Baumgarten, S., Laudien, J., Jantzen, C., Häussermann, V., and
Försterra, G.: Population structure, growth and production of a recent
brachiopod from the Chilean fjord region, Mar. Ecol., 35, 401–413,
https://doi.org/10.1111/maec.12097, 2014.
Beniash, E., Ivanina, A., Lieb, N. S., Kurochkin, I., and Sokolova, I.:
Elevated level of carbon dioxide affects metabolism and shell formation in
oysters
Crassostrea virginica, Mar. Ecol., 419, 95–108, https://doi.org/10.3354/meps08841, 2010.
Berge, J. A., Bjerkeng, B., Pettersen, O., Schaanning, M. T., and
Øxnevad, S.: Effects of increased sea water concentrations of
CO2 on
growth of the bivalve
Mytilus edulis L, Chemosphere, 62, 681–687,
https://doi.org/10.1016/j.chemosphere.2005.04.111, 2006.
Bibby, R., Cleall-Harding, P., Rundle, S., Widdicombe, S., and Spicer, J.:
Ocean acidification disrupts induced defences in the intertidal gastropod
Littorina littorea, Biol. Lett., 3, 699–701, https://doi.org/10.1098/rsbl.2007.0457, 2007.
Brand, U. and Veizer, J.: Chemical diagenesis of a multicomponent carbonate
system-1. Trace elements, J. Sediment. Petrol., 50, 1219–1236,
https://doi.org/10.1306/212f7bb7-2b24-11d7-8648000102c1865d, 1980.
Brand, U., Logan, A., Hiller, N., and Richardson, J.: Geochemistry of modern
brachiopods: applications and implications for oceanography and
paleoceanography, Chem. Geol., 198, 305–334,
https://doi.org/10.1016/s0009-2541(03)00032-9, 2003.
Brand, U., Logan, A., Bitner, M. A., Griesshaber, E., Azmy, K., and Buhl,
D.: What is the ideal proxy of Palaeozoic seawater chemistry?, Mem. Assoc.
Australas., 41, 9–24, 2011.
Brand, U., Azmy, K., Bitner, M. A., Logan, A., Zuschin, M., Came, R., and
Ruggiero, E.: Oxygen isotopes and
MgCO3 in brachiopod calcite and a
new paleotemperature equation, Chem. Geol., 359, 23–31,
https://doi.org/10.1016/j.chemgeo.2013.09.014, 2013.
Brand, U., Azmy, K., Griesshaber, E., Bitner, M. A., Logan, A., Zuschin, M.,
Ruggiero, E., and Colin, P. L.: Carbon isotope composition in modern
brachiopod calcite: A case of equilibrium with seawater?, Chem. Geol., 411,
81–96, https://doi.org/10.1016/j.chemgeo.2015.06.021, 2015.
Brand, U., Blamey, N., Garbelli, C., Griesshaber, E., Posenato, R.,
Angiolini, L., Azmy, K., Farabegoli, E., and Came, R.: Methane Hydrate:
Killer cause of Earth's greatest mass extinction, Palaeoworld, 25, 496–507,
https://doi.org/10.1016/j.palwor.2016.06.002, 2016.
Büscher, J. V., Form, A. U., and Riebesell, U.: Interactive effects of
ocean acidification and warming on growth, fitness and survival of the
cold–water coral
Lophelia pertusa under different food availabilities,
Front. Mar. Sci., 4, 101, https://doi.org/10.3389/fmars.2017.00101, 2017.
Caldeira, K. and Wickett, M. E.: Ocean model predictions of chemistry
changes from carbon dioxide emissions to the atmosphere and ocean, J.
Geophys. Res., 110, C09S04, https://doi.org/10.1029/2004jc002671, 2005.
Campbell, K. S. W.: Australian Permian terebratuloids, Bur. Min. Resour.
Geol. Geophys. Aust. Bull., 68, l–113, 1965.
Carpenter, S. J. and Lohmann, K. C.:
δ18O and
δ13C values of modern brachiopod shells, Geochim. Cosmochim. Ac., 59,
3749–3764, https://doi.org/10.1016/0016-7037(95)00291-7, 1995.
Casella, L., Griesshaber, E., Simonet Roda, M., Ziegler, A., Mavromatis, V.,
Henkel, D., Laudien, J., Häussermann, V., Neuser, R. D., Angiolini, L.,
Dietzel, M., Eisenhauer, A., Immenhauser, A., Brand, U., and Schmahl, W. W.:
Micro- and nanostructures reflect the degree of diagenetic alteration in
modern and fossil brachiopod shell calcite: a multi–analytical screening
approach (CL, FE–SEM, AFM, EBSD), Palaeogeogr. Palaeocl.,
502, 13–30, https://doi.org/10.1016/j.palaeo.2018.03.011, 2018.
Coleman, D. W., Byrne, M., and Davis, A. R.: Molluscs on acid: gastropod
shell repair and strength in acidifying oceans, Mar. Ecol. Prog. Ser., 509,
203–211, https://doi.org/10.3354/meps10887, 2014.
Comeau, S., Gorsky, G., Jeffree, R., Teyssié, J.-L., and Gattuso, J.-P.:
Impact of ocean acidification on a key Arctic pelagic mollusc
(
Limacina helicina), Biogeosciences, 6, 1877–1882,
https://doi.org/10.5194/bg-6-1877-2009, 2009.
Cowen, R.: The distribution of punctae on the brachiopod shell, Geol. Mag.,
103, 269–275, https://doi.org/10.1017/s0016756800052857, 1966.
Cross, E. L., Peck, L. S., and Harper, E. M.: Ocean acidification does not
impact shell growth or repair of the Antarctic brachiopod
Liothyrella uva (Broderip, 1833),
J. Exp. Mar. Biol. Ecol., 462, 29–35,
https://doi.org/10.1016/j.jembe.2014.10.013, 2015.
Cross, E. L., Peck, L. S., Lamare, M. D., and Harper, E. M.: No ocean
acidification effects on shell growth and repair in the New Zealand
brachiopod
Calloria inconspicua (Sowerby, 1846), ICES J. Mar. Sci., 73, 920–926,
https://doi.org/10.1093/icesjms/fsv031, 2016.
Cross, E. L., Harper, E. M., and Peck, L. S.: A 120-year record of resilience
to environmental change in brachiopods, Glob. Chang. Biol., 24, 2262–2271,
https://doi.org/10.1111/gcb.14085, 2018.
Cummings, V., Hewitt, J., Rooyen, A. V., Currie, K., Beard, S., Thrush, S.,
Norkko, J., Barr, N., Heath, P., Halliday, N. J., Sedcole, R., Gomez, A.,
McGraw, C., and Metcalf, V.: Ocean acidification at high latitudes:
potential effects on functioning of the Antarctic bivalve
Laternula elliptica, PLoS ONE, 6,
e16069, https://doi.org/10.1371/journal.pone.0016069, 2011.
Cusack, M., Dauphin, Y., Cuif, J. P., Salomé, M., Freer, A., and Yin,
H.: Micro–XANES mapping of sulphur and its association with magnesium and
phosphorus in the shell of the brachiopod,
Terebratulina retusa, Chem. Geol., 253, 172–179,
https://doi.org/10.1016/j.chemgeo.2008.05.007, 2008.
Cusack, M., Chung, P., Dauphin, Y., and Pérez–Huerta, A.: Brachiopod
primary layer crystallography and nanostructure, in: Alvarez, F., and Curry,
G. B. (Eds.): Evolution and Development of the Brachiopod Shell, Special
Papers in Palaeontology, 84, Aberystwyth, Palaeontological Association,
99–105, 2010.
Crippa, G., Angiolini, L., Bottini, C., Erba, E., Felletti, F., Frigerio, C.,
Hennissen, J. A. I., Leng, M. J., Petrizzo, M. R., Raffi, I., Raineri, G.,
and Stephenson, M. H.: Seasonality fluctuations recorded in fossil bivalves
during the early Pleistocene: Implications for climate change, Palaeogeogr.
Palaeocl., 446, 234–251, https://doi.org/10.1016/j.palaeo.2016.01.029,
2016a.
Crippa, G., Ye, F., Malinverno, C., and Rizzi, A.: Which is the best method
to prepare invertebrate shells for SEM analysis? Testing different techniques
on recent and fossil brachiopods, Boll. Soc. Paleontol. I., 55, 111–125,
2016b.
Dickinson, G. H., Ivanina, A. V., Matoo, O. B., Pörtner, H. O., Lannig,
G., Bock, C., Beniash, E., and Sokolova, I. M.: Interactive effects of
salinity and elevated
CO2 levels on juvenile Eastern oysters,
Crassostrea virginica, J. Exp. Biol., 215, 29–43,
https://doi.org/10.1242/jeb.061481, 2012.
England, J., Cusack, M., and Lee, M. R.: Magnesium and sulphur in the
calcite shells of two brachiopods,
Terebratulina retusa and
Novocrania anomala, Lethaia, 40, 2–10,
https://doi.org/10.1111/j.1502-3931.2006.00001.x, 2007.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.
J., and Millero, F. J.: Impact of anthropogenic
CO2 on the
CaCO3 system in the oceans, Science, 305, 362–366,
https://doi.org/10.1126/science.1097329, 2004.
Fernández-Reiriz, M. J., Range, P., Alvarez-Salgado, X. A., and Labarta,
U.: Physiological energetics of juvenile clams
Ruditapes decussatus
in a high
CO2 coastal ocean, Mar. Ecol. Prog. Ser., 433, 97–105,
https://doi.org/10.3354/meps09062, 2011.
Fernández-Reiriz, M. J., Range, P., Alvarez-Salgado, X. A., Espinosa, J.,
and Labarta, U.: Tolerance of juvenile
Mytilus galloprovincialis to
experimental seawater acidification, Mar. Ecol. Prog. Ser., 454, 65–74,
https://doi.org/10.3354/meps09660, 2012.
Fitzer, S., Phoenix, V. R., Cusack, M., and Kamenos, N. A.: Ocean
acidification impacts mussel control on biomineralisation, Sci. Rep.,
4, 2045–2322,
https://doi.org/10.1038/srep06218, 2014a.
Fitzer, S., Cusack, M., Phoenix, V. R., and Kamenos, N. A.: Ocean
acidification reduces the crystallographic control in juvenile mussel
shells, J. Struct. Biol., 188, 39–45,
https://doi.org/10.1016/j.jsb.2014.08.007, 2014b.
Form, A. U. and Riebesell, U.: Acclimation to ocean acidification during
long–term
CO2 exposure in the cold-water coral
Lophelia pertusa, Glob. Change Biol., 18, 843–853,
https://doi.org/10.1111/j.1365-2486.2011.02583.x, 2011.
Försterra, G., Häussermann, V., and Lueter, C.: Mass occurrence of
the recent brachiopod
Magellania venosa (Terebratellidae) in the fjords Comau and Renihue,
northern Patagonia, Chile, Mar. Ecol., 29, 342–347,
https://doi.org/10.1111/j.1439-0485.2008.00240.x, 2008.
Foster, M. W.: Recent Antarctic and Subantarctic brachiopods, Antarctic
Research Series, 21, American Geophysical Union, Washington, D.C., 183 pp.,
https://doi.org/10.1029/ar021, 1974.
Garbelli, C.: Shell microstructures in Upper Permian brachiopods: implication
for fabric evolution and calcification, Boll. Soc. Paleontol. I., 123,
541–560, 2017.
Garbelli, C., Angiolini, L., Brand, U., and Jadoul, F.: Brachiopod fabric,
classes and biogeochemistry: Implications for the reconstruction and
interpretation of seawater carbon–isotope curves and records, Chem. Geol.,
371, 60–67, https://doi.org/10.1016/j.chemgeo.2014.01.022, 2014.
Garbelli, C., Angiolini, L., and Shen, S. Z.: Biomineralization and global
change: A new perspective for understanding the end–Permian extinction,
Geology, 45, 19–12, https://doi.org/10.1130/g38430.1, 2017.
Gobler, C. J., DePasquale, E. L., Griffith, A. W., and Baumann, H.: Hypoxia
and acidification have additive and synergistic negative effects on the
growth, survival, and metamorphosis of early life stage bivalves, PLoS ONE,
9, e83648, https://doi.org/10.1371/journal.pone.0083648, 2014.
Griesshaber, E., Schmahl, W., Neuser, R., Job, R., Bluem, M., and Brand, U.:
Microstructure of brachiopod shells–An inorganic/organic fibre composite
with nanocrystalline
protective layer, Mater. Res. Soc. Symp. P., 844,
Y9.3.1–Y9.3.6, https://doi.org/10.1557/proc-844-y9.3, 2004.
Grossman, E. L., Zhang, C., and Yancey, T. E.: Stable–isotope stratigraphy
of brachiopods from Pennsylvanian shales in Texas, Geol. Soc. Am. Bull., 103,
953–965,
https://doi.org/10.1130/0016-7606(1991)103<0953:sisobf>2.3.co;2,
1991.
Grossman, E. L., Mii, H., and Yancey, T. E.: Stable isotopes in Late
Pennsylvanian brachiopods from the United Stated: Implications for
Carboniferous paleoceanography, Geol. Soc. Am. Bull., 105, 1284–1296,
https://doi.org/10.1130/0016-7606(1993)105<1284:siilpb>2.3.co;2,
1993.
Guinotte, J. M., Orr, J., Cairns, S., Freiwald, A., Morgan, L., and George,
R.: Will human–induced changes in sea water chemistry alter the distribution
of deep-sea scleractinian corals?, Front. Ecol. Environ., 1, 141–146, 2006.
Hahn, S., Rodolfo-Metalpa, R., Griesshaber, E., Schmahl, W. W., Buhl, D.,
Hall-Spencer, J. M., Baggini, C., Fehr, K. T., and Immenhauser, A.: Marine
bivalve shell geochemistry and ultrastructure from modern low pH
environments: environmental effect versus experimental bias, Biogeosciences,
9, 1897–1914, https://doi.org/10.5194/bg-9-1897-2012, 2012.
Hahn, S., Griesshaber, E., Schmahl, W. W., Neuser, R. D., Ritter, A.,
Hoffmann, R., Buhl, D., Niedermayr, A., Geske, A., and Immenhauser, A.:
Exploring aberrant bivalve shell ultrastructure and geochemistry as proxies
for past sea water acidification, Sedimentology, 61, 1625–1658,
https://doi.org/10.1111/sed.12107, 2014.
Hiebenthal, C., Philipp, E. E. R., Eisenhauer, A., and Wahl, M.: Effects of
seawater
pCO2 and temperature on shell growth, shell stability,
condition and cellular stress of Western Baltic Sea
Mytilus edulis
(L.) and
Arctica islandica (L.), Mar. Biol., 160, 2073–2087,
https://doi.org/10.1007/s00227-012-2080-9, 2013.
IPCC: Climate change 2013: the physical science basis, in: Stocker, T. F.,
Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Contribution of working group I
to the fifth assessment report of the intergovernmental panel on climate
change, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 1535 pp., 2013.
Jansson. A., Norkko, J., Dupont, S., and Norkko, A.: Growth and survival in
a changing environment: Combined effects of moderate hypoxia and low pH on
juvenile bivalve
Macoma balthica, J. Sea Res., 102, 41–47,
https://doi.org/10.1016/j.seares.2015.04.006, 2015.
Jantzen, C., Laudien, J., Sokol, S., Försterra, G., Häussermann, V.,
Kupprat, F., and Richter, C.: In situ short-term growth rates of a
cold–water coral, Mar. Freshw. Res., 64, 631–641,
https://doi.org/10.1071/mf12200, 2013a.
Jantzen, C., Häussermann, V., Försterra, G., Laudien, J., Ardelan,
M., Maier, S., and Richter, C.: Occurrence of a cold-water coral along
natural pH gradients (Patagonia, Chile), Mar. Biol., 160, 2597–2607,
https://doi.org/10.1007/s00227-013-2254-0, 2013b.
Jantzen, C., Laudien, J., Häussermann, V., Försterra, G., and
Richter, C.: Seawater carbonate chemistry measured in fjord Comau,
Patagonia, Chile (02-2011), Alfred Wegener Institute, Helmholtz Center for
Polar and Marine Research, Bremerhaven, PANGAEA,
https://doi.org/10.1594/PANGAEA.884131, 2017.
Jope, H. M.: Composition of brachiopod shell, in: Treatise on Invertebrate
Paleontology. Part H, Brachiopoda, edited by: Moore, R. C., Geological
society of America and University of Kansas Press, New York and Lawrence,
156–164, 1965.
Jurikova, H., Liebetrau, V., Gutjahr, M., Rollion-Bard, C., Hu, M. Y.,
Krause, S., Henkel, D., Hiebenthal, C., Schmidt, M., Laudien, J., and
Eisenhauer, A.: Boron isotope systematics of cultured brachiopods: response
to acidification, vital effects and implications for palaeo-pH
reconstruction, Geochim. Cosmochim. Ac., accepted, 2019.
Kim, S. T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen isotope
effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475,
https://doi.org/10.1016/s0016-7037(97)00169-5, 1997.
Krief, S., Hendy, E. J., Fine, M., Yam, R., Meibom, A., Foster, G. L., and
Shemesh, A.: Physiological and isotopic responses of scleractinian corals to
ocean acidification, Geochim. Cosmochim. Ac., 74, 4988–5001,
https://doi.org/10.1016/j.gca.2010.05.023, 2010.
Kurihara, H.: Effects of
CO2-driven ocean acidification on the early
developmental stages of invertebrates, Mar. Ecol. Prog. Ser., 373, 274–284,
https://doi.org/10.3354/meps07802, 2008.
Laudien, J., Häussermann, V., Försterra, G., and Göhlich, H.:
Physical oceanographic profiles of seven CTD casts from Gulf of Ancud into
Comau Fjord in 2014, Alfred Wegener Institute, Helmholtz Center for Polar
and Marine Research, Bremerhaven, PANGAEA,
https://doi.org/10.1594/PANGAEA.832187, 2014.
Liu, W. and He, M.: Effects of ocean acidification on the metabolic rated of
three species of bivalve from southern coast of China, Chin. J. Oceanol.
Limn., 30, 206–211, https://doi.org/10.1007/s00343-012-1067-1, 2012.
MacKinnon, D. I.: The shell structure in spiriferide brachiopoda, Bull. Br.
Mus. Nat. Hist., 5, 189–258, 1974.
Marchant, H. K., Calosi, P., and Spicer, J. I.: Short–term exposure to
hypercapnia does not compromise feeding, acid–base balance or respiration of
Patella vulgata but surprisingly is accompanied by radula damage, J.
Mar. Biol. Assoc. UK, 90, 1379–1384,
https://doi.org/10.1017/s0025315410000457, 2010.
McClintock, J. B., Angus, R. A., Mcdonald, M. R., Amsler, C. D., Catledge,
S. A., and Vohra, Y. K.: Rapid dissolution of shells of weakly calcified
Antarctic benthic macroorganisms indicates high vulnerability to ocean
acidification, Antarct. Sci., 21, 449–456,
https://doi.org/10.1017/s0954102009990198, 2009.
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald,
A., Försterra, G., Lopez Correa, M., Maier, C., Ruggeberg, A., and
Taviani, M.: Resilience of cold–water scleractinian corals to ocean
acidification: Boron isotopic systematics of pH and saturation state
up–regulation, Geochim. Cosmochim. Ac., 87, 21–34,
https://doi.org/10.1016/j.gca.2012.03.027, 2012.
Melzner, F., Stange, P., Trübenbach, K., Thomsen, J., Casties, I.,
Panknin, U., Gorb, S. N., and Gutowska, M. A.: Food supply and seawater
pCO2 impact calcification and internal shell dissolution in the
blue mussel
Mytilus edulis, PLoS ONE, 6, e24223,
https://doi.org/10.1371/journal.pone.0024223, 2011.
Michaelidis, B., Ouzounis, C., Paleras, A., and Pörtner, H. O.: Effects
of long-term moderate hypercapnia on acid–base balance and growth rate in
marine mussels
Mytilus galloprovincialis, Mar. Ecol. Prog. Ser.,
293, 109–118, https://doi.org/10.3354/meps293109, 2005.
Mii, H. S. and Grossman, E. L.: Late Pennsylvanian seasonality reflected in
the
18O and elemental composition of a brachiopod shell, Geology,
22, 661–664,
https://doi.org/10.1130/0091-7613(1994)022<0661:lpsrit>2.3.co;2,
1994.
Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., and Egorov, A.:
Isotopic records of brachiopod shells from the Russian Platform–evidence
for the onset of mid–Carboniferous glaciation, Chem. Geol., 175, 133–147,
https://doi.org/10.1016/s0009-2541(00)00366-1, 2001.
Milano, S., Schöne, B. R., Wang, S., and Müller, W. E.: Impact of
high
pCO2 on shell structure of the bivalve
Cerastoderma edule, Mar. Environ. Res., 119, 144–155,
https://doi.org/10.1016/j.marenvres.2016.06.002, 2016.
Mingliang, Z., Jianguang, F., Jihong, Z., Bin, L., Shengmin, R., Yuze, M.,
and Yaping, G.: Effect of marine acidification on calcification and
respiration of
Chlamys farreri, J. Shellfish Res., 30, 267–271,
https://doi.org/10.2983/035.030.0211, 2011.
Morse, J. W., Arvidson, R. S., and Luttge, A.: Calcium carbonate formation
and dissolution, Chem. Rev., 107, 342–381,
https://doi.org/10.1002/chin.200719199, 2007.
Movilla, J., Orejas, C., Calvo, E., Gori, A., López Sanz, Á.,
Grinyó, J., Dominguez–Carrió, C., and Pelejero, C.: Differential
response of two Mediterranean cold–water coral species to ocean
acidification, Coral Reefs, 33, 675–686,
https://doi.org/10.1007/s00338-014-1159-9, 2014.
Navarro, J. M., Torres, R., Acuna, K., Duarte, C., Manriquez, P. H., Lardies,
M., Lagos, N. A., Vargas, C., and Aguilera, V.: Impact of medium–term
exposure to elevated
pCO2 levels on the physiological energetics of
the mussel
Mytilus chilensis, Chemosphere, 90, 1242–1248,
https://doi.org/10.1016/j.chemosphere.2012.09.063, 2013.
Nienhuis, S., Palmer, A. R., and Harley, C. D. G.: Elevated
CO2
affects shell dissolution rate but not calcification rate in a marine snail,
Philos. T. R. Soc. Lon. B, 277, 2553–2558,
https://doi.org/10.1098/rspb.2010.0206, 2010.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty–first century and its
impact on calcifying organisms, Nature, 437, 681–686,
https://doi.org/10.1038/nature04095, 2005.
Parker, L. M., Ross, P. M., and O'Connor, W. A.: Comparing the effect of
elevated
pCO2 and temperature on the fertilization and early
development of two species of oysters, Mar. Biol., 157, 2435–2452,
https://doi.org/10.1007/s00227-010-1508-3, 2010.
Parker, L. M., Ross, P. M., and O'Connor, W. A.: Populations of the Sydney
rock oyster,
Saccostrea glomerata, vary in response to ocean acidification, Mar. Biol., 158,
689–697, https://doi.org/10.1007/s00227-010-1592-4, 2011.
Parker, L. M., Ross, P. M., O'Connor, W. A., Borysko, L., Raftos, D. A., and
Pörtner, H.-O.: Adult exposure influences offspring response to ocean
acidification in oysters, Glob. Change Biol., 18, 82–92,
https://doi.org/10.1111/j.1365-2486.2011.02520.x, 2012.
Parkinson, D., Curry, G. B., Cusack, M., and Fallick, A. E.: Shell
structure, patterns and trends of oxygen and carbon stable isotopes in
modern brachiopod shells, Chem. Geol., 219, 193–235,
https://doi.org/10.1016/j.chemgeo.2005.02.002, 2005.
Payne, J. L. and Clapham, M. E.: End-Permian mass extinction in the oceans: an ancient analog for the
twenty-first century?, Annu. Rev. Earth Pl. Sc., 40, 89–111,
https://doi.org/10.1146/annurev-earth-042711-105329, 2012.
Peck, L. S., Clarke, A., and Holmes, L. J.: Size, shape and the distribution
of organic matter in the Recent Antarctic brachiopod
Liothyrella uva, Lethaia, 20, 33–40,
https://doi.org/10.1111/j.1502-3931.1987.tb00757.x, 1987.
Penman, D. E., Hönisch, B., Rasbury, E. T., Hemming, N. G., and Spero, H.
J.: Boron, carbon, and oxygen isotopic composition of brachiopod shells:
Intra–shell variability, controls, and potential as a paleo-pH recorder,
Chem. Geol., 340, 32–39, https://doi.org/10.1016/j.chemgeo.2012.11.016,
2013.
Pérez-Huerta, A., Cusack, M., McDonald, S., Marone, F., Stampanoni, M.,
and MacKay, S.: Brachiopod punctae: a complexity in shell biomineralisation,
J. Struct. Biol., 167, 62–67, https://doi.org/10.1016/j.jsb.2009.03.013,
2009.
Popov, L. E., Egerquist, E., and Holmer, L. E.: Earliest ontogeny of Middle
Ordovician rhynchonelliform brachiopods (Clitambonitoidea and
Polytoechioidea): implications for brachiopod phylogeny, Lethaia, 40,
85–96, https://doi.org/10.1111/j.1502-3931.2006.00008.x, 2007.
Popp, B. N., Anderson, T. F., and Sandberg, P. A.: Brachiopods as indicators
of original isotopic compositions in some Paleozoic limestones, Geol. Soc.
Am. Bull., 97, 1262–1269,
https://doi.org/10.1130/0016-7606(1986)97<1262:baiooi>2.0.co;2, 1986.
Range, P., Chícharo, M. A., Ben-Hamadou, R., Piló, D., Matias, D.,
Joaquim, S., Oliveira, A. P., and Chícharo, L.: Calcification, growth
and mortality of juvenile clams
Ruditapes decussatus under increased
pCO2 and reduced pH: Variable responses to ocean acidification at
local scales?, J. Exp. Mar. Biol. Ecol., 396, 177–184,
https://doi.org/10.1016/j.jembe.2010.10.020, 2011.
Range, P., Piló, D., Ben-Hamadou, R., Chícharo, M. A., Matias, D.,
Joaquim, S., Oliveira, A. P., and Chícharo, L.: Seawater acidification
by
CO2 in a coastal lagoon environment: Effects on life history
traits of juvenile mussels
Mytilus galloprovincialis, J. Exp. Mar.
Biol. Ecol., 424–425, 89–98, https://doi.org/10.1016/j.jembe.2012.05.010,
2012.
Ries, J. B., Cohen, A. L., and McCorkle, D. C.: Marine calcifiers exhibit
mixed responses to
CO2-induced ocean acidification, Geology, 37,
1131–1134, https://doi.org/10.1130/g30210a.1, 2009.
Romanin, M., Crippa, G., Ye, F., Brand, U., Bitner, M. A., Gaspard, D.,
Häussermann, V., and Laudien J.: A sampling strategy for recent and
fossil brachiopods: selecting the optimal shell segment for geochemical
analyses, Riv. Ital. Paleontol. S., 124, 343–359, 2018.
Shirayama, Y. and Thornton, H.: Effect of increased atmospheric
CO2
on shallow water marine benthos, J. Geophys. Res.-Oceans, 110, C09S08,
https://doi.org/10.1029/2004jc002618, 2005.
Smirnova, T. N. and Popiel-Barczyk, E.: Characteristics of the shell
ultrastructure in Terebratellacea, in: Brachiopods through time, edited by:
MacKinnon, D. I., Lee, D. E., and Campbell, J. D. (Eds.): Brachiopods through
time, Balkema, Rotterdam, 159–165, 1991.
Steckbauer, A., Ramajo, L., Hendriks, I. R., Fernandez, M., Lagos, N. A.,
Prado, L., and Duarte, C. M.: Synergistic effects of hypoxia and increasing
CO2 on benthic invertebrates of the central Chilean coast, Front.
Mar. Sci., 2, 49, https://doi.org/10.3389/fmars.2015.00049, 2015.
Stemmer, K., Nehrke, G., and Brey, T.: Elevated
CO2 levels do not
affect the shell structure of the bivalve
Arctica islandica from the
Western Baltic, PLoS ONE, 8, e70103,
https://doi.org/10.1371/journal.pone.0070106, 2013.
Suckling, C. C., Clark, M. M., Richard, J., Morley, S. A., Thorne, M. A.,
Harper, E. M., and Peck, L. S.: Adult acclimation to combined temperature and
pH stressors significantly enhances reproductive outcomes compared to
short-term exposures, J. Anim. Ecol., 84, 773–784,
https://doi.org/10.1111/1365-2656.12316, 2015.
Takayanagi, H., Asami, R., Abe, O., and Miyajima, T.: Intraspecific
variations in carbon-isotope and oxygen-isotope compositions of a brachiopod
Basiliola lucida collected off Okinawa-jima, southwestern Japan,
Geochim. Cosmochim. Ac., 115, 115–136,
https://doi.org/10.1016/j.gca.2013.03.026, 2013.
Talmage, S. C. and Gobler, C. J.: Effects of elevated temperature and carbon
dioxide on the growth and survival of larvae and juveniles of three species
of northwest Atlantic bivalves, PLoS ONE, 6, e26941,
https://doi.org/10.1371/journal.pone.0026941, 2011.
Thomsen, J. and Melzner, F.: Moderate seawater acidification does not elicit
long-term metabolic depression in the blue mussel
Mytilus edulis,
Mar. Biol., 157, 2667–2676, https://doi.org/10.1007/s00227-010-1527-0, 2010.
Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A., Trübenbach,
K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Körtzinger, A., Wahl, M.,
and Melzner, F.: Calcifying invertebrates succeed in a naturally
CO2-rich coastal habitat but are threatened by high levels of future
acidification, Biogeosciences, 7, 3879–3891,
https://doi.org/10.5194/bg-7-3879-2010, 2010.
Tukey, J. W.: Exploratory data analysis, Reading, PA: Addison-Wesley, 1977.
Ullmann, C. V., Frei, R., Korte, C., and Lüter, C.: Element/Ca, C and O
isotope ratios in modern brachiopods: Species–specific signals of
biomineralization, Chem. Geol., 460, 15–24,
https://doi.org/10.1016/j.chemgeo.2017.03.034, 2017.
Watkins, J. M., Nielsen, L. C., Ryerson, F. J., and DePaolo, D. J.: The
influence of kinetics on the oxygen isotope composition of calcium carbonate,
Earth Planet. Sc. Lett., 375, 349–360,
https://doi.org/10.1016/j.epsl.2013.05.054, 2013.
Watson, S., Peck, L. S., Tyler, P. A., Southgate, P. C., Tan, K. S., Day, R.
W., and Morley, S. A.: Marine invertebrate skeleton size varies with
latitude, temperature and carbonate saturation: implications for global
change and ocean acidification, Glob. Change Biol., 18, 3026–3038,
https://doi.org/10.1111/j.1365-2486.2012.02755.x, 2012.
Williams, A.: The calcareous shell of the Brachiopoda and its importance to
their classification, Biol. Rev., 31, 243–287,
https://doi.org/10.1111/j.1469-185x.1956.tb01591.x, 1956.
Williams, A.: Growth and structure of the shell of living articulate
brachiopods, Nature, 211, 1146–1148, https://doi.org/10.1038/2111146a0,
1966.
Williams, A.: Evolution of the shell structure of articulate brachiopods,
Spec. Pap. Palaeontol., 2, 1–55, 1968.
Williams, A.: The secretion and structural evolution of the shell of
thecideidine brachiopods, Philos. T. R. Soc. Lon. B., 264, 439–478, 1973.
Williams, A.: Shell structure, in: Treatise on Invertebrate Paleontology,
Part H, Revised, edited by: Kaesler, R. L., Brachiopoda, vol. 1, Geological
Society of America Inc., and The University of Kansas, Boulder, Colorado,
USA, 267–320, 1997.
Williams, A. and Cusack, M.: Chemicostructural diversity of the brachiopod
shell, in: Treatise on Invertebrate Paleontology, Part H, Brachiopoda
Revised, edited by: Selden, P. A., vol. 6, Geological Society of America
Inc., and The University of Kansas, Boulder, Colorado, USA, 2396–2521, 2007.
Wood, H. L., Spicer, J. I., and Widdicombe, S.: Ocean acidification may
increase calcification rates, but at a cost, P. Roy. Soc. Lond. B, Bio., 275,
1767–1773, https://doi.org/10.1098/rspb.2008.0343, 2008.
Yamamoto, K., Asami, R., and Iryu, Y.: Correlative relationships between
carbon- and oxygen-isotope records in two cool-temperate brachiopod species
off Otsuchi Bay, northeastern Japan, Paleontol. Res., 17, 12–26,
https://doi.org/10.2517/1342-8144-17.1.12, 2013.
Ye, F., Crippa, G., Angiolini, L., Brand, U., Capitani, G., Cusack, M.,
Garbelli, C., Griesshaber, E., Harper, E., and Schmahl, W.: Mapping of
recent brachiopod microstructure: a tool for environmental studies, J.
Struct. Biol., 201, 221–236, https://doi.org/10.1016/j.jsb.2017.11.011,
2018a.
Ye, F., Crippa, G., Garbelli, C., and Griesshaber, E.: Microstructural data
of six recent brachiopod species: SEM, EBSD, morphometric and statistical
analyses, Data in Brief, 18, 300–318,
https://doi.org/10.1016/j.dib.2018.02.071, 2018b.