Articles | Volume 17, issue 24
https://doi.org/10.5194/bg-17-6441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-17-6441-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A bottom-up quantification of foliar mercury uptake fluxes across Europe
Lena Wohlgemuth
CORRESPONDING AUTHOR
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Stefan Osterwalder
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Institut des Géosciences de
l'Environnement, Grenoble, France
Carl Joseph
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Ansgar Kahmen
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Günter Hoch
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Christine Alewell
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Department of Environmental Sciences, University of Basel, Basel,
Switzerland
Related authors
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Luisa I. Minich, Dylan Geissbühler, Stefan Tobler, Annegret Udke, Alexander S. Brunmayr, Margaux Moreno Duborgel, Ciriaco McMackin, Lukas Wacker, Philip Gautschi, Negar Haghipour, Markus Egli, Ansgar Kahmen, Jens Leifeld, Timothy I. Eglinton, and Frank Hagedorn
EGUsphere, https://doi.org/10.5194/egusphere-2025-2267, https://doi.org/10.5194/egusphere-2025-2267, 2025
Short summary
Short summary
We developed a framework using rates and 14C-derived ages of soil-respired CO2 and its sources (autotrophic, heterotrophic) to identify carbon cycling pathways in different land-use types. Rates, ages and sources of respired CO2 varied across forests, grasslands, croplands, and managed peatlands. Our results suggest that the relationship between rates and ages of respired CO2 serves as a robust indicator of carbon retention or destabilization from natural to disturbed systems.
Gerald Dicen, Floriane Guillevic, Surya Gupta, Pierre-Alexis Chaboche, Katrin Meusburger, Pierre Sabatier, Olivier Evrard, and Christine Alewell
Earth Syst. Sci. Data, 17, 1529–1549, https://doi.org/10.5194/essd-17-1529-2025, https://doi.org/10.5194/essd-17-1529-2025, 2025
Short summary
Short summary
Fallout radionuclides (FRNs) such as 137Cs and 239+240Pu are considered to be critical tools in various environmental research. Here, we compiled reference soil data on these FRNs from the literature to build a comprehensive database. Using this database, we determined the distribution and sources of 137Cs and 239+240Pu. We also demonstrated how the database can be used to identify the environmental factors that influence their distribution using a machine learning algorithm.
Katrin Meusburger, Paolo Porto, Judith Kobler Waldis, and Christine Alewell
SOIL, 9, 399–409, https://doi.org/10.5194/soil-9-399-2023, https://doi.org/10.5194/soil-9-399-2023, 2023
Short summary
Short summary
Quantifying soil redistribution rates is a global challenge. Radiogenic tracers such as plutonium, namely 239+240Pu, released to the atmosphere by atmospheric bomb testing in the 1960s are promising tools to quantify soil redistribution. Direct validation of 239+240Pu as soil redistribution is, however, still missing. Here, we used a unique sediment yield time series in southern Italy, reaching back to the initial fallout of 239+240Pu to verify 239+240Pu as a soil redistribution tracer.
Pedro V. G. Batista, Peter Fiener, Simon Scheper, and Christine Alewell
Hydrol. Earth Syst. Sci., 26, 3753–3770, https://doi.org/10.5194/hess-26-3753-2022, https://doi.org/10.5194/hess-26-3753-2022, 2022
Short summary
Short summary
Patchy agricultural landscapes have a large number of small fields, which are separated by linear features such as roads and field borders. When eroded sediments are transported out of the agricultural fields by surface runoff, these features can influence sediment connectivity. By use of measured data and a simulation model, we demonstrate how a dense road network (and its drainage system) facilitates sediment transport from fields to water courses in a patchy Swiss agricultural catchment.
Lena Wohlgemuth, Pasi Rautio, Bernd Ahrends, Alexander Russ, Lars Vesterdal, Peter Waldner, Volkmar Timmermann, Nadine Eickenscheidt, Alfred Fürst, Martin Greve, Peter Roskams, Anne Thimonier, Manuel Nicolas, Anna Kowalska, Morten Ingerslev, Päivi Merilä, Sue Benham, Carmen Iacoban, Günter Hoch, Christine Alewell, and Martin Jiskra
Biogeosciences, 19, 1335–1353, https://doi.org/10.5194/bg-19-1335-2022, https://doi.org/10.5194/bg-19-1335-2022, 2022
Short summary
Short summary
Gaseous mercury is present in the atmosphere all over the globe. During the growing season, plants take up mercury from the air in a similar way as CO2. We investigated which factors impact this vegetational mercury uptake by analyzing a large dataset of leaf mercury uptake rates of trees in Europe. As a result, we conclude that mercury uptake is foremost controlled by tree-intrinsic traits like physiological activity but also by climatic factors like dry conditions in the air and in soils.
Lauren Zweifel, Maxim Samarin, Katrin Meusburger, and Christine Alewell
Nat. Hazards Earth Syst. Sci., 21, 3421–3437, https://doi.org/10.5194/nhess-21-3421-2021, https://doi.org/10.5194/nhess-21-3421-2021, 2021
Short summary
Short summary
Mountainous grassland areas can be severely affected by soil erosion, such as by shallow landslides. With an automated mapping approach we are able to locate shallow-landslide sites on aerial images for 10 different study sites across Swiss mountain regions covering a total of 315 km2. Using a statistical model we identify important explanatory variables for shallow-landslide occurrence for the individual sites as well as across all regions, which highlight slope, aspect and terrain roughness.
Claudia Hahn, Andreas Lüscher, Sara Ernst-Hasler, Matthias Suter, and Ansgar Kahmen
Biogeosciences, 18, 585–604, https://doi.org/10.5194/bg-18-585-2021, https://doi.org/10.5194/bg-18-585-2021, 2021
Short summary
Short summary
While existing studies focus on the immediate effects of drought events on grassland productivity, long-term effects are mostly neglected. But, to conclude universal outcomes, studies must consider comprehensive ecosystem mechanisms. In our study, we found that the resistance of growth rates to drought in grasses varies across seasons, and positive legacy effects of drought indicate a high resilience. The high resilience compensates for immediate drought effects on grasses to a large extent.
Maral Khodadadi, Christine Alewell, Mohammad Mirzaei, Ehssan Ehssan-Malahat, Farrokh Asadzadeh, Peter Strauss, and Katrin Meusburger
SOIL Discuss., https://doi.org/10.5194/soil-2021-2, https://doi.org/10.5194/soil-2021-2, 2021
Revised manuscript not accepted
Short summary
Short summary
Forest soils store carbon and therefore play an important role in mitigating climate change impacts. Yet again, deforestation for farming and grazing purposes has grown rapidly over the last decades. Thus, its impacts on soil erosion and soil quality should be understood in order to adopt sustainable management measures. The results of this study indicated that deforestation can prompt soil loss by multiple orders of magnitude and deteriorate the soil quality in both topsoil and subsoil.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Cited articles
Ariya, P. A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G.,
Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K.: Mercury
physicochemical and biogeochemical transformation in the atmosphere and at
atmospheric interfaces: a review and future directions, Chem. Rev., 115,
3760–3802, https://doi.org/10.1021/cr500667e, 2015.
Assad, M., Parelle, J., Cazaux, D., Gimbert, F., Chalot, M., and Tatin-Froux,
F.: Mercury uptake into poplar leaves, Chemosphere, 146, 1–7,
https://doi.org/10.1016/j.chemosphere.2015.11.103, 2016.
Bishop, K., Shanley, J. B., Riscassi, A., de Wit, H. A., Eklöf, K.,
Meng, B., Mitchell, C., Osterwalder, S., Schuster, P. F., Webster, J., and
Zhu, W.: Recent advances in understanding and measurement of mercury in the
environment: Terrestrial Hg cycling, Sci. Total Environ., 721, 137647,
https://doi.org/10.1016/j.scitotenv.2020.137647, 2020.
Blackwell, B. D. and Driscoll, C. T.: Using foliar and forest floor mercury
concentrations to assess spatial patterns of mercury deposition, Environ.
Pollut., 202, 126–134, https://doi.org/10.1016/j.envpol.2015.02.036, 2015.
Blackwell, B. D., Driscoll, C. T., Maxwell, J. A., and Holsen, T. M.:
Changing climate alters inputs and pathways of mercury deposition to
forested ecosystems, Biogeochemistry, 119, 215–228,
https://doi.org/10.1007/s10533-014-9961-6, 2014.
Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W., Heidema,
A. H., Nabuurs, G. J., and Gunia, K.: Statistical mapping of tree species
over Europe, Eur. J. For. Res., 131, 145–157,
https://doi.org/10.1007/s10342-011-0513-5, 2012.
Burkhardt, J. and Pariyar, S.: Particulate pollutants are capable to
“degrade” epicuticular waxes and to decrease the drought tolerance of
Scots pine (Pinus sylvestris L.), Environ. Pollut., 184, 659–667,
https://doi.org/10.1016/j.envpol.2013.04.041, 2014.
Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.:
Mercury dynamics of a northern hardwood canopy, Atmos. Environ., 42,
6905–6914, https://doi.org/10.1016/j.atmosenv.2008.05.043, 2008.
Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B.: Mercury
cycling in litter and soil in different forest types in the Adirondack
Region, New York, USA, Ecol. Appl., 17, 1341–1351,
https://doi.org/10.1890/06-1697.1, 2007.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle, Global Biogeochem. Cy., 27, 222–238,
https://doi.org/10.1002/gbc.20021, 2013.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.:
Mercury as a global pollutant: sources, pathways, and effects, Environ. Sci.
Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
EMEP: Air pollution trends in the EMEP region between 1990 and 2012, Joint
Report, CCC-Report 1/2016, available at: http://nora.nerc.ac.uk/id/eprint/513779/ (last access: 14 December 2020), 2016.
Enrico, M., Roux, G. L., Marusczak, N., Heimbürger, L.-E., Claustres,
A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric mercury transfer to peat
bogs dominated by gaseous elemental mercury dry deposition, Environ. Sci.
Technol., 50, 2405–2412, https://doi.org/10.1021/acs.est.5b06058, 2016.
Ericksen, J. A. and Gustin, M. S.: Foliar exchange of mercury as a function
of soil and air mercury concentrations, Sci. Total Environ., 324,
271–279, https://doi.org/10.1016/j.scitotenv.2003.10.034, 2004.
EU: European Commission, 2011/833/EU: Commission Decision of 12 December 2011 on the reuse of Commission documents, available at:
https://eur-lex.europa.eu/eli/dec/2011/833/oj (last access: 14 December 2020), 2011.
Fichtner, A., Sturm, K., Rickert, C., von Oheimb, G., and Härdtle, W.:
Crown size-growth relationships of European beech (Fagus sylvatica L.) are
driven by the interplay of disturbance intensity and inter-specific
competition, Forest Ecol. Manag., 302, 178–184,
https://doi.org/10.1016/j.foreco.2013.03.027, 2013.
Fleck, J. A., Grigal, D. F., and Nater, E. A.: Mercury uptake by trees: an
observational experiment, Water Air Soil Poll., 115, 513–523,
https://doi.org/10.1023/A:1005194608598, 1999.
Freeland, R. O.: Effect of age of leaves upon the rate of photosynthesis in
some conifers, Plant Physiol., 27, 685–690, https://doi.org/10.1104/pp.27.4.685,
1952.
Frescholtz, T. F., Gustin, M. S., Schorran, D. E., and Fernandez, G. C. J.:
Assessing the source of mercury in foliar tissue of quaking aspen, Environ.
Toxicol. Chem., 22, 2114–2119, https://doi.org/10.1002/etc.5620220922, 2003.
Fu, X., Zhu, W., Zhang, H., Sommar, J., Yu, B., Yang, X., Wang, X., Lin, C.-J., and Feng, X.: Depletion of atmospheric gaseous elemental mercury by plant uptake at Mt. Changbai, Northeast China, Atmos. Chem. Phys., 16, 12861–12873, https://doi.org/10.5194/acp-16-12861-2016, 2016.
Garonna, I., de Jong, R., de Wit, A. J., Mücher, C. A., Schmid, B., and Schaepman, M. E.: Strong contribution of autumn phenology to changes in
satellite-derived growing season length estimates across Europe
(1982–2011), Glob. Change Biol., 20, 3457–3470, https://doi.org/10.1111/gcb.12625,
2014.
Gencarelli, C. N., de Simone, F., Hedgecock, I. M., Sprovieri, F., Yang, X.,
and Pirrone, N.: European and Mediterranean mercury modelling: Local and
long-range contributions to the deposition flux, Atmos. Environ., 117,
162–168, https://doi.org/10.1016/j.atmosenv.2015.07.015, 2015.
Graydon, J. A., St. Louis, V. L., Lindberg, S. E., Hintelmann, H., and
Krabbenhoft, D. P.: Investigation of mercury exchange between forest canopy
vegetation and the atmosphere using a new dynamic chamber, Environ. Sci.
Technol., 40, 4680–4688, https://doi.org/10.1021/es0604616, 2006.
Grigal, D. F.: Inputs and outputs of mercury from terrestrial watersheds: a review, Environ. Rev., 10, 1–39, 2002.
Güney, A., Zimmermann, R., Krupp, A., and Haas, K.: Needle
characteristics of Lebanon cedar (Cedrus libani A. Rich.): degradation of
epicuticular waxes and decrease of photosynthetic rates with increasing
needle age, Turk. J. Agric. For., 40, 386–396, https://doi.org/10.3906/tar-1507-63,
2016.
Hakkila, P.: Hakkuupoistuman Latvusmassa: Crown mass of trees at the
harvesting phase, The Finnish Forest Research Institute, available at: https://core.ac.uk/download/pdf/52273555.pdf (last access: 14 December 2020), 1991.
Hall, B. D. and St. Louis, V. L.: Methylmercury and Total Mercury in Plant
Litter Decomposing in Upland Forests and Flooded Landscapes, Environ. Sci.
Technol., 38, 5010–5021, https://doi.org/10.1021/es049800q, 2004.
Hirose, T.: Development of the Monsi-Saeki Theory on Canopy Structure and
Function, Ann. Bot.-London, 95, 483–494, https://doi.org/10.1093/aob/mci047, 2004.
Hutnik, R. J., McClenahen, J. R., Long, R. P., and Davis, D. D.: Mercury
Accumulation in Pinus nigra (Austrian Pine), Northeast. Nat., 21,
529–540, https://doi.org/10.1656/045.021.0402, 2014.
Iio, A. and Ito, A.: A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932–2011, Data set available online from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1231, 2014.
Jaffe, D. A., Lyman, S., Amos, H. M., Gustin, M. S., Huang, J., Selin, N.
E., Levin, L., ter Schure, A., Mason, R. P., Talbot, R., Rutter, A., Finley,
B., Jaeglé, L., Shah, V., McClure, C., Ambrose, J., Gratz, L., Lindberg,
S., Weiss-Penzias, P., Sheu, G.-R., Feddersen, D., Horvat, M., Dastoor, A.,
Hynes, A. J., Mao, H., Sonke, J. E., Slemr, F., Fisher, J. A., Ebinghaus,
R., Zhang, Y., and Edwards, G.: Progress on understanding atmospheric mercury
hampered by uncertain measurements, Environ. Sci. Technol., 48,
7204–7206, https://doi.org/10.1021/es5026432, 2014.
Jensen, A. M., Warren, J. M., Hanson, P. J., Childs, J., and Wullschleger, S.
D.: Needle age and season influence photosynthetic temperature response and
total annual carbon uptake in mature Picea mariana trees, Ann. Bot.-London, 116, 821–832, https://doi.org/10.1093/aob/mcv115, 2015.
Jiskra, M., Wiederhold, J. G., Skyllberg, U., Kronberg, R.-M., Hajdas, I.,
and Kretzschmar, R.: Mercury deposition and re-emission pathways in boreal
forest soils investigated with Hg isotope signatures, Environ. Sci.
Technol., 49, 7188–7196, 2015.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wängberg, I., Kyllönen, K., Worthy, D.,
Martin, L. G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and
Dommergue, A.: A vegetation control on seasonal variations in global
atmospheric mercury concentrations, Nat. Geosci., 11, 244–250,
https://doi.org/10.1038/s41561-018-0078-8, 2018.
Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D., and Obrist, D.: Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra, Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019, 2019.
JRC: European Commission, Joint Research Centre (JRC): Forest Type Map
2006, available at: https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping/#Downloadforestmaps (last access: 14 December 2020), 2010.
Juillerat, J. I., Ross, D. S., and Bank, M. S.: Mercury in litterfall and
upper soil horizons in forested ecosystems in Vermont, USA, Environ.
Toxicol. Chem., 31, 1720–1729, https://doi.org/10.1002/etc.1896, 2012.
Kahmen, A., Lustenberger, S., Zemp, E., and Erny, B.: The Swiss Canopy Crane
Experiment II and the botanical garden (University Basel), DBG, available at: https://www.dbges.de/de/system/files/Tagung_Bern/Exkursionen/g_08_final_0.pdf, (last access: 14 December 2020), 2019.
Kempeneers, P., Sedano, F., Seebach, L., Strobl, P., and San-Miguel-Ayanz,
J.: Data fusion of different spatial resolution remote sensing images
applied to forest-type mapping, IEEE T. Geosci. Remote, 49, 4977–4986, https://doi.org/10.1109/TGRS.2011.2158548, 2011.
Konôpka, B., Pajtík, J., Marušák, R., Bošeła, M., and
Lukac, M.: Specific leaf area and leaf area index in developing stands of
Fagus sylvatica L. and Picea abies Karst., Forest Ecol. Manag., 364, 52–59,
https://doi.org/10.1016/j.foreco.2015.12.005, 2016.
Körner, C.: Plant–Environment Interactions, in: Strasburger's Plant
Sciences: Including Prokaryotes and Fungi, edited by: Bresinsky, A.,
Körner, C., Kadereit, J. W., Neuhaus, G., and Sonnewald, U., Springer, Berlin, Heidelberg, Germany, 1065–1166, 2013.
Laacouri, A., Nater, E. A., and Kolka, R. K.: Distribution and uptake
dynamics of mercury in leaves of common deciduous tree species in Minnesota,
USA, Environ. Sci. Technol., 47, 10462–10470, https://doi.org/10.1021/es401357z, 2013.
Lange, H.: Carbon exchange measurements at a flux tower in Hurdal, SNS/Efinord Growth and Yield Network Conference, 13–15 June 2017; Drøbak, Hurdal and Son, Norway; Book of Abstracts p. 27, available at: http://nordicforestresearch.org/wp-content/uploads/2018/03/NIBIO-BOK-39-2017.pdf (last access: 14 December 2020), 2017.
Lindroth, A., Heliasz, M., Klemedtsson, L., Friborg, T., Nilsson, M.,
Löfvenius, O., Rutgersson, A., and Stiegler, C.: ICOS Sweden – a national infrastructure network for greenhouse gas research, EGU Geophys. Res. Abstr., 17, EGU2015-10307-2, 2015.
Lindroth, A., Holst, J., Heliasz, M., Vestin, P., Lagergren, F., Biermann,
T., Cai, Z., and Mölder, M.: Effects of low thinning on carbon dioxide
fluxes in a mixed hemiboreal forest, Agr. Forest Meteorol., 262, 59–70,
https://doi.org/10.1016/j.agrformet.2018.06.021, 2018.
Lodenius, M., Tulisalo, E., and Soltanpour-Gargari, A.: Exchange of mercury
between atmosphere and vegetation under contaminated conditions, Sci. Total
Environ., 304, 169–174, https://doi.org/10.1016/S0048-9697(02)00566-1, 2003.
Lohila, A., Penttilä, T., Jortikka, S., Aalto, T., Anttila, P., Asmi,
E., Aurela, M., Hatakka, J., Hellén, H., Henttonen, H., Hänninen,
P., Kilkki, J., Kyllönen, K., Laurila, T., Lepistö, A., Lihavainen,
H., Makkonen, U., Paatero, J., Rask, M., Sutinen, R., Tuovinen, J.-P.,
Vuorenmaa, J., and Viisanen, Y.: Preface to the special issue on integrated
research of atmosphere, ecosystems and environment at Pallas, Boreal
Environ. Res., 20, 431–454, 2015.
Loustau, D., Altimir, N., Barbaste, M., Gielen, B., Jiménez, S. M.,
Klumpp, K., Linder, S., Matteucci, G., Merbold, L., Op de Beeck, M.,
Soulé, P., Thimonier, A., Vincke, C., and Waldner, P.: Sampling and
collecting foliage elements for the determination of the foliar nutrients in
ICOS ecosystem stations, Int. Agrophys., 32, 665–676, https://doi.org/10.1515/intag-2017-0038, 2018.
Manceau, A., Wang, J., Rovezzi, M., Glatzel, P., and Feng, X.: Biogenesis of
mercury–sulfur nanoparticles in plant leaves from atmospheric gaseous
mercury, Environ. Sci. Technol., 52, 3935–3948,
https://doi.org/10.1021/acs.est.7b05452, 2018.
Marshall, J. D. and Monserud, R. A.: Foliage height influences specific leaf
area of three conifer species, Can. J. Forest Res., 33, 164–170,
https://doi.org/10.1139/x02-158, 2003.
Matyssek, R., Reich, P., Oren, R., and Winner, W. E.: 9 – Response Mechanisms of Conifers to Air Pollutants, in: Ecophysiology of Coniferous Forests, edited by: Smith, W. K. and Hinckley, T. M., Academic Press, San Diego, 255–308, https://doi.org/10.1016/B978-0-08-092593-6.50014-1, 1995.
McLagan, D. S., Mitchell, C. P. J., Huang, H., Lei, Y. D., Cole, A. S.,
Steffen, A., Hung, H., and Wania, F.: A high-precision passive air sampler
for gaseous mercury, Environ. Sci. Technol. Lett., 3, 24–29,
https://doi.org/10.1021/acs.estlett.5b00319, 2016.
Merilo, E., Tulva, I., Räim, O., Kükit, A., Sellin, A., and Kull, O.:
Changes in needle nitrogen partitioning and photosynthesis during 80 years
of tree ontogeny in Picea abies, Trees, 23, 951–958,
https://doi.org/10.1007/s00468-009-0337-9, 2009.
Millhollen, A. G., Gustin, M. S., and Obrist, D.: Foliar mercury accumulation
and exchange for three tree species, Environ. Sci. Technol., 40,
6001–6006, https://doi.org/10.1021/es0609194, 2006.
Minamata Convention: DRAFT Report on the work of the ad hoc technical group
on effectiveness evaluation, available at:
http://www.mercuryconvention.org/Portals/11/documents/meetings/COP3/Effectiveness/EU-experts-comments-04Sep2019.pdf, (last access: 14 December 2020), 2019.
Monsi, M. and Saeki, T.: On the factor light in plant communities and its
importance for matter production, Ann. Bot.-London, 95, 549–567,
https://doi.org/10.1093/aob/mci052, 2004.
Morecroft, M. D. and Roberts, J. M.: Photosynthesis and stomatal conductance
of mature canopy oak (Quercus robur) and sycamore (Acer pseudoplatanus)
trees throughout the growing season, Funct. Ecol., 13, 332–342,
https://doi.org/10.1046/j.1365-2435.1999.00327.x, 1999.
Navrátil, T., Shanley, J. B., Rohovec, J., Oulehle, F., Šimeček,
M., Houška, J., and Cudlín, P.: Soil mercury distribution in
adjacent coniferous and deciduous stands highly impacted by acid rain in the
Ore Mountains, Czech Republic, Appl. Geochem., 75, 63–75,
https://doi.org/10.1016/j.apgeochem.2016.10.005, 2016.
Navrátil, T., Nováková, T., Roll, M., Shanley, J. B.,
Kopáček, J., Rohovec, J., Kaňa, J., and Cudlín, P.:
Decreasing litterfall mercury deposition in central European coniferous
forests and effects of bark beetle infestation, Sci. Total Environ., 682,
213–225, https://doi.org/10.1016/j.scitotenv.2019.05.093, 2019.
Niinemets, U., Ellsworth, D. S., Lukjanova, A., and Tobias, M.: Site
fertility and the morphological and photosynthetic acclimation of Pinus
sylvestris needles to light, Tree Physiol., 21, 1231–1244,
https://doi.org/10.1093/treephys/21.17.1231, 2001.
NILU: EMEP manual for sampling and chemical analysis, EMEP/CCC-Report, 1/95, available at: https://projects.nilu.no/ccc/manual/download/cccr1-95rev.pdf (last accessed 14 December 2020), 2001.
Obrist, D.: Atmospheric mercury pollution due to losses of terrestrial
carbon pools?, Biogeochemistry, 85, 119–123,
https://doi.org/10.1007/s10533-007-9108-0, 2007.
Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho,
R., Battles, J. J., Dail, D. B., Edmonds, R. L., Monson, R. K., Ollinger, S.
V., Pallardy, S. G., Pregitzer, K. S., and Todd, D. E.: Mercury distribution
across 14 US forests, Part I: spatial patterns of concentrations in
biomass, litter, and soils, Environ. Sci. Technol., 45, 3974–3981,
https://doi.org/10.1021/es104384m, 2011.
Obrist, D., Johnson, D. W., and Edmonds, R. L.: Effects of vegetation type on
mercury concentrations and pools in two adjacent coniferous and deciduous
forests, J. Plant Nutr. Soil Sc., 175, 68–77,
https://doi.org/10.1002/jpln.201000415, 2012.
Obrist, D., Pokharel, A. K., and Moore, C.: Vertical profile measurements of
soil air suggest immobilization of gaseous elemental mercury in mineral
soil, Environ. Sci. Technol., 48, 2242–2252, https://doi.org/10.1021/es4048297,
2014.
Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber,
J., Moore, C. W., Sonke, J. E., and Helmig, D.: Tundra uptake of atmospheric
elemental mercury drives Arctic mercury pollution, Nature, 547,
201–204, https://doi.org/10.1038/nature22997, 2017.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and Selin,
N. E.: A review of global environmental mercury processes in response to
human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
Ollerova, H., Maruskova, A., Kontrisova, O., and Pliestikova, L.: Mercury
accumulation in Picea abies (L.) Karst. needles with regard to needle age,
Pol. J. Environ. Stud., 19, 1401–1404, 2010.
Op de Beeck, M., Gielen, B., Jonckheere, I., Samson, R., Janssens, I. A., and Ceulemans, R.: Needle age-related and seasonal photosynthetic capacity variation is negligible for modelling yearly gas exchange of a sparse temperate Scots pine forest, Biogeosciences, 7, 199–215, https://doi.org/10.5194/bg-7-199-2010, 2010.
Pacyna, J. M., Pacyna, E. G., and Aas, W.: Changes of emissions and
atmospheric deposition of mercury, lead, and cadmium, Atmos. Environ.,
43, 117–127, https://doi.org/10.1016/j.atmosenv.2008.09.066, 2009.
Pokharel, A. K. and Obrist, D.: Fate of mercury in tree litter during decomposition, Biogeosciences, 8, 2507–2521, https://doi.org/10.5194/bg-8-2507-2011, 2011.
Poole, I., Weyers, J. D. B., Lawson, T., and Raven, J. A.: Variations in
stomatal density and index: implications for palaeoclimatic reconstructions,
Plant Cell Environ., 19, 705–712,
https://doi.org/10.1111/j.1365-3040.1996.tb00405.x, 1996.
Prestbo, E. M. and Gay, D. A.: Wet deposition of mercury in the US and
Canada, 1996–2005: Results and analysis of the NADP mercury deposition
network (MDN), Atmos. Environ., 43, 4223–4233,
https://doi.org/10.1016/j.atmosenv.2009.05.028, 2009.
Rasmussen, P. E., Mierle, G., and Nriagu, J. O.: The analysis of vegetation
for total mercury, Water Air Soil Poll., 56, 379–390,
https://doi.org/10.1007/BF00342285, 1991.
Rautio, P., Fürst, A., Stefan, K., Raitio, H., and Bartels, U.: UNECE ICP
Forests Programme Co-ordinating Centre: Manual on methods and criteria
for harmonized sampling, assessment, monitoring and analysis of the effects
of air pollution on forests, Part XII: Sampling and analysis of needles and
leaves, Thünen Institute of Forest Ecosystems, Eberswalde, Germany, available at: https://www.icp-forests.org/pdf/manual/2016/ICP_Manual_2017_01_part12.pdf (last access: 14 December 2020),
2016.
Rea, A. W., Keeler, G. J., and Scherbatskoy, T.: The deposition of mercury in
throughfall and litterfall in the Lake Champlain Watershed: A short-term
study, Atmos. Environ., 30, 3257–3263,
https://doi.org/10.1016/1352-2310(96)00087-8, 1996.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Dry deposition and foliar
leaching of mercury and selected trace elements in deciduous forest
throughfall, Atmos. Environ., 35, 3453–3462,
https://doi.org/10.1016/S1352-2310(01)00133-9, 2001.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury
accumulation in foliage over time in two northern mixed-hardwood forests,
Water Air Soil Poll., 133, 49–67, 2002.
Reich, P. B., Walters, M. B., and Ellsworth, D. S.: From tropics to tundra:
Global convergence in plant functioning, P. Natl. Acad. Sci. USA, 94,
13730–13734, https://doi.org/10.1073/pnas.94.25.13730, 1997.
Risch, M. R., DeWild, J. F., Krabbenhoft, D. P., Kolka, R. K., and Zhang, L.:
Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 161,
284–290, https://doi.org/10.1016/j.envpol.2011.06.005, 2012.
Risch, M. R., DeWild, J. F., Gay, D. A., Zhang, L., Boyer, E. W., and
Krabbenhoft, D. P.: Atmospheric mercury deposition to forests in the eastern
USA, Environ. Pollut., 228, 8–18, https://doi.org/10.1016/j.envpol.2017.05.004, 2017.
Robakowski, P. and Bielinis, E.: Needle age dependence of photosynthesis
along a light gradient within an Abies alba crown, Acta Physiol. Plant.,
39, 83, https://doi.org/10.1007/s11738-017-2376-y, 2017.
Rötzer, T. and Chmielewski, F.: Phenological maps of Europe, Clim. Res.,
18, 249–257, https://doi.org/10.3354/cr018249, 2001.
Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R.,
Robinson, M., Collins, R. M., Parman, A. M., Katzman, T. L., and Mallek, J.
L.: Dry deposition of gaseous elemental mercury to plants and soils using
mercury stable isotopes in a controlled environment, Atmos. Environ., 45,
848–855, https://doi.org/10.1016/j.atmosenv.2010.11.025, 2011.
Saiz-Lopez, A., Sitkiewicz, S. P., Roca-Sanjuán, D., Oliva-Enrich, J.
M., Dávalos, J. Z., Notario, R., Jiskra, M., Xu, Y., Wang, F., Thackray,
C. P., Sunderland, E. M., Jacob, D. J., Travnikov, O., Cuevas, C. A.,
Acuña, A. U., Rivero, D., Plane, J. M. C., Kinnison, D. E., and Sonke, J.
E.: Photoreduction of gaseous oxidized mercury changes global atmospheric
mercury speciation, transport and deposition, Nat. Commun., 9, 4796,
https://doi.org/10.1038/s41467-018-07075-3, 2018.
Schleyer, R., Bieber, E., and Wallasch, M.: Das Luftmessnetz des
Umweltbundesamtes, UBA German Federal Environment Agency, Dessau-Roßlau, available at: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/das_luftmessnetz_des_umweltbundesamtes_bf_0.pdf (last access: 14 December 2020) 2013 (in German).
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A.,
Gharun, M., Grams, T. E. E., Hauck, M., Hajek, P., Hartmann, H.,
Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch,
E., Lübbe, T., Nelson, D. B., Rammig, A., Rigling, A., Rose, L., Ruehr,
N. K., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C. S., and
Kahmen, A.: A first assessment of the impact of the extreme 2018 summer
drought on Central European forests, Basic Appl. Ecol., 45, 86–103,
https://doi.org/10.1016/j.baae.2020.04.003, 2020.
Schulze, E. D.: Carbon dioxide and water vapor exchange in response to
drought in the atmosphere and in the soil, Ann. Rev. Plant Physio., 37, 247–274,
1986.
Sharma, R. P., Vacek, Z., and Vacek, S.: Individual tree crown width models
for Norway spruce and European beech in Czech Republic, Forest Ecol. Manag.,
366, 208–220, https://doi.org/10.1016/j.foreco.2016.01.040, 2016.
Sonnewald, U.: Physiology of Development, in: Strasburger's Plant Sciences,
Springer, Berlin, Heidelberg, Germany, 411–530, https://doi.org/10.1007/978-3-642-15518-5_6, 2013.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Angot, H., Barbante, C., Brunke, E.-G., Arcega-Cabrera, F., Cairns, W., Comero, S., Diéguez, M. D. C., Dommergue, A., Ebinghaus, R., Feng, X. B., Fu, X., Garcia, P. E., Gawlik, B. M., Hageström, U., Hansson, K., Horvat, M., Kotnik, J., Labuschagne, C., Magand, O., Martin, L., Mashyanov, N., Mkololo, T., Munthe, J., Obolkin, V., Ramirez Islas, M., Sena, F., Somerset, V., Spandow, P., Vardè, M., Walters, C., Wängberg, I., Weigelt, A., Yang, X., and Zhang, H.: Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres, Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, 2017.
St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R.,
Scott, K. J., Lindberg, S. E., and Dong, W.: Importance of the forest canopy
to fluxes of methyl mercury and total mercury to boreal ecosystems, Environ.
Sci. Technol., 35, 3089–3098, https://doi.org/10.1021/es001924p, 2001.
Stamenkovic, J. and Gustin, M. S.: Nonstomatal versus Stomatal Uptake of
Atmospheric Mercury, Environ. Sci. Technol., 43, 1367–1372,
https://doi.org/10.1021/es801583a, 2009.
Stancioiu, P. T. and O'Hara, K. L.: Morphological plasticity of regeneration
subject to different levels of canopy cover in mixed-species, multiaged
forests of the Romanian Carpathians, Trees, 20, 196–209,
https://doi.org/10.1007/s00468-005-0026-2, 2006.
Tahvanainen, T. and Forss, E.: Individual tree models for the crown biomass
distribution of Scots pine, Norway spruce and birch in Finland, Forest Ecol.
Manag., 255, 455–467, https://doi.org/10.1016/j.foreco.2007.09.035, 2008.
Teixeira, D. C., Montezuma, R. C., Oliveira, R. R. and Silva-Filho, E. V.:
Litterfall mercury deposition in Atlantic forest ecosystem from SE – Brazil, Environ. Pollut., 164, 11–15, https://doi.org/10.1016/j.envpol.2011.10.032,
2012.
Temesgen, H., LeMay, V., and Mitchell, S. J.: Tree crown ratio models for
multi-species and multi-layered stands of southeastern British Columbia,
Forest. Chron., 81, 133–141, https://doi.org/10.5558/tfc81133-1, 2005.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
Tyrrell, M. L., Ross, J., and Kelty, M.: Carbon dynamics in the Temperate
Forest, in: Managing Forest Carbon in a Changing Climate, edited by:
Ashton, M. S., Tyrrell, M. L., Spalding, D., and Gentry, B., Springer,
Dordrecht, the Netherlands, 77–107, 2012
UBA: Qualitätssicherungshandbuch des UBA Messnetzes, Texte 28-04, German Federal Environment Agency) Berlin, 536 pp., available at: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2766.pdf (last access: 14 December 2020) 2004 (in
German).
UN Environment: Global Mercury Assessment Report 2018, UN Environmental
Programme, Chemicals and Health Branch Geneva, Switzerland, available at:
https://wedocs.unep.org/bitstream/handle/20.500.11822/27579/GMA2018.pdf, last access: 2 October 2019.
Wang, X., Bao, Z., Lin, C.-J., Yuan, W., and Feng, X.: Assessment of global
mercury deposition through litterfall, Environ. Sci. Technol., 50,
8548–8557, https://doi.org/10.1021/acs.est.5b06351, 2016.
Wängberg, I. and Munthe, J.: Atmospheric mercury in Sweden, Northern
Finland and Northern Europe, Results from national monitoring and European
research, IVL Swedish Environmental Research Institute report, available at: https://www.ivl.se/download/18.34244ba71728fcb3f3f5ee/1591704288589/B1399.pdf (last access: 14 December 2020), 2001.
Wängberg, I., Munthe, J., Berg, T., Ebinghaus, R., Kock, H. H., Temme,
C., Bieber, E., Spain, T. G., and Stolk, A.: Trends in air concentration and
deposition of mercury in the coastal environment of the North Sea Area,
Atmos. Environ., 41, 2612–2619, https://doi.org/10.1016/j.atmosenv.2006.11.024,
2007.
Wängberg, I., Nerentorp Mastromonaco, M. G., Munthe, J., and Gårdfeldt, K.: Airborne mercury species at the Råö background monitoring site in Sweden: distribution of mercury as an effect of long-range transport, Atmos. Chem. Phys., 16, 13379–13387, https://doi.org/10.5194/acp-16-13379-2016, 2016.
Warren, C. R.: Why does photosynthesis decrease with needle age in Pinus
pinaster?, Trees, 20, 157–164, https://doi.org/10.1007/s00468-005-0021-7, 2006.
Weiss-Penzias, P. S., Gay, D. A., Brigham, M. E., Parsons, M. T., Gustin, M.
S., and ter Schure, A.: Trends in mercury wet deposition and mercury air
concentrations across the US and Canada, Sci. Total Environ., 568,
546–556, https://doi.org/10.1016/j.scitotenv.2016.01.061, 2016.
Wieser, G. and Tausz, M.: Trees at their Upper Limit: Treelife
Limitation at the Alpine Timberline, Springer, Dordrecht, Netherlands, ISBN 978-1-4020-5074-9, 2007.
Wohlgemuth, L.: Dataset to Publication: A bottom-up quantification of foliar mercury uptake fluxes across Europe, Zenodo, https://doi.org/10.5281/zenodo.3957873, 2020.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z.,
Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer,
M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont,
B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M.-L., Niinemets,
Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov,
V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J., and
Villar, R.: The worldwide leaf economics spectrum, Nature, 428,
821–827, https://doi.org/10.1038/nature02403, 2004.
Wright, L. P., Zhang, L., and Marsik, F. J.: Overview of mercury dry deposition, litterfall, and throughfall studies, Atmos. Chem. Phys., 16, 13399–13416, https://doi.org/10.5194/acp-16-13399-2016, 2016.
Xiao, C.-W., Janssens, I. A., Curiel Yuste, J., and Ceulemans, R.: Variation
of specific leaf area and upscaling to leaf area index in mature Scots pine,
Trees, 20, 304, https://doi.org/10.1007/s00468-005-0039-x, 2006.
Yang, Y., Yanai, R. D., Montesdeoca, M., and Driscoll, C. T.: Measuring
mercury in wood: challenging but important, Int. J. Environ. An. Ch., 97,
456–467, https://doi.org/10.1080/03067319.2017.1324852, 2017.
Yuan, W., Sommar, J., Lin, C.-J., Wang, X., Li, K., Liu, Y., Zhang, H., Lu,
Z., Wu, C., and Feng, X.: Stable isotope evidence shows re-emission of
elemental mercury vapor occurring after reductive loss from foliage,
Environ. Sci. Technol., 53, 651–660, https://doi.org/10.1021/acs.est.8b04865, 2019.
Zhang, L., Wright, L. P., and Blanchard, P.: A review of current knowledge
concerning dry deposition of atmospheric mercury, Atmos. Environ., 43,
5853–5864, https://doi.org/10.1016/j.atmosenv.2009.08.019, 2009.
Zhang, L., Wu, Z., Cheng, I., Wright, L. P., Olson, M. L., Gay, D. A.,
Risch, M. R., Brooks, S., Castro, M. S., Conley, G. D., Edgerton, E. S.,
Holsen, T. M., Luke, W., Tordon, R., and Weiss-Penzias, P.: The estimated
six-year mercury dry deposition across North America, Environ. Sci.
Technol., 50, 12864–12873, https://doi.org/10.1021/acs.est.6b04276, 2016.
Zheng, W., Obrist, D., Weis, D., and Bergquist, B. A.: Mercury isotope
compositions across North American forests, Global Biogeochem. Cy., 30,
1475–1492, https://doi.org/10.1002/2015GB005323, 2016.
Short summary
Mercury uptake by trees from the air represents an important but poorly quantified pathway in the global mercury cycle. We determined mercury uptake fluxes by leaves and needles at 10 European forests which were 4 times larger than mercury deposition via rainfall. The amount of mercury taken up by leaves and needles depends on their age and growing height on the tree. Scaling up our measurements to the forest area of Europe, we estimate that each year 20 t of mercury is taken up by trees.
Mercury uptake by trees from the air represents an important but poorly quantified pathway in...
Altmetrics
Final-revised paper
Preprint