Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical partitioning of CO2 production in a forest soil
Patrick Wordell-Dietrich
CORRESPONDING AUTHOR
Institute of Soil Science and Site Ecology, Technische Universität Dresden, Pienner Straße 19, 01737 Tharandt, Germany
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany
Anja Wotte
Institute of Geology, Technische Universität Bergakademie Freiberg, Bernhard-von-Cotta Straße 2, 09599 Freiberg, Germany
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49b, 50674 Cologne, Germany
Janet Rethemeyer
Institute of Geology and Mineralogy, University of Cologne, Zülpicher Straße 49b, 50674 Cologne, Germany
Jörg Bachmann
Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Straße 2, 30451 Hannover, Germany
Mirjam Helfrich
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany
Kristina Kirfel
Plant Ecology, Albrecht Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Christoph Leuschner
Plant Ecology, Albrecht Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
Thünen Institute of Climate-Smart Agriculture, Bundesallee 65, 38116 Braunschweig, Germany
Related authors
No articles found.
Victoria Nasser, René Dechow, Mirjam Helfrich, Ana Meijide, Pauline Sophie Rummel, Heinz-Josef Koch, Reiner Ruser, Lisa Essich, and Klaus Dittert
SOIL, 11, 489–506, https://doi.org/10.5194/soil-11-489-2025, https://doi.org/10.5194/soil-11-489-2025, 2025
Short summary
Short summary
This study evaluated the impact of contrasting cover crops on topsoil mineral nitrogen (SMN), N2O emissions, and carbon (C) sequestration. Non-legume cover crops reduced SMN levels, showed potential for mitigating indirect N2O emissions, and increased C sequestration but did not reduce cumulative N2O emissions compared to fallow. The results highlight the need for tailored cover crop strategies to balance SMN capture, N2O emissions, and C sequestration effectively.
Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don
SOIL, 8, 587–604, https://doi.org/10.5194/soil-8-587-2022, https://doi.org/10.5194/soil-8-587-2022, 2022
Short summary
Short summary
As soil carbon has become a key component of climate-smart agriculture, the demand for high-resolution maps has increased drastically. Meanwhile, machine learning algorithms are becoming more widely used and are opening up new solutions in soil mapping. This paper shows which algorithms perform best, how soil inventory data can be most efficiently used for digital soil mapping, and the different available options and methods to derive high-resolution soil carbon data at the large regional scale.
Stephanie Scheidt, Matthias Lenz, Ramon Egli, Dominik Brill, Martin Klug, Karl Fabian, Marlene M. Lenz, Raphael Gromig, Janet Rethemeyer, Bernd Wagner, Grigory Federov, and Martin Melles
Geochronology, 4, 87–107, https://doi.org/10.5194/gchron-4-87-2022, https://doi.org/10.5194/gchron-4-87-2022, 2022
Short summary
Short summary
Levinson-Lessing Lake in northern central Siberia provides an exceptional opportunity to study the evolution of the Earth's magnetic field in the Arctic. This is the first study carried out at the lake that focus on the palaeomagnetic record. It presents the relative palaeointensity and palaeosecular variation of the upper 38 m of sediment core Co1401, spanning ~62 kyr. A comparable high-resolution record of this time does not exist in the Eurasian Arctic.
Fabian Kalks, Gabriel Noren, Carsten W. Mueller, Mirjam Helfrich, Janet Rethemeyer, and Axel Don
SOIL, 7, 347–362, https://doi.org/10.5194/soil-7-347-2021, https://doi.org/10.5194/soil-7-347-2021, 2021
Short summary
Short summary
Sedimentary rocks contain organic carbon that may end up as soil carbon. However, this source of soil carbon is overlooked and has not been quantified sufficiently. We analysed 10 m long sediment cores with three different sedimentary rocks. All sediments contain considerable amounts of geogenic carbon contributing 3 %–12 % to the total soil carbon below 30 cm depth. The low 14C content of geogenic carbon can result in underestimations of soil carbon turnover derived from 14C data.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Jürgen Homeier and Christoph Leuschner
Biogeosciences, 18, 1525–1541, https://doi.org/10.5194/bg-18-1525-2021, https://doi.org/10.5194/bg-18-1525-2021, 2021
Short summary
Short summary
We studied aboveground productivity in humid tropical montane old-growth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand structural factors. From our results we conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
Wolf Dummann, Sebastian Steinig, Peter Hofmann, Matthias Lenz, Stephanie Kusch, Sascha Flögel, Jens Olaf Herrle, Christian Hallmann, Janet Rethemeyer, Haino Uwe Kasper, and Thomas Wagner
Clim. Past, 17, 469–490, https://doi.org/10.5194/cp-17-469-2021, https://doi.org/10.5194/cp-17-469-2021, 2021
Short summary
Short summary
This study investigates the climatic mechanism that controlled the deposition of organic matter in the South Atlantic Cape Basin during the Early Cretaceous. The presented geochemical and climate modeling data suggest that fluctuations in riverine nutrient supply were the main driver of organic carbon burial on timescales < 1 Myr. Our results have implications for the understanding of Cretaceous atmospheric circulation patterns and climate-land-ocean interactions in emerging ocean basins.
Cited articles
Agnelli, A., Ascher, J., Corti, G., Ceccherini, M. T., Nannipieri, P., and
Pietramellara, G.: Distribution of microbial communities in a forest soil
profile investigated by microbial biomass, soil respiration and DGGE of total
and extracellular DNA, Soil Biol. Biochem., 36, 859–868,
https://doi.org/10.1016/j.soilbio.2004.02.004, 2004. a
Angst, G., John, S., Mueller, C. W., Kögel-Knabner, I., and Rethemeyer,
J.: Tracing the sources and spatial distribution of organic carbon in
subsoils using a multi-biomarker approach, Sci. Rep., 6, 29478,
https://doi.org/10.1038/srep29478, 2016. a
Baldocchi, D., Tang, J., and Xu, L.: How switches and lags in biophysical
regulators affect spatial-temporal variation of soil respiration in an
oak-grass savanna, J. Geophys. Res.-Biogeo., 111, G2,
https://doi.org/10.1029/2005JG000063, 2006. a
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Europ.
J. Soil Sci., 65, 10–21, https://doi.org/10.1111/ejss.12114_2, 2014. a, b
Bond-Lamberty, B. and Thomson, A.: Temperature-associated increases in the
global soil respiration record, Nature, 464, 579–582,
https://doi.org/10.1038/nature08930, 2010. a
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R.:
Globally rising soil heterotrophic respiration over recent decades, Nature,
560, 80–83, https://doi.org/10.1038/s41586-018-0358-x, 2018. a
Borken, W., Xu, Y.-J., Davidson, E. A., and Beese, F.: Site and temporal
variation of soil respiration in European beech, Norway spruce, and Scots
pine forests, Glob. Change Biol., 8, 1205–1216,
https://doi.org/10.1046/j.1365-2486.2002.00547.x, 2002. a
Böttcher, J., Weymann, D., Well, R., Von Der Heide, C., Schwen, A.,
Flessa, H., and Duijnisveld, W. H. M.: Emission of groundwater-derived
nitrous oxide into the atmosphere: Model simulations based on a 15N field
experiment, Europ. J. Soil Sci., 62, 216–225,
https://doi.org/10.1111/j.1365-2389.2010.01311.x, 2011. a
Bowden, R. D., Nadelhoffer, K. J., Boone, R. D., Melillo, J. M., and Garrison,
J. B.: Contributions of aboveground litter, belowground litter, and root
respiration to total soil respiration in a temperate mixed hardwood forest,
Can. J. Forest Res., 23, 1402–1407, https://doi.org/10.1139/x93-177,
1993. a
Cerling, T. E., Solomon, D., Quade, J., and Bowman, J. R.: On the isotopic
composition of carbon in soil carbon dioxide, Geochim. Cosmochim.a
Ac., 55, 3403–3405, https://doi.org/10.1016/0016-7037(91)90498-T, 1991. a
Cook, F. J., Orchard, V. A., and Corderoy, D. M.: Effects of lime and water
content on soil respiration, New Zeal. J. Agr. Res.,
28, 517–523, https://doi.org/10.1080/00288233.1985.10417997, 1985. a
Davidson, E. A. and Trumbore, S. E.: Gas diffusivity and production of
CO2 in deep soils of the eastern Amazon, Tellus B, 47,
550–565, https://doi.org/10.3402/tellusb.v47i5.16071, 1995. a, b
Davidson, E. A., Belk, E., and Boone, R. D.: Soil water content and
temperature as independent or confounded factors controlling soil respiration
in a temperate mixed hardwood forest, Glob. Change Biol., 4, 217–227,
https://doi.org/10.1046/j.1365-2486.1998.00128.x, 1998. a
Drewitt, G. B., Black, T. A., and Jassal, R. S.: Using measurements of soil
CO2 efflux and concentrations to infer the depth distribution
of CO2 production in a forest soil, Can. J. Soil
Sci., 85, 213–221, https://doi.org/10.4141/S04-041, 2005. a, b
Fang, C. and Moncrieff, J.: The dependence of soil CO2 efflux
on temperature, Soil Biol. Biochem., 33, 155–165,
https://doi.org/10.1016/S0038-0717(00)00125-5, 2001. a
Gaudinski, J., Trumbore, S., Davidson, E., and Zheng, S.: Soil carbon cycling
in a temperate forest: radiocarbon-based estimates of residence times,
sequestration rates and partitioning of fluxes, Biogeochemistry, 51, 33–69,
https://doi.org/10.1023/A:1006301010014, 2000. a, b, c, d
Goffin, S., Aubinet, M., Maier, M., Plain, C., Schack-Kirchner, H., and
Longdoz, B.: Characterization of the soil CO2 production and
its carbon isotope composition in forest soil layers using the flux-gradient
approach, Agr. Forest Meteorol., 188, 45–57,
https://doi.org/10.1016/j.agrformet.2013.11.005, 2014. a
Hashimoto, S., Tanaka, N., Kume, T., Yoshifuji, N., Hotta, N., Tanaka, K., and
Suzuki, M.: Seasonality of vertically partitioned soil CO2
production in temperate and tropical forest, J. Forest Res., 12,
209–221, https://doi.org/10.1007/s10310-007-0009-9, 2007. a, b, c
Hashimoto, S., Carvalhais, N., Ito, A., Migliavacca, M., Nishina, K., and
Reichstein, M.: Global spatiotemporal distribution of soil respiration
modeled using a global database, Biogeosciences, 12, 4121–4132,
https://doi.org/10.5194/bg-12-4121-2015, 2015. a
Heinze, S., Ludwig, B., Piepho, H.-p., Mikutta, R., Don, A., Wordell-Dietrich,
P., Helfrich, M., Hertel, D., Leuschner, C., Kirfel, K., Kandeler, E.,
Preusser, S., Guggenberger, G., Leinemann, T., and Marschner, B.: Factors
controlling the variability of organic matter in the top- and subsoil of a
sandy Dystric Cambisol under beech forest, Geoderma, 311, 37–44,
https://doi.org/10.1016/j.geoderma.2017.09.028, 2018. a
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355, 1420–1423,
https://doi.org/10.1126/science.aal1319, 2017. a, b, c
Högberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A.,
Högberg, M. N., Nyberg, G., Ottosson-Löfvenius, M., and Read,
D. J.: Large-scale forest girdling shows that current photosynthesis drives
soil respiration, Nature, 411, 789–792, https://doi.org/10.1038/35081058, 2001. a
IUSS Working Group WRB: World reference base for soil resources 2014, Update
2015, International soil classification system for naming soils and creating
legends for soil maps, FAO, available at:
http://www.fao.org/3/i3794en/I3794en.pdf, last access: 30 November 2015. a
Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z., and Gaumont-Guay,
D.: Relationship between soil CO2 concentrations and
forest-floor CO2 effluxes, Agr. Forest
Meteorol., 130, 176–192, https://doi.org/10.1016/j.agrformet.2005.03.005, 2005. a, b, c
Jobbágy, E. and Jackson, R.: The vertical distribution of soil organic
carbon and its relation to climate and vegetation, Ecol. Appl.,
10, 423–436, 2000. a
Jones, H. G.: Plants and microclimate :a quantitative approach to
environmental plant physiology, Cambridge University Press, 2nd Edn., 1994. a
Kim, H., Hirano, T., Koike, T., and Urano, S.: Contribution of litter
CO2 production to total soil respiration in two different
deciduous forests, Phyton-Ann. Rei Bot. A, 45, 385–388, 2005. a
Leinemann, T., Mikutta, R., Kalbitz, K., Schaarschmidt, F., and Guggenberger,
G.: Small scale variability of vertical water and dissolved organic matter
fluxes in sandy Cambisol subsoils as revealed by segmented suction plates,
Biogeochemistry, 131, 1–15, https://doi.org/10.1007/s10533-016-0259-8, 2016. a, b, c, d
Liang, N., Nakadai, T., Hirano, T., Qu, L., Koike, T., Fujinuma, Y., and Inoue,
G.: In situ comparison of four approaches to estimating soil
CO2 efflux in a northern larch (Larix kaempferi Sarg.)
forest, Agr. Forest Meteorol., 123, 97–117,
https://doi.org/10.1016/j.agrformet.2003.10.002, 2004. a
Lloyd, J. and Taylor, J. A.: On the Temperature Dependence of Soil
Respiration, Funct. Ecol., 8, 315–323, https://doi.org/10.2307/2389824, 1994. a
Maier, M. and Schack-Kirchner, H.: Using the gradient method to determine soil
gas flux: A review, Agr. Forest Meteorol., 192-193, 78–95,
https://doi.org/10.1016/j.agrformet.2014.03.006, 2014. a, b
Moyano, F. E., Vasilyeva, N., Bouckaert, L., Cook, F., Craine, J., Curiel
Yuste, J., Don, A., Epron, D., Formanek, P., Franzluebbers, A., Ilstedt, U.,
Kätterer, T., Orchard, V., Reichstein, M., Rey, A., Ruamps, L., Subke,
J. A., Thomsen, I. K., and Chenu, C.: The moisture response of soil
heterotrophic respiration: Interaction with soil properties, Biogeosciences,
9, 1173–1182, https://doi.org/10.5194/bg-9-1173-2012, 2012. a
Moyes, A. B. and Bowling, D. R.: Interannual variation in seasonal drivers of
soil respiration in a semi-arid Rocky Mountain meadow, Biogeochemistry, 113,
683–697, https://doi.org/10.1007/s10533-012-9797-x, 2012. a, b, c
Nadelhoffer, K., Boone, R. D., Bowden, R. D., Canary, J. D., Kaye, J., Micks,
P., Ricca, A., Aitkenhead, J. A., Lajtha, K., and McDowell, W. H.: The DIRT
Experiment: Litter and Root Influences on Forest Soil Organic Matter Stocks
and Function, in: Forests in time: the environmental consequences of 1000
years of change in New England, edited by: Foster, D. R. and Aber, J. D.,
chap. 15, Yale University Press, New Haven, Conneticut, 300–315,
https://doi.org/10.1890/0012-9623-96.3.492, 2004. a
Pingintha, N., Leclerc, M. Y., BEASLEY Jr., J. P., Zhang, G., and Senthong,
C.: Assessment of the soil CO2 gradient method for soil
CO2 efflux measurements: comparison of six models in the
calculation of the relative gas diffusion coefficient, Tellus B, 62, 47–58,
https://doi.org/10.1111/j.1600-0889.2009.00445.x, 2010. a, b
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/, last access: 20 June 2017. a
Raich, J. W. and Potter, C. S.: Global patterns of carbon dioxide emissions
from soils, Global Biogeochem. Cy., 9, 23–36,
https://doi.org/10.1029/94GB02723, 1995. a
Rethemeyer, J., Kramer, C., Gleixner, G., John, B., Yamashita, T., Flessa, H.,
Andersen, N., Nadeau, M. J., and Grootes, P. M.: Transformation of organic
matter in agricultural soils: Radiocarbon concentration versus soil depth,
Geoderma, 128, 94–105, https://doi.org/10.1016/j.geoderma.2004.12.017, 2005. a
Ruff, M., Szidat, S., Gäggeler, H., Suter, M., Synal, H.-A., and Wacker,
L.: Gaseous radiocarbon measurements of small samples, Nucl. Instr.
Method. Phys. Res. Sect. B, 268, 790–794, https://doi.org/10.1016/j.nimb.2009.10.032, 2010. a
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon
dynamics in topsoil and in subsoil may be controlled by different regulatory
mechanisms, Glob. Change Biol., 16, 416–426,
https://doi.org/10.1111/j.1365-2486.2009.01884.x, 2010. a
Schindlbacher, A., Zechmeister-Boltenstern, S., and Jandl, R.: Carbon losses
due to soil warming: Do autotrophic and heterotrophic soil respiration
respond equally?, Glob. Change Biol., 15, 901–913,
https://doi.org/10.1111/j.1365-2486.2008.01757.x, 2009. a
Schwen, A. and Böttcher, J.: A Simple Tool for the Inverse Estimation of
Soil Gas Diffusion Coefficients, Soil Sci. Soc. Am. J.,
77, 759–764, https://doi.org/10.2136/sssaj2012.0347n, 2013. a
Sulzman, E. W., Brant, J. B., Bowden, R. D., and Lajtha, K.: Contribution of
aboveground litter, belowground litter, and rhizosphere respiration to total
soil CO2 efflux in an old growth coniferous forest,
Biogeochemistry, 73, 231–256, https://doi.org/10.1007/s10533-004-7314-6, 2005. a
Suseela, V. and Dukes, J. S.: The responses of soil and rhizosphere
respiration to simulated climatic changes vary by season, Ecology, 94,
403–413, https://doi.org/10.1890/12-0150.1, 2013. a
Tang, J., Baldocchi, D. D., Qi, Y., and Xu, L.: Assessing soil
CO2 efflux using continuous measurements of
CO2 profiles in soils with small solid-state sensors,
Agr. Forest Meteorol., 118, 207–220,
https://doi.org/10.1016/S0168-1923(03)00112-6, 2003.
a
Tang, J., Misson, L., Gershenson, A., Cheng, W., and Goldstein, A. H.:
Continuous measurements of soil respiration with and without roots in a
ponderosa pine plantation in the Sierra Nevada Mountains, Agr.
Forest Meteorol., 132, 212–227, https://doi.org/10.1016/j.agrformet.2005.07.011,
2005. a
Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., and Hendricks,
D. M.: Mineral control ofsoil organic carbon storage and turnover, Nature,
389, 170–173, https://doi.org/10.1038/38260, 1997. a
Turcu, V. E., Jones, S. B., and Or, D.: Continuous soil carbon dioxide and
oxygen measurements and estimation of gradient-based gaseous flux, Vadose
Zone J., 4, 1161–1169, https://doi.org/10.2136/vzj2004.0164, 2005. a
Wordell-Dietrich, P.:
Data set to the publication Vertical partitioning of CO2 production in a forest soil.
https://doi.org/10.25532/OPARA-101, 2020.
Wordell-Dietrich, P., Don, A., and Helfrich, M.: Controlling factors for the
stability of subsoil carbon in a Dystric Cambisol, Geoderma, 304, 40–48,
https://doi.org/10.1016/j.geoderma.2016.08.023, 2017. a
Wotte, A., Wordell-Dietrich, P., Wacker, L., Don, A., and Rethemeyer, J.:
14CO2 processing using an improved and
robust molecular sieve cartridge, Nucl. Instr. Method. Phys.
Res. Sect. B, 400, 65–73,
https://doi.org/10.1016/j.nimb.2017.04.019, 2017. a, b
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
The release of CO2 from soils, known as soil respiration, plays a major role in the global...
Altmetrics
Final-revised paper
Preprint