: exploring nitrite sources and sinks in the eastern tropical North Pacific oxygen minimum zone
Fossil coccolith morphological attributes as a new proxy for deep ocean carbonate chemistry
Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations
Using machine learning and Biogeochemical-Argo (BGC-Argo) floats to assess biogeochemical models and optimize observing system design
The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle
Model estimates of metazoans' contributions to the biological carbon pump
Tracing differences in iron supply to the Mid-Atlantic Ridge valley between hydrothermal vent sites: implications for the addition of iron to the deep ocean
Nitrite cycling in the primary nitrite maxima of the eastern tropical North Pacific
Alain Fumenia, Hubert Loisel, Rick A. Reynolds, and Dariusz Stramski
Biogeosciences, 22, 2461–2484, https://doi.org/10.5194/bg-22-2461-2025, https://doi.org/10.5194/bg-22-2461-2025, 2025
Short summary
Short summary
Particulate organic nitrogen (PON) plays a central role in ocean biogeochemistry, yet limited in situ data hinder a full understanding of PON variability and associated processes. Measurements of optical properties offer an alternative for assessing PON across diverse marine environments. Our analysis reveals strong relationships between PON and optical properties, supporting a promising means to assess PON from optical measurements performed in situ or conducted from remote-sensing platforms.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
Biogeosciences, 22, 2163–2180, https://doi.org/10.5194/bg-22-2163-2025, https://doi.org/10.5194/bg-22-2163-2025, 2025
Short summary
Short summary
We assessed how well climate models replicate sub-seasonal changes in ocean chlorophyll observed by satellites. Models struggle to capture these variations accurately. Some overestimate fluctuations and their impact on annual chlorophyll variability, while others underestimate them. The underestimation is likely due to limited model resolution, while the overestimation may come from internal model oscillations.
Jens Terhaar
Biogeosciences, 22, 1631–1649, https://doi.org/10.5194/bg-22-1631-2025, https://doi.org/10.5194/bg-22-1631-2025, 2025
Short summary
Short summary
The ocean is a major natural carbon sink. Despite its importance, estimates of the ocean carbon sink remain uncertain. Here, I present a hybrid model estimate of the ocean carbon sink from 1959 to 2022. By combining ocean models in hindcast mode and Earth system models, I keep the strength of each approach and remove the respective weaknesses. This composite model estimate is similar in magnitude to the best estimate of the Global Carbon Budget but 70 % less uncertain.
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
Biogeosciences, 22, 1495–1508, https://doi.org/10.5194/bg-22-1495-2025, https://doi.org/10.5194/bg-22-1495-2025, 2025
Short summary
Short summary
Iron (Fe) and nitrate are vital for primary production in the North Pacific. Sedimentary Fe is carried by North Pacific Intermediate Water to the North Pacific, but the nutrient return path and its effect on phytoplankton are unclear. By combining Fe and macronutrient fluxes with phytoplankton composition, this study firstly revealed that Fe supply from the subsurface greatly controls diatom abundance and identified the nutrient return path in the subarctic gyre and Kuroshio–Oyashio transition area.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
Biogeosciences, 22, 1183–1201, https://doi.org/10.5194/bg-22-1183-2025, https://doi.org/10.5194/bg-22-1183-2025, 2025
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 via the biological carbon pump (BCP), which involves processes like organic carbon production at the surface and transferring it to the deep ocean via various pathways. By deploying an autonomous platform, we found significant marine snow accumulation from the surface to the mesopelagic zone in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity may enhance this process.
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025, https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Short summary
This article presents data on iron and manganese, essential micronutrients for primary producers in the Arctic Laptev and East Siberian seas (LESS). There, observations were made through international cooperation with the Nansen and Amundsen Basin Observational System expedition during the late summer of 2021. The results from this study indicate that the major sources controlling the iron and manganese distributions on the LESS continental margins are river discharge and shelf sediment input.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025, https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change, the Southern Ocean will be warmer, more acidic and more productive and will have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters. We propose ways of reducing this uncertainty.
David Curbelo-Hernández, Fiz F. Pérez, Melchor González-Dávila, Sergey V. Gladyshev, Aridane G. González, David González-Santana, Antón Velo, Alexey Sokov, and J. Magdalena Santana-Casiano
Biogeosciences, 21, 5561–5589, https://doi.org/10.5194/bg-21-5561-2024, https://doi.org/10.5194/bg-21-5561-2024, 2024
Short summary
Short summary
The study evaluated CO2–carbonate system dynamics in the North Atlantic subpolar gyre during 2009–2019. Significant ocean acidification, largely due to rising anthropogenic CO2 levels, was found. Cooling, freshening, and enhanced convective processes intensified this trend, affecting calcite and aragonite saturation. The findings contribute to a deeper understanding of ocean acidification and improve our knowledge about its impact on marine ecosystems.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2024-3492, https://doi.org/10.5194/egusphere-2024-3492, 2024
Short summary
Short summary
Coccolithophore calcite accounts for a major fraction of particulate inorganic carbon (PIC) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio-Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean. We also found extensive dissolution of coccolithophore calcite in the oversaturated shallow waters primarily driven by microbial metabolic activity.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Medhavi Pandey, Haimanti Biswas, Daniel Birgel, Nicole Burdanowitz, and Birgit Gaye
Biogeosciences, 21, 4681–4698, https://doi.org/10.5194/bg-21-4681-2024, https://doi.org/10.5194/bg-21-4681-2024, 2024
Short summary
Short summary
We analysed sea surface temperature (SST) proxy and plankton biomarkers in sediments that accumulate sinking material signatures from surface waters in the central Arabian Sea (21°–11° N, 64° E), a tropical basin impacted by monsoons. We saw a north–south SST gradient, and the biological proxies showed more organic matter from larger algae in the north. Smaller algae and zooplankton were more numerous in the south. These trends were related to ocean–atmospheric processes and oxygen availability.
Allison Hogikyan and Laure Resplandy
Biogeosciences, 21, 4621–4636, https://doi.org/10.5194/bg-21-4621-2024, https://doi.org/10.5194/bg-21-4621-2024, 2024
Short summary
Short summary
Rising atmospheric CO2 influences ocean carbon chemistry, leading to ocean acidification. Global warming introduces spatial patterns in the intensity of ocean acidification. We show that the most prominent spatial patterns are controlled by warming-driven changes in rainfall and evaporation, not by the direct effect of warming on carbon chemistry and pH. These evaporation and rainfall patterns oppose acidification in saltier parts of the ocean and enhance acidification in fresher regions.
Shunya Koseki, Lander R. Crespo, Jerry Tjiputra, Filippa Fransner, Noel S. Keenlyside, and David Rivas
Biogeosciences, 21, 4149–4168, https://doi.org/10.5194/bg-21-4149-2024, https://doi.org/10.5194/bg-21-4149-2024, 2024
Short summary
Short summary
We investigated how the physical biases of an Earth system model influence the marine biogeochemical processes in the tropical Atlantic. With four different configurations of the model, we have shown that the versions with better SST reproduction tend to better represent the primary production and air–sea CO2 flux in terms of climatology, seasonal cycle, and response to climate variability.
Lyuba Novi, Annalisa Bracco, Takamitsu Ito, and Yohei Takano
Biogeosciences, 21, 3985–4005, https://doi.org/10.5194/bg-21-3985-2024, https://doi.org/10.5194/bg-21-3985-2024, 2024
Short summary
Short summary
We explored the relationship between oxygen and stratification in the North Pacific Ocean using a combination of data mining and machine learning. We used isopycnic potential vorticity (IPV) as an indicator to quantify ocean ventilation and analyzed its predictability, a strong O2–IPV connection, and predictability for IPV in the tropical Pacific. This opens new routes for monitoring ocean O2 through few observational sites co-located with more abundant IPV measurements in the tropical Pacific.
Winfred Marshal, Jing Xiang Chung, Nur Hidayah Roseli, Roswati Md Amin, and Mohd Fadzil Bin Mohd Akhir
Biogeosciences, 21, 4007–4035, https://doi.org/10.5194/bg-21-4007-2024, https://doi.org/10.5194/bg-21-4007-2024, 2024
Short summary
Short summary
This study stands out for thoroughly examining CMIP6 ESMs' ability to simulate biogeochemical variables in the southern South China Sea, an economically important region. It assesses variables like chlorophyll, phytoplankton, nitrate, and oxygen on annual and seasonal scales. While global assessments exist, this study addresses a gap by objectively ranking 13 CMIP6 ocean biogeochemistry models' performance at a regional level, focusing on replicating specific observed biogeochemical variables.
Jens Terhaar
Biogeosciences, 21, 3903–3926, https://doi.org/10.5194/bg-21-3903-2024, https://doi.org/10.5194/bg-21-3903-2024, 2024
Short summary
Short summary
Despite the ocean’s importance in the carbon cycle and hence the climate, observing the ocean carbon sink remains challenging. Here, I use an ensemble of 12 models to understand drivers of decadal trends of the past, present, and future ocean carbon sink. I show that 80 % of the decadal trends in the multi-model mean ocean carbon sink can be explained by changes in decadal trends in atmospheric CO2. The remaining 20 % are due to internal climate variability and ocean heat uptake.
Reiner Steinfeldt, Monika Rhein, and Dagmar Kieke
Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, https://doi.org/10.5194/bg-21-3839-2024, 2024
Short summary
Short summary
We calculate the amount of anthropogenic carbon (Cant) in the Atlantic for the years 1990, 2000, 2010 and 2020. Cant is the carbon that is taken up by the ocean as a result of humanmade CO2 emissions. To determine the amount of Cant, we apply a technique that is based on the observations of other humanmade gases (e.g., chlorofluorocarbons). Regionally, changes in ocean ventilation have an impact on the storage of Cant. Overall, the increase in Cant is driven by the rising CO2 in the atmosphere.
Stephanie Delacroix, Tor Jensen Nystuen, August E. Dessen Tobiesen, Andrew L. King, and Erik Höglund
Biogeosciences, 21, 3677–3690, https://doi.org/10.5194/bg-21-3677-2024, https://doi.org/10.5194/bg-21-3677-2024, 2024
Short summary
Short summary
The addition of alkaline minerals into the ocean might reduce excessive anthropogenic CO2 emissions. Magnesium hydroxide can be added in large amounts because of its low seawater solubility without reaching harmful pH levels. The toxicity effect results of magnesium hydroxide, by simulating the expected concentrations from a ship's dispersion scenario, demonstrated low impacts on both sensitive and local assemblages of marine microalgae when compared to calcium hydroxide.
Brandon Stephens, Montserrat Roca-Martí, Amy Maas, Vinícius Amaral, Samantha Clevenger, Shawnee Traylor, Claudia Benitez-Nelson, Philip Boyd, Ken Buesseler, Craig Carlson, Nicolas Cassar, Margaret Estapa, Andrea Fassbender, Yibin Huang, Phoebe Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola Paul, Alyson Santoro, David Siegel, and David Nicholson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2251, https://doi.org/10.5194/egusphere-2024-2251, 2024
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 for the MZ in the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal time scales may help to close MZ carbon budgets.
Precious Mongwe, Matthew Long, Takamitsu Ito, Curtis Deutsch, and Yeray Santana-Falcón
Biogeosciences, 21, 3477–3490, https://doi.org/10.5194/bg-21-3477-2024, https://doi.org/10.5194/bg-21-3477-2024, 2024
Short summary
Short summary
We use a collection of measurements that capture the physiological sensitivity of organisms to temperature and oxygen and a CESM1 large ensemble to investigate how natural climate variations and climate warming will impact the ability of marine heterotrophic marine organisms to support habitats in the future. We find that warming and dissolved oxygen loss over the next several decades will reduce the volume of ocean habitats and will increase organisms' vulnerability to extremes.
Charly A. Moras, Tyler Cyronak, Lennart T. Bach, Renaud Joannes-Boyau, and Kai G. Schulz
Biogeosciences, 21, 3463–3475, https://doi.org/10.5194/bg-21-3463-2024, https://doi.org/10.5194/bg-21-3463-2024, 2024
Short summary
Short summary
We investigate the effects of mineral grain size and seawater salinity on magnesium hydroxide dissolution and calcium carbonate precipitation kinetics for ocean alkalinity enhancement. Salinity did not affect the dissolution, but calcium carbonate formed earlier at lower salinities due to the lower magnesium and dissolved organic carbon concentrations. Smaller grain sizes dissolved faster but calcium carbonate precipitated earlier, suggesting that medium grain sizes are optimal for kinetics.
Rosie M. Sheward, Christina Gebühr, Jörg Bollmann, and Jens O. Herrle
Biogeosciences, 21, 3121–3141, https://doi.org/10.5194/bg-21-3121-2024, https://doi.org/10.5194/bg-21-3121-2024, 2024
Short summary
Short summary
How quickly do marine microorganisms respond to salinity stress? Our experiments with the calcifying marine plankton Emiliania huxleyi show that growth and cell morphology responded to salinity stress within as little as 24–48 hours, demonstrating that morphology and calcification are sensitive to salinity over a range of timescales. Our results have implications for understanding the short-term role of E. huxleyi in biogeochemical cycles and in size-based paleoproxies for salinity.
Laura Marín-Samper, Javier Arístegui, Nauzet Hernández-Hernández, Joaquín Ortiz, Stephen D. Archer, Andrea Ludwig, and Ulf Riebesell
Biogeosciences, 21, 2859–2876, https://doi.org/10.5194/bg-21-2859-2024, https://doi.org/10.5194/bg-21-2859-2024, 2024
Short summary
Short summary
Our planet is facing a climate crisis. Scientists are working on innovative solutions that will aid in capturing the hard to abate emissions before it is too late. Exciting research reveals that ocean alkalinity enhancement, a key climate change mitigation strategy, does not harm phytoplankton, the cornerstone of marine ecosystems. Through meticulous study, we may have uncovered a positive relationship: up to a specific limit, enhancing ocean alkalinity boosts photosynthesis by certain species.
Kieran Curran, Tracy Villareal, and Robert T. Letscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1416, https://doi.org/10.5194/egusphere-2024-1416, 2024
Short summary
Short summary
This work provides a two year record of marine organic gel concentrations from an open ocean site in the subtropical North Pacific Ocean north of Hawaii. These microscopic gels are investigated to understand their importance as an understudied component of organic matter cycling by marine microbes. We find an important role for gel cycling during the summer months, helping explain previously contradictory estimates of nutrient supply and demand for the subtropical ocean.
France Van Wambeke, Pascal Conan, Mireille Pujo-Pay, Vincent Taillandier, Olivier Crispi, Alexandra Pavlidou, Sandra Nunige, Morgane Didry, Christophe Salmeron, and Elvira Pulido-Villena
Biogeosciences, 21, 2621–2640, https://doi.org/10.5194/bg-21-2621-2024, https://doi.org/10.5194/bg-21-2621-2024, 2024
Short summary
Short summary
Phosphomonoesterase (PME) and phosphodiesterase (PDE) activities over the epipelagic zone are described in the eastern Mediterranean Sea in winter and autumn. The types of concentration kinetics obtained for PDE (saturation at 50 µM, high Km, high turnover times) compared to those of PME (saturation at 1 µM, low Km, low turnover times) are discussed in regard to the possible inequal distribution of PDE and PME in the size continuum of organic material and accessibility to phosphodiesters.
Jenny Hieronymus, Magnus Hieronymus, Matthias Gröger, Jörg Schwinger, Raffaele Bernadello, Etienne Tourigny, Valentina Sicardi, Itzel Ruvalcaba Baroni, and Klaus Wyser
Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, https://doi.org/10.5194/bg-21-2189-2024, 2024
Short summary
Short summary
The timing of the net primary production annual maxima in the North Atlantic in the period 1750–2100 is investigated using two Earth system models and the high-emissions scenario SSP5-8.5. It is found that, for most of the region, the annual maxima occur progressively earlier, with the most change occurring after the year 2000. Shifts in the seasonality of the primary production may impact the entire ecosystem, which highlights the need for long-term monitoring campaigns in this area.
Nicole M. Travis, Colette L. Kelly, and Karen L. Casciotti
Biogeosciences, 21, 1985–2004, https://doi.org/10.5194/bg-21-1985-2024, https://doi.org/10.5194/bg-21-1985-2024, 2024
Short summary
Short summary
We conducted experimental manipulations of light level on microbial communities from the primary nitrite maximum. Overall, while individual microbial processes have different directions and magnitudes in their response to increasing light, the net community response is a decline in nitrite production with increasing light. We conclude that while increased light may decrease net nitrite production, high-light conditions alone do not exclude nitrification from occurring in the surface ocean.
Zoë Rebecca van Kemenade, Zeynep Erdem, Ellen Christine Hopmans, Jaap Smede Sinninghe Damsté, and Darci Rush
Biogeosciences, 21, 1517–1532, https://doi.org/10.5194/bg-21-1517-2024, https://doi.org/10.5194/bg-21-1517-2024, 2024
Short summary
Short summary
The California Current system (CCS) hosts the eastern subtropical North Pacific oxygen minimum zone (ESTNP OMZ). This study shows anaerobic ammonium oxidizing (anammox) bacteria cause a loss of bioavailable nitrogen (N) in the ESTNP OMZ throughout the late Quaternary. Anammox occurred during both glacial and interglacial periods and was driven by the supply of organic matter and changes in ocean currents. These findings may have important consequences for biogeochemical models of the CCS.
Cathy Wimart-Rousseau, Tobias Steinhoff, Birgit Klein, Henry Bittig, and Arne Körtzinger
Biogeosciences, 21, 1191–1211, https://doi.org/10.5194/bg-21-1191-2024, https://doi.org/10.5194/bg-21-1191-2024, 2024
Short summary
Short summary
The marine CO2 system can be measured independently and continuously by BGC-Argo floats since numerous pH sensors have been developed to suit these autonomous measurements platforms. By applying the Argo correction routines to float pH data acquired in the subpolar North Atlantic Ocean, we report the uncertainty and lack of objective criteria associated with the choice of the reference method as well the reference depth for the pH correction.
Sabine Mecking and Kyla Drushka
Biogeosciences, 21, 1117–1133, https://doi.org/10.5194/bg-21-1117-2024, https://doi.org/10.5194/bg-21-1117-2024, 2024
Short summary
Short summary
This study investigates whether northeastern North Pacific oxygen changes may be caused by surface density changes in the northwest as water moves along density horizons from the surface into the subsurface ocean. A correlation is found with a lag that about matches the travel time of water from the northwest to the northeast. Salinity is the main driver causing decadal changes in surface density, whereas salinity and temperature contribute about equally to long-term declining density trends.
Allanah Joy Paul, Mathias Haunost, Silvan Urs Goldenberg, Jens Hartmann, Nicolás Sánchez, Julieta Schneider, Niels Suitner, and Ulf Riebesell
EGUsphere, https://doi.org/10.5194/egusphere-2024-417, https://doi.org/10.5194/egusphere-2024-417, 2024
Short summary
Short summary
Ocean alkalinity enhancement (OAE) is being assessed for its potential to absorb atmospheric CO2 and store it for a long time. OAE still needs comprehensive assessment of its safety and effectiveness. We studied an idealised OAE application in a natural low nutrient ecosystem over one month. Our results showed that biogeochemical functioning remained mostly stable, but that the long-term capability for storing carbon may be limited at high alkalinity concentration.
Takamitsu Ito, Hernan E. Garcia, Zhankun Wang, Shoshiro Minobe, Matthew C. Long, Just Cebrian, James Reagan, Tim Boyer, Christopher Paver, Courtney Bouchard, Yohei Takano, Seth Bushinsky, Ahron Cervania, and Curtis A. Deutsch
Biogeosciences, 21, 747–759, https://doi.org/10.5194/bg-21-747-2024, https://doi.org/10.5194/bg-21-747-2024, 2024
Short summary
Short summary
This study aims to estimate how much oceanic oxygen has been lost and its uncertainties. One major source of uncertainty comes from the statistical gap-filling methods. Outputs from Earth system models are used to generate synthetic observations where oxygen data are extracted from the model output at the location and time of historical oceanographic cruises. Reconstructed oxygen trend is approximately two-thirds of the true trend.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023, https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary
Short summary
In the Southern Ocean, abundant eddies behave opposite to our expectations. That is, anticyclonic (cyclonic) eddies are cold (warm). By investigating the variations of physical and biochemical parameters in eddies, we find that abnormal eddies have unique and significant effects on modulating the parameters. This study fills a gap in understanding the effects of abnormal eddies on physical and biochemical parameters in the Southern Ocean.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Daniela König and Alessandro Tagliabue
Biogeosciences, 20, 4197–4212, https://doi.org/10.5194/bg-20-4197-2023, https://doi.org/10.5194/bg-20-4197-2023, 2023
Short summary
Short summary
Using model simulations, we show that natural and anthropogenic changes in the global climate leave a distinct fingerprint in the isotopic signatures of iron in the surface ocean. We find that these climate effects on iron isotopes are often caused by the redistribution of iron from different external sources to the ocean, due to changes in ocean currents, and by changes in algal growth, which take up iron. Thus, isotopes may help detect climate-induced changes in iron supply and algal uptake.
Chloé Baumas, Robin Fuchs, Marc Garel, Jean-Christophe Poggiale, Laurent Memery, Frédéric A. C. Le Moigne, and Christian Tamburini
Biogeosciences, 20, 4165–4182, https://doi.org/10.5194/bg-20-4165-2023, https://doi.org/10.5194/bg-20-4165-2023, 2023
Short summary
Short summary
Through the sink of particles in the ocean, carbon (C) is exported and sequestered when reaching 1000 m. Attempts to quantify C exported vs. C consumed by heterotrophs have increased. Yet most of the conducted estimations have led to C demands several times higher than C export. The choice of parameters greatly impacts the results. As theses parameters are overlooked, non-accurate values are often used. In this study we show that C budgets can be well balanced when using appropriate values.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Asmita Singh, Susanne Fietz, Sandy J. Thomalla, Nicolas Sanchez, Murat V. Ardelan, Sébastien Moreau, Hanna M. Kauko, Agneta Fransson, Melissa Chierici, Saumik Samanta, Thato N. Mtshali, Alakendra N. Roychoudhury, and Thomas J. Ryan-Keogh
Biogeosciences, 20, 3073–3091, https://doi.org/10.5194/bg-20-3073-2023, https://doi.org/10.5194/bg-20-3073-2023, 2023
Short summary
Short summary
Despite the scarcity of iron in the Southern Ocean, seasonal blooms occur due to changes in nutrient and light availability. Surprisingly, during an autumn bloom in the Antarctic sea-ice zone, the results from incubation experiments showed no significant photophysiological response of phytoplankton to iron addition. This suggests that ambient iron concentrations were sufficient, challenging the notion of iron deficiency in the Southern Ocean through extended iron-replete post-bloom conditions.
Benoît Pasquier, Mark Holzer, Matthew A. Chamberlain, Richard J. Matear, Nathaniel L. Bindoff, and François W. Primeau
Biogeosciences, 20, 2985–3009, https://doi.org/10.5194/bg-20-2985-2023, https://doi.org/10.5194/bg-20-2985-2023, 2023
Short summary
Short summary
Modeling the ocean's carbon and oxygen cycles accurately is challenging. Parameter optimization improves the fit to observed tracers but can introduce artifacts in the biological pump. Organic-matter production and subsurface remineralization rates adjust to compensate for circulation biases, changing the pathways and timescales with which nutrients return to the surface. Circulation biases can thus strongly alter the system’s response to ecological change, even when parameters are optimized.
Priyanka Banerjee
Biogeosciences, 20, 2613–2643, https://doi.org/10.5194/bg-20-2613-2023, https://doi.org/10.5194/bg-20-2613-2023, 2023
Short summary
Short summary
This study shows that atmospheric deposition is the most important source of iron to the upper northern Indian Ocean for phytoplankton growth. This is followed by iron from continental-shelf sediment. Phytoplankton increase following iron addition is possible only with high background levels of nitrate. Vertical mixing is the most important physical process supplying iron to the upper ocean in this region throughout the year. The importance of ocean currents in supplying iron varies seasonally.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Amanda Gerotto, Hongrui Zhang, Renata Hanae Nagai, Heather M. Stoll, Rubens César Lopes Figueira, Chuanlian Liu, and Iván Hernández-Almeida
Biogeosciences, 20, 1725–1739, https://doi.org/10.5194/bg-20-1725-2023, https://doi.org/10.5194/bg-20-1725-2023, 2023
Short summary
Short summary
Based on the analysis of the response of coccolithophores’ morphological attributes in a laboratory dissolution experiment and surface sediment samples from the South China Sea, we proposed that the thickness shape (ks) factor of fossil coccoliths together with the normalized ks variation, which is the ratio of the standard deviation of ks (σ) over the mean ks (σ/ks), is a robust and novel proxy to reconstruct past changes in deep ocean carbon chemistry.
Katherine E. Turner, Doug M. Smith, Anna Katavouta, and Richard G. Williams
Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, https://doi.org/10.5194/bg-20-1671-2023, 2023
Short summary
Short summary
We present a new method for reconstructing ocean carbon using climate models and temperature and salinity observations. To test this method, we reconstruct modelled carbon using synthetic observations consistent with current sampling programmes. Sensitivity tests show skill in reconstructing carbon trends and variability within the upper 2000 m. Our results indicate that this method can be used for a new global estimate for ocean carbon content.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Jérôme Pinti, Tim DeVries, Tommy Norin, Camila Serra-Pompei, Roland Proud, David A. Siegel, Thomas Kiørboe, Colleen M. Petrik, Ken H. Andersen, Andrew S. Brierley, and André W. Visser
Biogeosciences, 20, 997–1009, https://doi.org/10.5194/bg-20-997-2023, https://doi.org/10.5194/bg-20-997-2023, 2023
Short summary
Short summary
Large numbers of marine organisms such as zooplankton and fish perform daily vertical migration between the surface (at night) and the depths (in the daytime). This fascinating migration is important for the carbon cycle, as these organisms actively bring carbon to depths where it is stored away from the atmosphere for a long time. Here, we quantify the contributions of different animals to this carbon drawdown and storage and show that fish are important to the biological carbon pump.
Alastair J. M. Lough, Alessandro Tagliabue, Clément Demasy, Joseph A. Resing, Travis Mellett, Neil J. Wyatt, and Maeve C. Lohan
Biogeosciences, 20, 405–420, https://doi.org/10.5194/bg-20-405-2023, https://doi.org/10.5194/bg-20-405-2023, 2023
Short summary
Short summary
Iron is a key nutrient for ocean primary productivity. Hydrothermal vents are a source of iron to the oceans, but the size of this source is poorly understood. This study examines the variability in iron inputs between hydrothermal vents in different geological settings. The vents studied release different amounts of Fe, resulting in plumes with similar dissolved iron concentrations but different particulate concentrations. This will help to refine modelling of iron-limited ocean productivity.
Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, and Karen L. Casciotti
Biogeosciences, 20, 325–347, https://doi.org/10.5194/bg-20-325-2023, https://doi.org/10.5194/bg-20-325-2023, 2023
Short summary
Short summary
The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite, with occasional high nitrite production from phytoplankton near the coast.
Cited articles
ALOHA: Time series biogeochemical data, available at: http://hahana.soest.hawaii.edu/hot, last access: 14 February 2019.
Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió,
C., and Bertilsson, S.: High bicarbonate assimilation in the dark by Arctic
bacteria, ISME J., 4, 1581–1590, 2010.
Altabet, M.: Variations in nitrogen isotopic composition between sinking and
suspended particles: Implications for nitrogen cycling and particle
transformation in the open ocean, Deep-Sea Res. Pt. A, 35, 535–554, 1988.
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.:
Evidence of prokaryotic metabolism on suspended particulate organic matter
in the dark waters of the subtropical North Atlantic, Limnol.
Oceanogr., 54, 182–193, 2009.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T.,
and Herndl, G. J.: Significance of non-sinking particulate organic carbon
and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic
northeast Atlantic, Geophys. Res. Lett., 37, L09602, https://doi.org/10.1029/2010GL043105,
2010.
Baltar, F., Lundin, D., Palovaara, J., Lekunberri, I., Reinthaler, T.,
Herndl, G. J., and Pinhassi, J.: Prokaryotic responses to ammonium and
organic carbon reveal alternative CO2 fixation pathways and importance of
alkaline phosphatase in the mesopelagic North Atlantic, Front.
Microbiol., 7, 1670, https://doi.org/10.3389/fmicb.2016.01670, 2016.
BATS station: Time series biogeochemical data, available at: http://bats.bios.edu, last access: 14 February 2019.
Bayer, B., Vojvoda, J., Reinthaler, T., Reyes, C., Pinto, M., and Herndl, G.
J.: Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp.
nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the
class Nitrososphaeria, Int. J. Syst. Evol.
Micr., 69, 1892–1902, 2019.
Belser, L.: Bicarbonate uptake by nitrifiers: effects of growth rate, pH,
substrate concentration, and metabolic inhibitors, Appl. Environ.
Microbiol., 48, 1100–1104, 1984.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R.,
Arístegui, J., Baltar, F., Beaupre, S. R., Buesseler, K. O., DeHairs,
F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata,
T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka,
T.: Assessing the apparent imbalance between geochemical and biochemical
indicators of meso-and bathypelagic biological activity: What the@ $?! is
wrong with present calculations of carbon budgets?, Deep-Sea Res. Pt.
II, 57, 1557–1571, 2010.
Dijkhuizen, L. and Harder, W.: Current views on the regulation of
autotrophic carbon dioxide fixation via the Calvin cycle in bacteria,
Antonie Van Leeuwenhoek,
50, 473–487, https://doi.org/10.1007/bf02386221, 1984.
Dore, J. E. and Karl, D. M.: Nitrification in the euphotic zone as a source
for nitrite, nitrate and nitrous oxide at Station ALOHA, Limnol. Oceanogr.,
41, 1619–1628, 1996.
Duarte, C. M., Regaudie-de-Gioux, A., Arrieta, J. M., Delgado-Huertas, A.,
and Agustí, S.: The oligotrophic ocean is heterotrophic, Ann. Rev. Mar. Sci., 5, 551–569, 2013.
Ducklow, H. W. and Doney, S. C.: What is the metabolic state of the
oligotrophic ocean? A debate, Ann. Rev. Mar. Sci.e, 5, 525–533,
2013.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global
particle export from the surface ocean and cycling through the ocean
interior and on the seafloor, Global Biogeochem. Cy., 21, GB4006, https://doi.org/10.1029/2006GB002907,
2007.
Erb, T. J.: Carboxylases in natural and synthetic microbial pathways,
Appl. Environ. Microbiol., 77, 8466–8477, 2011.
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P.:
Primary production of the biosphere: integrating terrestrial and oceanic
components, Science, 281, 237–240, 1998.
González, J. M., Fernández-Gómez, B., Fernández-Guerra, A.,
Gómez-Consarnau, L., Sánchez, O., Coll-Lladó, M., del Campo, J.,
Escudero, L., Rodríguez-Martínez, R., Alonso-Sáez, L., Latasa,
M., Paulsen, I., Nedashkovskaya, O., Lekumberri, I., Pinhassi, J., and
Pedrós-Alió, C.: Genome analysis of the proteorhodopsin-containing
marine bacterium Polaribacter sp. MED152 (Flavobacteria), P. Natl.
Acad. Sci. USA, 105, 8724–8729, 2008.
Harris, G. P., Griffiths, F. B., and Thomas, D. P.: Light and dark uptake
and loss of 14 C: methodological problems with productivity measurements in
oceanic waters, Hydrobiologia, 173, 95–105, 1989.
Herndl, G. J., Reinthaler, T., Teira, E., Aken, H. v., Veth, C., Pernthaler,
A., and Pernthaler, J.: Contribution of Archaea to total prokaryotic production in
the deep Atlantic Ocean, Appl. Environ. Microbiol., 71, 2303–2309, 2005.
Horrigan, S. G. and Springer, A. L.: Oceanic and estuarine ammonium
oxidation: effects of light, Limnol. Oceanogr., 35, 479–482, 1990.
Hügler, M. and Sievert, S. M.: Beyond the Calvin cycle: autotrophic
carbon fixation in the ocean, Ann. Rev. Mar. Sci., 3, 261–289,
2011.
Ignatiades, L., Karydis, M., and Pagou, K.: Patterns of dark 14CO2
incorporation by natural marine phytoplankton communities, Microb.
Ecol., 13, 249–259, 1987.
Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D.:
The role of nitrogen fixation in biogeochemical cycling in the subtropical
North Pacific Ocean, Nature, 388, 533–538, 1997.
Legendre, L., Demers, S., Yentsch, C. M., and Yentsch, C. S.: The 14C
method: Patterns of dark CO2 fixation and DCMU correction to replace the
dark bottle 1, 2, Limnol. Oceanogr., 28, 996–1003, 1983.
Li, W. and Dickie, P.: Light and dark 14C uptake in dimly-lit oligotrophic
waters: relation to bacterial activity, J. Plank. Res., 13,
29–44, 1991.
Li, W. K. W., Irwin, B. D., and Dickie, P. M.: Dark fixation of 14C:
Variations related to biomass and productivity of phytoplankton and
bacteria, Limnol. Oceanogr., 38, 483–494, 1993.
Lipschultz, F.: A time-series assessment of the nitrogen cycle at BATS, Deep-Sea Res. Pt. II, 48, 1897–1924, 2001.
Markager, S.: Dark uptake of inorganic 14C in oligotrophic oceanic
waters, J. Plank. Res., 20, 1813–1836, 1998.
Merbt, S. N., Stahl, D. A., Casamayor, E. O., Martí, E., Nicol, G. W.,
and Prosser, J. I.: Differential photoinhibition of bacterial and archaeal
ammonia oxidation, FEMS Microbiol. Lett., 327, 41–46, 2012.
Middelburg, J. J.: Chemoautotrophy in the ocean, Geophys. Res.
Lett., 38, L24604, https://doi.org/10.1029/2011GL049725, 2011.
Moran, M. A.: Genomics and metagenomics of marine prokaryotes, Microbial
Ecology of the Oceans, 2nd Edn., 91–129, 2008.
Nielsen, E. S.: The Use of Radio-active Carbon (C14) for Measuring Organic
Production in the Sea, ICES J. Mar. Sci., 18, 117–140, 1952.
Nielsen, E. S.: Dark fixation of CO2 and measurements of organic
productivity, With remarks on chemo-synthesis, Physiol. Plantarum, 13,
348–357, 1960.
Palovaara, J., Akram, N., Baltar, F., Bunse, C., Forsberg, J.,
Pedrós-Alió, C., González, J. M., and Pinhassi, J.: Stimulation
of growth by proteorhodopsin phototrophy involves regulation of central
metabolic pathways in marine planktonic bacteria, P.
Natl. Acad. Sci. USA, 111, E3650–E3658, 2014.
Petersen, G. H.: On the analysis of dark fixation in primary production
computations, ICES J. Mar. Sci., 38, 326–330, 1979.
Prakash, A., Sheldon, R., and Sutcliffe Jr, W.: Geographic Variation of
Oceanic 14C Dark Uptake, Limnol. Oceanogr., 1991, 30–39, 1991.
Reinthaler, T., Van Aken, H. M., and Herndl, G. J.: Major contribution of
autotrophy to microbial carbon cycling in the deep North
Atlantic, Äôs interior, Deep-Sea Res. Pt. II, 57, 1572–1580, 2010.
Segura-Noguera, M. M., Curless, S. E., Church, M. J., and Karl, D. M.: Ammonium distribution at Station ALOHA in the North Pacific Subtropical Gyre, ASLO Ocean Sciences Meeting, Honolulu, HI, February 2014.
Steinberg, D. K., Van Mooy, B. A., Buesseler, K., Boyd, P. W., Kobari, T., and
Karl, D. M.: Bacterial vs. zooplankton control of sinking particle flux in
the ocean's twilight zone, Limnol. Oceanogr., 53, 1327–1338, 2008.
Taguchi, S.: Dark fixation of CO2 in the subtropical north Pacific Ocean and
the Weddell Sea, Bulletin of Plankton Society of Japan (Japan), 30, 115–124,
1983.
Wang, W.-L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211, 2019.
Williams, P. J. l. B., Quay, P. D., Westberry, T. K., and Behrenfeld, M. J.:
The oligotrophic ocean is autotrophic, Annu. Rev. Mar. Sci., 5,
535–549, 2013.
Yool, A., Martin, A. P., Fernandez, C., and Clark, D. R.: The significance
of nitrification for oceanic new production, Nature, 447, 999–1002, 2007.
Short summary
Around half of the global primary production (PP) is produced in the ocean. Here we quantified how much oceanic PP estimates would increase if we included the dark DIC fixation rates (which are usually excluded in the carbon-14 method) into the PP estimation. We found that the inclusion of dark DIC fixation would increase PP estimates by 5–22 %. This represents ca. 1.2 to 11 Pg C yr−1 of newly synthesized organic carbon available for the marine food web.
Around half of the global primary production (PP) is produced in the ocean. Here we quantified...
Altmetrics
Final-revised paper
Preprint