Articles | Volume 16, issue 24
https://doi.org/10.5194/bg-16-4805-2019
https://doi.org/10.5194/bg-16-4805-2019
Technical note
 | 
17 Dec 2019
Technical note |  | 17 Dec 2019

Technical note: The silicon isotopic composition of choanoflagellates: implications for a mechanistic understanding of isotopic fractionation during biosilicification

Alan Marron, Lucie Cassarino, Jade Hatton, Paul Curnow, and Katharine R. Hendry

Related authors

Nutrient utilization and diatom productivity changes in the low-latitude south-eastern Atlantic over the past 70 ka: response to Southern Ocean leakage
Katharine Hendry, Oscar Romero, and Vanessa Pashley
Clim. Past, 17, 603–614, https://doi.org/10.5194/cp-17-603-2021,https://doi.org/10.5194/cp-17-603-2021, 2021
Short summary
Temporal variability in foraminiferal morphology and geochemistry at the West Antarctic Peninsula: a sediment trap study
Anna Mikis, Katharine R. Hendry, Jennifer Pike, Daniela N. Schmidt, Kirsty M. Edgar, Victoria Peck, Frank J. C. Peeters, Melanie J. Leng, Michael P. Meredith, Chloe L. C. Jones, Sharon Stammerjohn, and Hugh Ducklow
Biogeosciences, 16, 3267–3282, https://doi.org/10.5194/bg-16-3267-2019,https://doi.org/10.5194/bg-16-3267-2019, 2019
Short summary
Silicon isotopes of deep sea sponges: new insights into biomineralisation and skeletal structure
Lucie Cassarino, Christopher D. Coath, Joana R. Xavier, and Katharine R. Hendry
Biogeosciences, 15, 6959–6977, https://doi.org/10.5194/bg-15-6959-2018,https://doi.org/10.5194/bg-15-6959-2018, 2018
Short summary

Related subject area

Biogeochemistry: Biomineralization
Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022,https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Do bacterial viruses affect framboid-like mineral formation?
Paweł Działak, Marcin D. Syczewski, Kamil Kornaus, Mirosław Słowakiewicz, Łukasz Zych, and Andrzej Borkowski
Biogeosciences, 19, 4533–4550, https://doi.org/10.5194/bg-19-4533-2022,https://doi.org/10.5194/bg-19-4533-2022, 2022
Short summary
Calcification response of reef corals to seasonal upwelling in the northern Arabian Sea (Masirah Island, Oman)
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022,https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Growth rate rather than temperature affects the B∕Ca ratio in the calcareous red alga Lithothamnion corallioides
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022,https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Heavy metal uptake of nearshore benthic foraminifera during multi-metal culturing experiments
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022,https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary

Cited articles

Adl, S. M., Bass, D., Lane, C. E., Lukes, J., Schoch, C. L., Smirnov, A., Agatha, S., Berney, C., Brown, M. W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A. A., Hoppenrath, M., James, T. Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D. J. G., Lara, E., Le Gall, L., Lynn, D. H., Mann, D. G., Massana, R., Mitchell, E. A. D., Morrow, C., Park, J. S., Pawlowski, J. W., Powell, M. J., Richter, D. J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F. W., Torruella, G., Youssef, N., Zlatogursky, V., and Zhang, Q.: Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes, J. Eukaryot. Microbiol., 66, 4–119, https://doi.org/10.1111/jeu.12691, 2019. a
Andersen, P.: Functional biology of the choanoflagellate Diaphanoeca grandis Ellis, Marine Microbial Food Webs, 3, 35–49, 1988. a
Beucher, C. P., Brzezinski, M. A., and Jones, J. L.: Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific, Geochim. Cosmochim. Ac., 72, 3063–3073, 2008. a
Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K., and André, L.: Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode, J. Anal. Atom. Spectrom., 18, 213–218, 2003. a
Cassarino, L., Coath, C. D., Xavier, J. R., and Hendry, K. R.: Silicon isotopes of deep sea sponges: new insights into biomineralisation and skeletal structure, Biogeosciences, 15, 6959–6977, https://doi.org/10.5194/bg-15-6959-2018, 2018. a, b, c
Download
Short summary
Isotopic signatures of silica fossils can be used as archives of past oceanic silicon cycling, which is linked to marine carbon uptake. However, the biochemistry that lies behind such chemical fingerprints remains poorly understood. We present the first measurements of silicon isotopes in a group of protists closely related to animals, choanoflagellates. Our results highlight a taxonomic basis to silica isotope signatures, possibly via a shared transport pathway in choanoflagellates and animals.
Altmetrics
Final-revised paper
Preprint