Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6377-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Root uptake under mismatched distributions of water and nutrients in the root zone
Life and Environmental Sciences Department, University of California, Merced, CA, 95343, USA
Nathaniel A. Bogie
Geology Department, San Jose State University, San Jose, CA, 95192, USA
Teamrat A. Ghezzehei
CORRESPONDING AUTHOR
Life and Environmental Sciences Department, University of California, Merced, CA, 95343, USA
Related authors
No articles found.
Toshiyuki Bandai and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 26, 4469–4495, https://doi.org/10.5194/hess-26-4469-2022, https://doi.org/10.5194/hess-26-4469-2022, 2022
Short summary
Short summary
Scientists use a physics-based equation to simulate water dynamics that influence hydrological and ecological phenomena. We present hybrid physics-informed neural networks (PINNs) to leverage the growing availability of soil moisture data and advances in machine learning. We showed that PINNs perform comparably to traditional methods and enable the estimation of rainfall rates from soil moisture. However, PINNs are challenging to train and significantly slower than traditional methods.
Samuel N. Araya, Jeffrey P. Mitchell, Jan W. Hopmans, and Teamrat A. Ghezzehei
SOIL, 8, 177–198, https://doi.org/10.5194/soil-8-177-2022, https://doi.org/10.5194/soil-8-177-2022, 2022
Short summary
Short summary
We studied the long-term effects of no-till (NT) and winter cover cropping (CC) practices on soil hydraulic properties. We measured soil water retention and conductivity and also conducted numerical simulations to compare soil water storage abilities under the different systems. Soils under NT and CC practices had improved soil structure. Conservation agriculture practices showed marginal improvement with respect to infiltration rates and water storage.
Jing Yan and Teamrat Ghezzehei
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-52, https://doi.org/10.5194/bg-2022-52, 2022
Publication in BG not foreseen
Short summary
Short summary
Although hydraulic redistribution (HR) is a well-documented phenomenon, whether it is a passive happy accident or actively controlled by roots is not well understood. Our modeling study suggests HR is long-range feedback between roots that inhabit heterogeneously resourced soil regions. When nutrients and organic matter are concentrated in shallow layers that experience frequent drying, root-exudation facilitated HR allows plants to mineralize and extract the otherwise inaccessible nutrients.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Samuel N. Araya, Anna Fryjoff-Hung, Andreas Anderson, Joshua H. Viers, and Teamrat A. Ghezzehei
Hydrol. Earth Syst. Sci., 25, 2739–2758, https://doi.org/10.5194/hess-25-2739-2021, https://doi.org/10.5194/hess-25-2739-2021, 2021
Short summary
Short summary
We took aerial photos of a grassland area using an unoccupied aerial vehicle and used the images to estimate soil moisture via machine learning. We were able to estimate soil moisture with high accuracy. Furthermore, by analyzing the machine learning models we developed, we learned how different factors drive the distribution of moisture across the landscape. Among the factors, rainfall, evapotranspiration, and topography were most important in controlling surface soil moisture distribution.
Teamrat A. Ghezzehei, Benjamin Sulman, Chelsea L. Arnold, Nathaniel A. Bogie, and Asmeret Asefaw Berhe
Biogeosciences, 16, 1187–1209, https://doi.org/10.5194/bg-16-1187-2019, https://doi.org/10.5194/bg-16-1187-2019, 2019
Short summary
Short summary
Soil water is a medium from which microbes acquire resources and within which they are able to move. Occupancy and availability of water and oxygen gas in soils are mutually exclusive. In addition, as soil dries the remaining water is held with an increasing degree of adhesive energy, which restricts microbes' ability to extract resources from water. We introduce a mathematical model that describes these interacting effects and organic matter decomposition.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Roland Baatz, Pamela L. Sullivan, Li Li, Samantha R. Weintraub, Henry W. Loescher, Michael Mirtl, Peter M. Groffman, Diana H. Wall, Michael Young, Tim White, Hang Wen, Steffen Zacharias, Ingolf Kühn, Jianwu Tang, Jérôme Gaillardet, Isabelle Braud, Alejandro N. Flores, Praveen Kumar, Henry Lin, Teamrat Ghezzehei, Julia Jones, Henry L. Gholz, Harry Vereecken, and Kris Van Looy
Earth Syst. Dynam., 9, 593–609, https://doi.org/10.5194/esd-9-593-2018, https://doi.org/10.5194/esd-9-593-2018, 2018
Short summary
Short summary
Focusing on the usage of integrated models and in situ Earth observatory networks, three challenges are identified to advance understanding of ESD, in particular to strengthen links between biotic and abiotic, and above- and below-ground processes. We propose developing a model platform for interdisciplinary usage, to formalize current network infrastructure based on complementarities and operational synergies, and to extend the reanalysis concept to the ecosystem and critical zone.
T. A. Ghezzehei, D. V. Sarkhot, and A. A. Berhe
Solid Earth, 5, 953–962, https://doi.org/10.5194/se-5-953-2014, https://doi.org/10.5194/se-5-953-2014, 2014
Related subject area
Biogeophysics: Physical - Biological Coupling
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
The contrasted phytoplankton dynamics across a frontal system in the southwestern Mediterranean Sea
Sub-frontal niches of plankton communities driven by transport and trophic interactions at ocean fronts
Differential feeding habits of the shallow-water hydrothermal vent crab Xenograpsus testudinatus correlate with their resident vent types at a scale of meters
Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region
Assimilation of multiple datasets results in large differences in regional- to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model
Spatiotemporal lagging of predictors improves machine learning estimates of atmosphere–forest CO2 exchange
Phytoplankton reaction to an intense storm in the north-western Mediterranean Sea
Lagrangian and Eulerian time and length scales of mesoscale ocean chlorophyll from Bio-Argo floats and satellites
Reply to Lars Olof Björn's comment on “Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum” by Michaelian and Simeonov (2015)
Modelling submerged biofouled microplastics and their vertical trajectories
A Bayesian sequential updating approach to predict phenology of silage maize
Using an oceanographic model to investigate the mystery of the missing puerulus
Climate pathways behind phytoplankton-induced atmospheric warming
Impact of moderately energetic fine-scale dynamics on the phytoplankton community structure in the western Mediterranean Sea
Seasonal ecosystem vulnerability to climatic anomalies in the Mediterranean
Grazing behavior and winter phytoplankton accumulation
Episodic subduction patches in the western North Pacific identified from BGC-Argo float data
Do Loop Current eddies stimulate productivity in the Gulf of Mexico?
Quasi-tropical cyclone caused anomalous autumn coccolithophore bloom in the Black Sea
Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain
Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season
Fire and vegetation dynamics in northwest Siberia during the last 60 years based on high-resolution remote sensing
Evidence of eddy-related deep-ocean current variability in the northeast tropical Pacific Ocean induced by remote gap winds
Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system
Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems
Abundance and viability of particle-attached and free-floating bacteria in dusty and nondusty air
Linking tundra vegetation, snow, soil temperature, and permafrost
Drivers of the spatial phytoplankton gradient in estuarine–coastal systems: generic implications of a case study in a Dutch tidal bay
Biological and biogeochemical methods for estimating bioirrigation: a case study in the Oosterschelde estuary
Dissolved inorganic nitrogen and particulate organic nitrogen budget in the Yucatán shelf: driving mechanisms through a physical–biogeochemical coupled model
Basal thermal regime affects the biogeochemistry of subglacial systems
Influence of oceanic conditions in the energy transfer efficiency estimation of a micronekton model
Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream
Stand age and species composition effects on surface albedo in a mixedwood boreal forest
Assessing the peatland hummock–hollow classification framework using high-resolution elevation models: implications for appropriate complexity ecosystem modeling
Tidal and seasonal forcing of dissolved nutrient fluxes in reef communities
Ideas and perspectives: Development of nascent autotrophic carbon fixation systems in various redox conditions of the fluid degassing on early Earth
Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal
Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off Mauritania in June 2014
Longitudinal contrast in turbulence along a ∼ 19° S section in the Pacific and its consequences for biogeochemical fluxes
Ideas and perspectives: Strengthening the biogeosciences in environmental research networks
Imprint of Southern Ocean mesoscale eddies on chlorophyll
Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow
Large- to submesoscale surface circulation and its implications on biogeochemical/biological horizontal distributions during the OUTPACE cruise (southwest Pacific)
OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy
Reviews and syntheses: on the roles trees play in building and plumbing the critical zone
Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024, https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Short summary
This paper investigates the water and CO2 exchange for an alfalfa field with observations and a model with spatial scales ranging from the stomata to the atmospheric boundary layer. To relate the environmental factors to the leaf gas exchange, we developed three equations that quantify how many of the temporal changes of the leaf gas exchange occur due to changes in the environmental variables. The novelty of the research resides in the capacity to dissect the dynamics of the leaf gas exchange.
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023, https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Short summary
The global ocean is losing oxygen due to warming. The Indian Ocean, however, is gaining oxygen in large parts of the basin, and its naturally occurring oxygen minimum zone is not expanding. This rather unexpected response is explained by the unique ocean circulation of the Indian Ocean, which is bounded by a continent to the north but connected to the Pacific Ocean by the Indonesian Throughflow.
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023, https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary
Short summary
Using a numerical model, we revealed that a large proportion of nutrients in a semi-enclosed sea (Seto Inland Sea, Japan) comes from the Pacific Ocean and supports about half of the phytoplankton growth in the sea. Such results imply that the human-made management of nutrient load from land needs to consider the presence of oceanic nutrients, which act as a background concentration and are not controlled by human activities.
Roxane Tzortzis, Andrea M. Doglioli, Monique Messié, Stéphanie Barrillon, Anne A. Petrenko, Lloyd Izard, Yuan Zhao, Francesco d'Ovidio, Franck Dumas, and Gérald Gregori
Biogeosciences, 20, 3491–3508, https://doi.org/10.5194/bg-20-3491-2023, https://doi.org/10.5194/bg-20-3491-2023, 2023
Short summary
Short summary
We studied a finescale frontal structure in order to highlight its influence on the dynamics and distribution of phytoplankton communities. We computed the growth rates of several phytoplankton groups identified by flow cytometry in two water masses separated by the front. We found contrasted phytoplankton dynamics on the two sides of the front, consistent with the distribution of their abundances. Our study gives new insights into the physical and biological coupling on a finescale front.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Jing-Ying Wu, Siou-Yan Lin, Jung-Fu Huang, Chen-Tung Arthur Chen, Jia-Jang Hung, Shao-Hung Peng, and Li-Lian Liu
Biogeosciences, 20, 2693–2706, https://doi.org/10.5194/bg-20-2693-2023, https://doi.org/10.5194/bg-20-2693-2023, 2023
Short summary
Short summary
The shallow-water hydrothermal vents off the Kueishan Island, Taiwan, have the most extreme records of pH values (1.52), temperatures (116 °C), and H2S concentrations (172.4 mmol mol−1) in the world. White and yellow vents differ in the color and physical and chemical characteristics of emitted plumes. We found that the feeding habits of the endemic vent crabs (Xenograpsus testudinatus) are adapted to their resident vent types at a distance of 100 m, and the trans-vent movement is uncommon.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Cédric Bacour, Natasha MacBean, Frédéric Chevallier, Sébastien Léonard, Ernest N. Koffi, and Philippe Peylin
Biogeosciences, 20, 1089–1111, https://doi.org/10.5194/bg-20-1089-2023, https://doi.org/10.5194/bg-20-1089-2023, 2023
Short summary
Short summary
The impact of assimilating different dataset combinations on regional to global-scale C budgets is explored with the ORCHIDEE model. Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting. The challenges in constraining soil C disequilibrium using atmospheric CO2 data are highlighted for an accurate prediction of the land sink distribution.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Darren C. McKee, Scott C. Doney, Alice Della Penna, Emmanuel S. Boss, Peter Gaube, Michael J. Behrenfeld, and David M. Glover
Biogeosciences, 19, 5927–5952, https://doi.org/10.5194/bg-19-5927-2022, https://doi.org/10.5194/bg-19-5927-2022, 2022
Short summary
Short summary
As phytoplankton (small, drifting photosynthetic organisms) drift with ocean currents, biomass accumulation rates should be evaluated in a Lagrangian (observer moves with a fluid parcel) as opposed to an Eulerian (observer is stationary) framework. Here, we use profiling floats and surface drifters combined with satellite data to analyse time and length scales of chlorophyll concentrations (a proxy for biomass) and of velocity to quantify how phytoplankton variability is related to water motion.
Karo Michaelian and Aleksandar Simeonov
Biogeosciences, 19, 4029–4034, https://doi.org/10.5194/bg-19-4029-2022, https://doi.org/10.5194/bg-19-4029-2022, 2022
Short summary
Short summary
We reply to Lars Björn's critique of our article concerning the importance of photon dissipation to the origin and evolution of the biosphere. Björn doubts our assertion that organic pigments, ecosystems, and the biosphere arose out of a non-equilibrium thermodynamic imperative to increase global photon dissipation. He shows that the albedo of some non-living material is less than that of living material. We point out, however, that photon dissipation involves other factors besides albedo.
Reint Fischer, Delphine Lobelle, Merel Kooi, Albert Koelmans, Victor Onink, Charlotte Laufkötter, Linda Amaral-Zettler, Andrew Yool, and Erik van Sebille
Biogeosciences, 19, 2211–2234, https://doi.org/10.5194/bg-19-2211-2022, https://doi.org/10.5194/bg-19-2211-2022, 2022
Short summary
Short summary
Since current estimates show that only about 1 % of the all plastic that enters the ocean is floating at the surface, we look at subsurface processes that can cause vertical movement of (micro)plastic. We investigate how modelled algal attachment and the ocean's vertical movement can cause particles to sink and oscillate in the open ocean. Particles can sink to depths of > 5000 m in regions with high wind intensity and mainly remain close to the surface with low winds and biological activity.
Michelle Viswanathan, Tobias K. D. Weber, Sebastian Gayler, Juliane Mai, and Thilo Streck
Biogeosciences, 19, 2187–2209, https://doi.org/10.5194/bg-19-2187-2022, https://doi.org/10.5194/bg-19-2187-2022, 2022
Short summary
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Johannes Vogel, Eva Paton, and Valentin Aich
Biogeosciences, 18, 5903–5927, https://doi.org/10.5194/bg-18-5903-2021, https://doi.org/10.5194/bg-18-5903-2021, 2021
Short summary
Short summary
This study investigates extreme ecosystem impacts evoked by temperature and soil moisture in the Mediterranean Basin for the time span 1999–2019 with a specific focus on seasonal variations. The analysis showed that ecosystem vulnerability is caused by several varying combinations of both drivers during the yearly cycle. The approach presented here helps to provide insights on the specific phenological stage of the year in which ecosystem vulnerability to a certain climatic condition occurs.
Mara Freilich, Alexandre Mignot, Glenn Flierl, and Raffaele Ferrari
Biogeosciences, 18, 5595–5607, https://doi.org/10.5194/bg-18-5595-2021, https://doi.org/10.5194/bg-18-5595-2021, 2021
Short summary
Short summary
Observations reveal that in some regions phytoplankton biomass increases during the wintertime when growth conditions are sub-optimal, which has been attributed to a release from grazing during mixed layer deepening. Measurements of grazer populations to support this theory are lacking. We demonstrate that a release from grazing when the winter mixed layer is deepening holds only for certain grazing models, extending the use of phytoplankton observations to make inferences about grazer dynamics.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Pierre Damien, Julio Sheinbaum, Orens Pasqueron de Fommervault, Julien Jouanno, Lorena Linacre, and Olaf Duteil
Biogeosciences, 18, 4281–4303, https://doi.org/10.5194/bg-18-4281-2021, https://doi.org/10.5194/bg-18-4281-2021, 2021
Short summary
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
Sergey V. Stanichny, Elena A. Kubryakova, and Arseny A. Kubryakov
Biogeosciences, 18, 3173–3188, https://doi.org/10.5194/bg-18-3173-2021, https://doi.org/10.5194/bg-18-3173-2021, 2021
Short summary
Short summary
In this paper, we show that the short-term impact of tropical cyclones can trigger the intense, long-term bloom of coccolithophores, which are major marine calcifiers playing an important role in the balance and fluxes of inorganic carbon in the ocean. In our paper, we describe the evolution of and physical reasons for such an unusual bloom observed in autumn 2005 in the Black Sea on the basis of satellite data.
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021, https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Short summary
The sowing date is key to the surface biophysical processes in the winter dormancy period. The climate effect of the sowing date shift is therefore very interesting and may contribute to the mitigation of climate change. An earlier sowing date always had a higher LAI but a higher temperature in the dormancy period and a lower temperature in the growth period. The main reason was the relative contributions of the surface albedo and energy partitioning processes.
Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen
Biogeosciences, 18, 1577–1599, https://doi.org/10.5194/bg-18-1577-2021, https://doi.org/10.5194/bg-18-1577-2021, 2021
Short summary
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Kaveh Purkiani, André Paul, Annemiek Vink, Maren Walter, Michael Schulz, and Matthias Haeckel
Biogeosciences, 17, 6527–6544, https://doi.org/10.5194/bg-17-6527-2020, https://doi.org/10.5194/bg-17-6527-2020, 2020
Short summary
Short summary
There has been a steady increase in interest in mining of deep-sea minerals in the eastern Pacific Ocean recently. The ocean state in this region is known to be highly influenced by rotating bodies of water (eddies), some of which can travel long distances in the ocean and impact the deeper layers of the ocean. Better insight into the variability of eddy activity in this region is of great help to mitigate the impact of the benthic ecosystem from future potential deep-sea mining activity.
Onur Kerimoglu, Yoana G. Voynova, Fatemeh Chegini, Holger Brix, Ulrich Callies, Richard Hofmeister, Knut Klingbeil, Corinna Schrum, and Justus E. E. van Beusekom
Biogeosciences, 17, 5097–5127, https://doi.org/10.5194/bg-17-5097-2020, https://doi.org/10.5194/bg-17-5097-2020, 2020
Short summary
Short summary
In this study, using extensive field observations and a numerical model, we analyzed the physical and biogeochemical structure of a coastal system following an extreme flood event. Our results suggest that a number of anomalous observations were driven by a co-occurrence of peculiar meteorological conditions and increased riverine discharges. Our results call for attention to the combined effects of hydrological and meteorological extremes that are anticipated to increase in frequency.
Amandine Erktan, Matthias C. Rillig, Andrea Carminati, Alexandre Jousset, and Stefan Scheu
Biogeosciences, 17, 4961–4980, https://doi.org/10.5194/bg-17-4961-2020, https://doi.org/10.5194/bg-17-4961-2020, 2020
Short summary
Short summary
Soil aggregation is crucial for soil functioning. While the role of bacteria and fungi in soil aggregation is well established, how predators feeding on microbes modify soil aggregation has hardly been investigated. We showed for the first time that protists modify soil aggregation, presumably through changes in the production of bacterial mucilage, and that collembolans reduce soil aggregation, presumably by reducing the abundance of saprotrophic fungi.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Inge Grünberg, Evan J. Wilcox, Simon Zwieback, Philip Marsh, and Julia Boike
Biogeosciences, 17, 4261–4279, https://doi.org/10.5194/bg-17-4261-2020, https://doi.org/10.5194/bg-17-4261-2020, 2020
Short summary
Short summary
Based on topsoil temperature data for different vegetation types at a low Arctic tundra site, we found large small-scale variability. Winter temperatures were strongly influenced by vegetation through its effects on snow. Summer temperatures were similar below most vegetation types and not consistently related to late summer permafrost thaw depth. Given that vegetation type defines the relationship between winter and summer soil temperature and thaw depth, it controls permafrost vulnerability.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Sheila N. Estrada-Allis, Julio Sheinbaum Pardo, Joao M. Azevedo Correia de Souza, Cecilia Elizabeth Enríquez Ortiz, Ismael Mariño Tapia, and Jorge A. Herrera-Silveira
Biogeosciences, 17, 1087–1111, https://doi.org/10.5194/bg-17-1087-2020, https://doi.org/10.5194/bg-17-1087-2020, 2020
Short summary
Short summary
Continental shelves are the most productive areas in the ocean and can have an important impact on the nutrient cycle as well as the climate system. The one in Yucatán is the largest shelf in the Gulf of Mexico. However, its nutrient budget remains unidentifiable. Here we propose not only a general nutrient budget for the Yucatán Shelf but also the physical processes responsible for its pathway modulation through a physical–biogeochemical coupled model of the whole Gulf of Mexico.
Ashley Dubnick, Martin Sharp, Brad Danielson, Alireza Saidi-Mehrabad, and Joel Barker
Biogeosciences, 17, 963–977, https://doi.org/10.5194/bg-17-963-2020, https://doi.org/10.5194/bg-17-963-2020, 2020
Short summary
Short summary
We found that glaciers with basal temperatures near the melting point mobilize more solutes, nutrients, and microbes from the underlying substrate and are more likely to promote in situ biogeochemical activity than glaciers with basal temperatures well below the melting point. The temperature at the base of glaciers is therefore an important control on the biogeochemistry of ice near glacier beds, and, ultimately, the potential solutes, nutrients, and microbes exported from glaciated watersheds.
Audrey Delpech, Anna Conchon, Olivier Titaud, and Patrick Lehodey
Biogeosciences, 17, 833–850, https://doi.org/10.5194/bg-17-833-2020, https://doi.org/10.5194/bg-17-833-2020, 2020
Short summary
Short summary
Micronekton is an important, yet poorly known, component of the trophic chain, which partly contributes to the storage of CO2 in the deep ocean thanks to biomass vertical migrations. In this study, we characterize the ideal sampling regions to estimate the amount of biomass that undergoes theses migrations. We find that observations made in warm, nondynamic and productive waters reduce the error of the estimation by 20 %. This result should likely serve for future in situ network deployment.
Filippos Tagklis, Takamitsu Ito, and Annalisa Bracco
Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020, https://doi.org/10.5194/bg-17-231-2020, 2020
Short summary
Short summary
Deoxygenation of the oceans is potentially one of the most severe ecosystem stressors resulting from global warming given the high sensitivity of dissolved oxygen to ocean temperatures. Climate models suggest that despite the thermodynamic tendency of the oceans to lose oxygen, certain regions experience significant changes in the biologically driven O2 consumption, resulting in a resistance against deoxygenation. Overturning circulation changes are responsible for such a behavior.
Mohammad Abdul Halim, Han Y. H. Chen, and Sean C. Thomas
Biogeosciences, 16, 4357–4375, https://doi.org/10.5194/bg-16-4357-2019, https://doi.org/10.5194/bg-16-4357-2019, 2019
Short summary
Short summary
Using field data collected over 4 years across a range of stand ages, we investigated how seasonal surface albedo in boreal forest varies with stand age, stand structure, and composition. Our results indicate that successional change in species composition is a key driver of age–related patterns in albedo, with hardwood species associated with higher albedo. The patterns described have important implications for both climate modeling and
climate–smartboreal forest management.
Paul A. Moore, Maxwell C. Lukenbach, Dan K. Thompson, Nick Kettridge, Gustaf Granath, and James M. Waddington
Biogeosciences, 16, 3491–3506, https://doi.org/10.5194/bg-16-3491-2019, https://doi.org/10.5194/bg-16-3491-2019, 2019
Short summary
Short summary
Using very-high-resolution digital elevation models (DEMs), we assessed the basic structure and microtopographic variability of hummock–hollow plots at boreal and hemi-boreal sites primarily in North America. Using a simple model of peatland biogeochemical function, our results suggest that both surface heating and moss productivity may not be adequately resolved in models which only consider idealized hummock–hollow units.
Renee K. Gruber, Ryan J. Lowe, and James L. Falter
Biogeosciences, 16, 1921–1935, https://doi.org/10.5194/bg-16-1921-2019, https://doi.org/10.5194/bg-16-1921-2019, 2019
Short summary
Short summary
Researchers from the University of Western Australia's Oceans Institute are studying large tides (up to 12 m range) that occur in the Kimberley region of Australia. These tides flush coral reefs with water rich in nutrients, which supports the growth of reef organisms. In this paper, we show how tidal cycles and seasons control nutrient availability on reefs. This study is among the first published accounts of reefs and water quality data in the remote and pristine Kimberley region.
Sergey A. Marakushev and Ol'ga V. Belonogova
Biogeosciences, 16, 1817–1828, https://doi.org/10.5194/bg-16-1817-2019, https://doi.org/10.5194/bg-16-1817-2019, 2019
Short summary
Short summary
Among the existing theories of the autotrophic origin of life, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable to development of primary methanotroph.
Venugopal Thushara, Puthenveettil Narayana Menon Vinayachandran, Adrian J. Matthews, Benjamin G. M. Webber, and Bastien Y. Queste
Biogeosciences, 16, 1447–1468, https://doi.org/10.5194/bg-16-1447-2019, https://doi.org/10.5194/bg-16-1447-2019, 2019
Short summary
Short summary
Chlorophyll distribution in the ocean remains to be explored in detail, despite its climatic significance. Here, we document the vertical structure of chlorophyll in the Bay of Bengal using observations and a model. The shape of chlorophyll profiles, characterized by prominent deep chlorophyll maxima, varies in dynamically different regions, controlled by the monsoonal forcings. The present study provides new insights into the vertical distribution of chlorophyll, rarely observed by satellites.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Daniel D. Richter, Sharon A. Billings, Peter M. Groffman, Eugene F. Kelly, Kathleen A. Lohse, William H. McDowell, Timothy S. White, Suzanne Anderson, Dennis D. Baldocchi, Steve Banwart, Susan Brantley, Jean J. Braun, Zachary S. Brecheisen, Charles W. Cook, Hilairy E. Hartnett, Sarah E. Hobbie, Jerome Gaillardet, Esteban Jobbagy, Hermann F. Jungkunst, Clare E. Kazanski, Jagdish Krishnaswamy, Daniel Markewitz, Katherine O'Neill, Clifford S. Riebe, Paul Schroeder, Christina Siebe, Whendee L. Silver, Aaron Thompson, Anne Verhoef, and Ganlin Zhang
Biogeosciences, 15, 4815–4832, https://doi.org/10.5194/bg-15-4815-2018, https://doi.org/10.5194/bg-15-4815-2018, 2018
Short summary
Short summary
As knowledge in biology and geology explodes, science becomes increasingly specialized. Given the overlap of the environmental sciences, however, the explosion in knowledge inevitably creates opportunities for interconnecting the biogeosciences. Here, 30 scientists emphasize the opportunities for biogeoscience collaborations across the world’s remarkable long-term environmental research networks that can advance science and engage larger scientific and public audiences.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yi Sun, Xiong Z. He, Fujiang Hou, Zhaofeng Wang, and Shenghua Chang
Biogeosciences, 15, 4233–4243, https://doi.org/10.5194/bg-15-4233-2018, https://doi.org/10.5194/bg-15-4233-2018, 2018
Short summary
Short summary
To investigate how grazing alters litter composition, quality and decomposition, we collected litter from grazing (GP) and grazing exclusion paddocks (GEP) and incubated them in situ and across sites. Grazing increased litter N and grazing exclusion increased litter mass of palatable species and promoted SOC. Litter decomposed faster in GP and N was opposite. Site environment had more impact on litter decomposition. Results may be helpful in developing strategies to restore degraded grasslands.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018, https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Short summary
Oceanographic campaigns to measure biogeochemical processes popularly deploy drifters with onboard incubations to stay in a single body of water. Here, we aggregate physical data taken during such a cruise, OUTPACE, to independently test in a new approach whether the drifter really stayed in what can be considered a single biological or chemical environment. This study concludes that future campaigns would benefit from similar data collection and analysis to validate their sampling strategy.
Susan L. Brantley, David M. Eissenstat, Jill A. Marshall, Sarah E. Godsey, Zsuzsanna Balogh-Brunstad, Diana L. Karwan, Shirley A. Papuga, Joshua Roering, Todd E. Dawson, Jaivime Evaristo, Oliver Chadwick, Jeffrey J. McDonnell, and Kathleen C. Weathers
Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, https://doi.org/10.5194/bg-14-5115-2017, 2017
Short summary
Short summary
This review represents the outcome from an invigorating workshop discussion that involved tree physiologists, geomorphologists, ecologists, geochemists, and hydrologists and developed nine hypotheses that could be tested. We argue these hypotheses point to the essence of issues we must explore if we are to understand how the natural system of the earth surface evolves, and how humans will affect its evolution. This paper will create discussion and interest both before and after publication.
Johanne H. Rydsaa, Frode Stordal, Anders Bryn, and Lena M. Tallaksen
Biogeosciences, 14, 4209–4227, https://doi.org/10.5194/bg-14-4209-2017, https://doi.org/10.5194/bg-14-4209-2017, 2017
Short summary
Short summary
We investigate the atmospheric sensitivity to an expansion in shrub and tree cover in the northern Fennoscandia region. We applied a regional weather and climate model in evaluating biophysical effects of increased shrub cover at a fine resolution. We find that shrub cover increase causes a warming that is sensitive to the shrub and tree heights. Cooling effects include increased snow cover, cloud cover, and precipitation. We show that the net warming will likely increase in the future.
Cited articles
Albalasmeh, A. A. and Ghezzehei, T. A.: Interplay between soil drying and root
exudation in rhizosheath development, Plant Soil, 374, 739–751,
https://doi.org/10.1007/s11104-013-1910-y, 2014. a, b
Andraski, B. J. and Scanlon, B. R.: Thermocouple psychrometry, in: Methods of
Soil Analysis: Part 4 Physical Methods, edited by: Dane, J. H.,
Clarke Topp, G., and Soil Science Society of America, Soil
Science Society of America, Madison, WI, 609–642, https://doi.org/10.2136/sssabookser5.4.c22, 2002. a
Apostolakis, C. G. and Douka, C. E.: Distribution of Macro- and
Micronutrients in Soil Profiles Developed on Lithosequences and
under Biosequences in Northern Greece1, Soil Sci. Soci. Am.
J., 34, 290–296, https://doi.org/10.2136/sssaj1970.03615995003400020031x,
1970. a
Balmford, A., Amano, T., Bartlett, H., Chadwick, D., Collins, A., Edwards, D.,
Field, R., Garnsworthy, P., Green, R., Smith, P., Waters, H., Whitmore, A.,
Broom, D. M., Chara, J., Finch, T., Garnett, E., Gathorne-Hardy, A.,
Hernandez-Medrano, J., Herrero, M., Hua, F., Latawiec, A., Misselbrook, T.,
Phalan, B., Simmons, B. I., Takahashi, T., Vause, J., zu Ermgassen, E., and
Eisner, R.: The environmental costs and benefits of high-yield farming,
Nature Sustainability, 1, 477–485, https://doi.org/10.1038/s41893-018-0138-5, 2018. a
Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan,
H. Q., Tham, C., Duan, L., Rodriguez, P. L., Vernoux, T., Mooney, S. J.,
Bennett, M. J., and Dinneny, J. R.: Plant roots use a patterning mechanism to
position lateral root branches toward available water, P.
Natl. Acad. Sci., 111, 9319–9324, https://doi.org/10.1073/pnas.1400966111, 2014. a
Bates, T. R. and Lynch, J. P.: Root hairs confer a competitive advantage under
low phosphorus availability, Plant Soil, 236, 243–250,
https://doi.org/10.1023/A:1012791706800, 2001. a, b
Bauerle, T. L., Richards, J. H., Smart, D. R., and Eissenstat, D. M.:
Importance of internal hydraulic redistribution for prolonging the lifespan
of roots in dry soil, Plant Cell Environ, 31, 177–186,
https://doi.org/10.1111/j.1365-3040.2007.01749.x, 2008. a
Bengough, A. G., McKenzie, B. M., Hallett, P. D., and Valentine, T. A.: Root
elongation, water stress, and mechanical impedance: a review of limiting
stresses and beneficial root tip traits, J. Exp. Bot., 62,
59–68, https://doi.org/10.1093/jxb/erq350, 2011. a
Bielorai, H.: The effect of partial wetting of the root zone on yield and water
use efficiency in a drip-and sprinkler-irrigated mature grapefruit grove,
Irrigation Sci., 3, 89–100, https://doi.org/10.1007/BF00264852, 1982. a
Bogie, N. A., Bayala, R., Diedhiou, I., Conklin, M. H., Fogel, M. L., Dick,
R. P., and Ghezzehei, T. A.: Hydraulic redistribution by native sahelian
shrubs: bioirrigation to resist in-season drought, Front. Environ.
Sci., 6, 98, https://doi.org/10.3389/fenvs.2018.00098, 2018. a, b, c, d
Bowles, T. M., Atallah, S. S., Campbell, E. E., Gaudin, A. C. M., Wieder,
W. R., and Grandy, A. S.: Addressing agricultural nitrogen losses in a
changing climate, Nature Sustainability, 1, 399–408,
https://doi.org/10.1038/s41893-018-0106-0, 2018. a, b, c
Boyer, J. S., Silk, W. K., and Watt, M.: Path of water for root growth,
Funct. Plant Biol., 37, 1105–1116, https://doi.org/10.1071/FP10108, 2010. a
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, no. 3 in
Hydrology papers, Colorado State University, Hydrology and Water Resources
Program, Fort Collins, p. 27, 1964. a
Brooks, R. H. and Corey, A. T.: Properties of porous media affecting fluid
flow, J. Irr. Drain. Div.-ASCE, 92, 61–90, 1966. a
Brown, R. and Bartos, D.: A Calibration Model for Screen-caged Peltier
Thermocouple Psychrometers, no. 293 in Research Paper, U.S. Department
of Agriculture, Forest Service, Intermountain Forest and Range Experiment
Station, Ogden, Utah,
https://books.google.com/books?id=BGnpPYgkC6AC (last access: 30 November 2020), 1982. a
Caldwell, M. M. and Richards, J. H.: Hydraulic lift: water efflux from upper
roots improves effectiveness of water uptake by deep roots, Oecologia, 79,
1–5, https://doi.org/10.1007/BF00378231, 1989. a, b
Caldwell, M. M., Dawson, T. E., and Richards, J. H.: Hydraulic lift:
consequences of water efflux from the roots of plants, Oecologia, 113,
151–161, https://doi.org/10.1007/s004420050363, 1998. a
Cardon, Z. G., Stark, J. M., Herron, P. M., and Rasmussen, J. A.: Sagebrush
carrying out hydraulic lift enhances surface soil nitrogen cycling and
nitrogen uptake into inflorescences, P. Natl. Acad.
Sci., 110, 18988–18993, https://doi.org/10.1073/pnas.1311314110, 2013. a, b, c, d
Carminati, A., Moradi, A. B., Vetterlein, D., Vontobel, P., Lehmann, E.,
Weller, U., Vogel, H.-J., and Oswald, S. E.: Dynamics of soil water content
in the rhizosphere, Plant Soil, 332, 163–176,
https://doi.org/10.1007/s11104-010-0283-8, 2010. a, b
Carminati, A., Schneider, C. L., Moradi, A. B., Zarebanadkouki, M., Vetterlein,
D., Vogel, H.-J., Hildebrandt, A., Weller, U., Schüler, L., and Oswald,
S. E.: How the Rhizosphere May Favor Water Availability to Roots,
Vadose Zone J., 10, 988–998, https://doi.org/10.2136/vzj2010.0113, 2011. a
Carminati, A., Kroener, E., Ahmed, M. A., Zarebanadkouki, M., Holz, M., and
Ghezzehei, T.: Water for Carbon, Carbon for Water, Vadose Zone J.,
15, 1–10, https://doi.org/10.2136/vzj2015.04.0060, 2016. a
Dawson, T. E.: Hydraulic lift and water use by plants: implications for water
balance, performance and plant-plant interactions, Oecologia, 95, 565–574,
https://doi.org/10.1007/BF00317442,
1993. a
Dry, P., Loveys, B., and Düring, H.: Partial drying of the rootzone of grape.
II. Changes in the pattern of root development, Vitis, 39, 9–12, 2000. a
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal,
C.: Hydrologic regulation of plant rooting depth, P. Natl.
Acad. Sci., 114, 10572–10577, https://doi.org/10.1073/pnas.1712381114, 2017. a, b
Franzluebbers, A. and Hons, F.: Soil-profile distribution of primary and
secondary plant-available nutrients under conventional and no tillage, Soil
Till. Res., 39, 229–239, https://doi.org/10.1016/S0167-1987(96)01056-2,
1996. a
Games, P. A. and Howell, J. F.: Pairwise Multiple Comparison Procedures
with Unequal N’s and/or Variances: A Monte Carlo Study,
J. Educ. Stat., 1, 113–125,
https://doi.org/10.3102/10769986001002113, 1976. a
Gardner, W. R.: Some steady state solutions of the unsaturated moisture flow
equation with application to evaporation from a water table, Soil Science,
85, 228–232,
https://journals.lww.com/soilsci/ (last access: 30 November 2020),
1958. a
Ghezzehei, T. A. and Albalasmeh, A. A.: Spatial distribution of rhizodeposits
provides built-in water potential gradient in the rhizosphere, Ecol.
Model., 298, 53–63, https://doi.org/10.1016/j.ecolmodel.2014.10.028,
2015. a, b, c
Golding, C. G., Lamboo, L. L., Beniac, D. R., and Booth, T. F.: The scanning
electron microscope in microbiology and diagnosis of infectious disease,
Sci. Rep., 6, 26516–26516, https://doi.org/10.1038/srep26516, 2016. a
Hodge, A.: The plastic plant: root responses to heterogeneous supplies of
nutrients, New Phytol., 162, 9–24,
https://doi.org/10.1111/j.1469-8137.2004.01015.x, 2004. a
Horton, J. L. and Hart, S. C.: Hydraulic lift: a potentially important
ecosystem process, Trends Ecol. Evol., 13, 232–235,
https://doi.org/10.1016/S0169-5347(98)01328-7, 1998. a
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients with
depth: Global patterns and the imprint of plants, Biogeochemistry, 53,
51–77, https://doi.org/10.1023/A:1010760720215, 2001. a
Kalra, Y. P.: Handbook of reference methods for plant analysis, CRC Press, Boca
Raton, 1998. a
Keiluweit, M., Bougoure, J. J., Nico, P. S., Pett-Ridge, J., Weber, P. K., and
Kleber, M.: Mineral protection of soil carbon counteracted by root exudates,
Nat. Clim. Change, 5, 588, https://doi.org/10.1038/nclimate2580, 2015. a, b
Keyes, S. D., Zygalakis, K. C., and Roose, T.: An Explicit Structural
Model of Root Hair and Soil Interactions Parameterised by
Synchrotron X-ray Computed Tomography, B. Math.
Biol., 79, 2785–2813, https://doi.org/10.1007/s11538-017-0350-x, 2017. a
Kim, K. H., Akase, Z., Suzuki, T., and Shindo, D.: Charging Effects on
SEM/SIM Contrast of Metal/Insulator System in Various
Metallic Coating Conditions, Mater. Trans., 51, 1080–1083,
https://doi.org/10.2320/matertrans.M2010034, 2010. a
Kizito, F., Sène, M., Dragila, M., Lufafa, A., Diedhiou, I., Dossa, E.,
Cuenca, R., Selker, J., and Dick, R.: Soil water balance of annual
crop–native shrub systems in Senegal's Peanut Basin: The missing
link, Agr. Water Manag., 90, 137–148,
https://doi.org/10.1016/j.agwat.2007.02.015,
2007. a, b
Koebernick, N., Daly, K. R., Keyes, S. D., George, T. S., Brown, L. K., Raffan,
A., Cooper, L. J., Naveed, M., Bengough, A. G., Sinclair, I., Hallett, P. D.,
and Roose, T.: High‐resolution synchrotron imaging shows that root hairs
influence rhizosphere soil structure formation, New Phytol., 216,
124–135, https://doi.org/10.1111/nph.14705, 2017. a
Koebernick, N., Daly, K. R., Keyes, S. D., Bengough, A. G., Brown, L. K.,
Cooper, L. J., George, T. S., Hallett, P. D., Naveed, M., Raffan, A., and
Roose, T.: Imaging microstructure of the barley rhizosphere: particle packing
and root hair influences, New Phytol., 221, 1878–1889,
https://doi.org/10.1111/nph.15516,
2019. a
Lambers, H., Finnegan, P. M., Laliberté, E., Pearse, S. J., Ryan, M. H.,
Shane, M. W., and Veneklaas, E. J.: Phosphorus Nutrition of Proteaceae in
Severely Phosphorus-Impoverished Soils: Are There Lessons To
Be Learned for Future Crops?, Plant Physiol., 156, 1058,
https://doi.org/10.1104/pp.111.174318,
2011. a
Li, F., Liu, M., Li, Z., Jiang, C., Han, F., and Che, Y.: Changes in soil
microbial biomass and functional diversity with a nitrogen gradient in soil
columns, Appl. Soil Ecol., 64, 1–6,
https://doi.org/10.1016/j.apsoil.2012.10.006,
2013. a
Li, L., Zhao, Z., Huang, W., Peng, P., Sheng, G., and Fu, J.: Characterization
of humic acids fractionated by ultrafiltration, Organic Geochem., 35,
1025–1037, https://doi.org/10.1016/j.orggeochem.2004.05.002,
2004. a
Linderman, R. G.: Mycorrhizal interactions in the rhizosphere, in: The
Rhizosphere and Plant Growth: Papers presented at a Symposium held
May 8–11, 1989, at the Beltsville Agricultural Research Center
(BARC), Beltsville, Maryland, edited by: Keister, D. L. and Cregan,
P. B., Springer Netherlands, Dordrecht, 343–348,
https://doi.org/10.1007/978-94-011-3336-4_73, 1991. a
Matimati, I., Anthony Verboom, G., and Cramer, M. D.: Do hydraulic
redistribution and nocturnal transpiration facilitate nutrient acquisition in
Aspalathus linearis?, Oecologia, 175, 1129–1142,
https://doi.org/10.1007/s00442-014-2987-6, 2014. a, b
McCully, M. E. and Boyer, J. S.: The expansion of maize root-cap mucilage
during hydration, 3. Changes in water potential and water content,
Physiol. Plantarum, 99, 169–177,
https://doi.org/10.1111/j.1399-3054.1997.tb03445.x, 1997. a
McKay Fletcher, D. M., Ruiz, S., Dias, T., Petroselli, C., and Roose, T.:
Linking root structure to functionality: the impact of root system
architecture on citrate-enhanced phosphate uptake, New Phytol., 227,
376–391, https://doi.org/10.1111/nph.16554, 2020. a
Meinzer, F. C., Brooks, J. R., Bucci, S., Goldstein, G., Scholz, F. G., and
Warren, J. M.: Converging patterns of uptake and hydraulic redistribution of
soil water in contrasting woody vegetation types, Tree Physiol., 24,
919–928, https://doi.org/10.1093/treephys/24.8.919, 2004. a, b, c
Moradi, A. B., Carminati, A., Vetterlein, D., Vontobel, P., Lehmann, E.,
Weller, U., Hopmans, J. W., Vogel, H.-J., and Oswald, S. E.:
Three-dimensional visualization and quantification of water content in the
rhizosphere, New Phytol., 192, 653–663,
https://doi.org/10.1111/j.1469-8137.2011.03826.x,
2011. a, b
Nambiar, E. K. S.: Uptake of Zn65 from dry soil by plants, Plant Soil,
44, 267–271, https://doi.org/10.1007/BF00016978, 1976. a
Oburger, E. and Jones, D. L.: Sampling root exudates – Mission impossible?,
Rhizosphere, 6, 116–133, https://doi.org/10.1016/j.rhisph.2018.06.004,
2018. a
Pang, J., Ryan, M. H., Siddique, K. H. M., and Simpson, R. J.: Unwrapping the
rhizosheath, Plant Soil, 418, 129–139, https://doi.org/10.1007/s11104-017-3358-y, 2017. a
Prieto, I., Kikvidze, Z., and Pugnaire, F. I.: Hydraulic lift: soil processes
and transpiration in the Mediterranean leguminous shrub Retama
sphaerocarpa (L.) Boiss, Plant Soil, 329, 447–456,
https://doi.org/10.1007/s11104-009-0170-3, 2010. a
Robbins, N. E. and Dinneny, J. R.: The divining root: moisture-driven responses
of roots at the micro- and macro-scale, J. Exp. Bot., 66,
2145–2154, https://doi.org/10.1093/jxb/eru496, 2015. a
Robinson, D., Hodge, A., Griffiths, B. S., and Fitter, A. H.: Plant root
proliferation in nitrogen–rich patches confers competitive
advantage, Proc. Roy. Soc. Lond. Ser. B, 266, 431–435, https://doi.org/10.1098/rspb.1999.0656, 1999. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, Bull. Am. Meteorol. Soc., 85,
381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004. a
Rose, T. J., Rengel, Z., Ma, Q., and Bowden, J. W.: Hydraulic lift by canola
plants aids P and K uptake from dry topsoil, Austr. J.
Agr. Res., 59, 38–45, https://doi.org/10.1071/AR07146, 2008. a
Ryel, R. J.: Hydraulic Redistribution, in: Progress in Botany: Genetics
Physiology Systematics Ecology, edited by: Esser, K., Lüttge, U.,
Beyschlag, W., and Murata, J., Springer Berlin Heidelberg,
Berlin, Heidelberg, 413–435, https://doi.org/10.1007/978-3-642-18819-0_17, 2004. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to
ImageJ: 25 years of image analysis, Nat. Methods, 9, 671–675,
https://doi.org/10.1038/nmeth.2089,
2012. a
Scholz, F. G., Bucci, S. J., Goldstein, G., Moreira, M. Z., Meinzer, F. C.,
Domec, J.-C., Villalobos-Vega, R., Franco, A. C., and Miralles-Wilhelm, F.:
Biophysical and life-history determinants of hydraulic lift in Neotropical
savanna trees, Funct. Ecol., doi:10.1 111/j.1365-2435.2008.01452.x, 22,
773–786,
2008. a
Stanford, G. and Epstein, E.: Nitrogen Mineralization-Water Relations in
Soils1, Soil Sci. Soc. Am. J., 38, 103–107,
https://doi.org/10.2136/sssaj1974.03615995003800010032x,
1974. a
van Genuchten, M. T.: A Closed-form Equation for Predicting the
Hydraulic Conductivity of Unsaturated Soils1, Soil Sci. Soc.
Am. J., 44, 892, https://doi.org/10.2136/sssaj1980.03615995004400050002x,
1980. a
Vetterlein, D., Carminati, A., Kögel-Knabner, I., Bienert, G. P., Smalla, K.,
Oburger, E., Schnepf, A., Banitz, T., Tarkka, M. T., and Schlüter, S.:
Rhizosphere Spatiotemporal Organization – A Key to Rhizosphere
Functions, Front. Agron., 2, 1–22, https://doi.org/10.3389/fagro.2020.00008,
2020. a
Wang, X., Tang, C., Guppy, C. N., and Sale, P. W. G.: The role of hydraulic
lift and subsoil P placement in P uptake of cotton (Gossypium hirsutum L.), Plant Soil, 325, 263–275, https://doi.org/10.1007/s11104-009-9977-1, 2009. a, b
Watt, M., McCully, M. E., and Canny, M. J.: Formation and Stabilization of
Rhizosheaths of Zea mays L. (Effect of Soil Water Content),
Plant Physiol., 106, 179–186, https://doi.org/10.1104/pp.106.1.179, 1994. a
Weidlich, E. W. A., Temperton, V. M., and Faget, M.: Neighbourhood stories:
role of neighbour identity, spatial location and order of arrival in legume
and non-legume initial interactions, Plant Soil, 424, 171–182,
https://doi.org/10.1007/s11104-017-3398-3, 2018. a, b
Welch, B. L.: The Generalization of “Student's” Problem when Several
Different Population Variances are Involved, Biometrika, 34, 28–35,
https://doi.org/10.2307/2332510,
1947. a
Whalley, W., Ober, E., and Jenkins, M.: Measurement of the matric potential of
soil water in the rhizosphere, J. Exp. Bot., 64,
3951–3963, https://doi.org/10.1093/jxb/ert044, 2013. a
Williams, A. and de Vries, F. T.: Plant root exudation under drought:
implications for ecosystem functioning, New Phytol., 225, 1899–1905,
https://doi.org/10.1111/nph.16223, 2020. a
Yan, J., Bogie, N., and Ghezzehei, T.: Root uptake under mismatched distributions of water and nutrients in the root zone, Dryad, Dataset, https://doi.org/10.6071/M39M2T, last access: 12 September 2020. a
Zhang, D.-J., Yang, Y.-J., Liu, C.-Y., Zhang, F., and Wu, Q.-S.: Root Hair
Growth and Development in Response to Nutrients and Phytohormones,
in: Root Biology, edited by: Giri, B., Prasad, R., and Varma, A.,
Springer International Publishing, Cham, 65–84,
https://doi.org/10.1007/978-3-319-75910-4_3, 2018. a
Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P.,
and Shen, Y.: Managing nitrogen for sustainable development, Nature, 528, 51–59,
https://doi.org/10.1038/nature15743, 2015. a, b
Short summary
An uneven supply of water and nutrients in soils often drives how plants behave. We observed that plants extract all their required nutrients from dry soil patches in sufficient quantity, provided adequate water is available elsewhere in the root zone. Roots in nutrient-rich dry patches facilitate the nutrient acquisition by extensive growth, water release, and modifying water retention in their immediate environment. The findings are valuable in managing nutrient losses in agricultural systems.
An uneven supply of water and nutrients in soils often drives how plants behave. We observed...
Altmetrics
Final-revised paper
Preprint