Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-1105-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-1105-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Severin-Luca Bellè
Department of Geography, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
Asmeret Asefaw Berhe
School of Natural Sciences, University of California, Merced, CA
95340, USA
Frank Hagedorn
Forest soils and Biogeochemistry, Swiss Federal Research Institute
WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Cristina Santin
Department of Biosciences, College of Science, Swansea University,
Swansea, UK
Research of Biodiversity (CSIC, UO, PA), University of Oviedo, Mieres,
Spain
Marcus Schiedung
Department of Geography, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
Ilja van Meerveld
Department of Geography, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
Department of Geography, University of Zurich, Winterthurerstrasse
190, 8057 Zurich, Switzerland
Laboratoire de Géologie, Département de Géosciences, CNRS – École normale supérieure, PSL University, Institut Pierre Simon Laplace, Rue Lhomond 24, 75005 Paris, France
CEREEP-Ecotron Ile De France, ENS, CNRS, PSL University, Chemin de
busseau 11, 77140 St-Pierre-lès-Nemours, France
Related authors
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Tatjana Carina Speckert, Jeannine Suremann, Konstantin Gavazov, Maria Joao Santos, Frank Hagedorn, and Guido Lars Bruno Wiesenberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-645, https://doi.org/10.5194/egusphere-2023-645, 2023
Short summary
Short summary
Afforestation on former pastures affects soil organic carbon (SOC) by alteration of quality and quantity of root and aboveground biomass litter input. Compared with pasture organic matter (OM), forest OM is less decomposable and characterized by increased C:N ratios. It could be expected that long-term afforestation on a centennial scale may have a severe impact on SOC dynamics, an aspect that remains so far unknown as most of the earlier studies focused on successions between 30 and 50 years.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
EGUsphere, https://doi.org/10.5194/egusphere-2023-899, https://doi.org/10.5194/egusphere-2023-899, 2023
Short summary
Short summary
We used a fluorescent sand tracer with afterglow in combination with sprinkling experiments to visualize and determine the movement of sediments on a natural hillslope. We compared the observed transport patterns with the characteristics of the hillslopes. Results show that the fluorescent sand can be used to monitor sediment redistribution on the soil surface and that infiltration on older hillslopes decreased sediment transport due to more developed vegetation cover and root systems.
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023, https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
Short summary
Groundwater can respond quickly to precipitation and is the main source of streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics, we installed a network of groundwater wells in two boreal headwater catchments in Sweden. We recorded groundwater levels in 75 wells for 2 years and sampled the water and analyzed its chemical composition in one summer. This paper describes these datasets.
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
EGUsphere, https://doi.org/10.5194/egusphere-2022-165, https://doi.org/10.5194/egusphere-2022-165, 2022
Preprint archived
Short summary
Short summary
Knowledge on overland flow generation and sediment transport is limited due to a lack of observational methods. Thus, we used sprinkling experiments on two natural hillslopes and tested a novel method using fluorescent sand to visualize the movement of soil particles. The results show, that the applied method is suitable to track the movement of individual sediment particles and the particle transport distance depends on the surface characteristics of the hillslopes.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Daniel Rath, Nathaniel Bogie, Leonardo Deiss, Sanjai J. Parikh, Daoyuan Wang, Samantha Ying, Nicole Tautges, Asmeret Asefaw Berhe, Teamrat A. Ghezzehei, and Kate M. Scow
SOIL, 8, 59–83, https://doi.org/10.5194/soil-8-59-2022, https://doi.org/10.5194/soil-8-59-2022, 2022
Short summary
Short summary
Storing C in subsoils can help mitigate climate change, but this requires a better understanding of subsoil C dynamics. We investigated changes in subsoil C storage under a combination of compost, cover crops (WCC), and mineral fertilizer and found that systems with compost + WCC had ~19 Mg/ha more C after 25 years. This increase was attributed to increased transport of soluble C and nutrients via WCC root pores and demonstrates the potential for subsoil C storage in tilled agricultural systems.
Sophie F. von Fromm, Alison M. Hoyt, Markus Lange, Gifty E. Acquah, Ermias Aynekulu, Asmeret Asefaw Berhe, Stephan M. Haefele, Steve P. McGrath, Keith D. Shepherd, Andrew M. Sila, Johan Six, Erick K. Towett, Susan E. Trumbore, Tor-G. Vågen, Elvis Weullow, Leigh A. Winowiecki, and Sebastian Doetterl
SOIL, 7, 305–332, https://doi.org/10.5194/soil-7-305-2021, https://doi.org/10.5194/soil-7-305-2021, 2021
Short summary
Short summary
We investigated various soil and climate properties that influence soil organic carbon (SOC) concentrations in sub-Saharan Africa. Our findings indicate that climate and geochemistry are equally important for explaining SOC variations. The key SOC-controlling factors are broadly similar to those for temperate regions, despite differences in soil development history between the two regions.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Erika Marín-Spiotta, Rebecca T. Barnes, Asmeret Asefaw Berhe, Meredith G. Hastings, Allison Mattheis, Blair Schneider, and Billy M. Williams
Adv. Geosci., 53, 117–127, https://doi.org/10.5194/adgeo-53-117-2020, https://doi.org/10.5194/adgeo-53-117-2020, 2020
Short summary
Short summary
The geosciences are one of the least diverse disciplines in the United States, despite the field's relevance to people's livelihoods and economies. Bias, discrimination and harassment present serious hurdles to diversifying the field. We summarize research on the factors that contribute to the persistence of hostile climates in the geosciences and other scientific disciplines and provide recommendations for cultural change through the role of mentoring networks and professional associations.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Marijn Van de Broek, Shiva Ghiasi, Charlotte Decock, Andreas Hund, Samuel Abiven, Cordula Friedli, Roland A. Werner, and Johan Six
Biogeosciences, 17, 2971–2986, https://doi.org/10.5194/bg-17-2971-2020, https://doi.org/10.5194/bg-17-2971-2020, 2020
Short summary
Short summary
Four wheat cultivars were labeled with 13CO2 to quantify the effect of rooting depth and root biomass on the belowground transfer of organic carbon. We found no clear relation between the time since cultivar development and the amount of carbon inputs to the soil. Therefore, the hypothesis that wheat cultivars with a larger root biomass and deeper roots promote carbon stabilization was rejected. The amount of root biomass that will be stabilized in the soil on the long term is, however, unknown.
Barbara Strobl, Simon Etter, H. J. Ilja van Meerveld, and Jan Seibert
Geosci. Commun., 3, 109–126, https://doi.org/10.5194/gc-3-109-2020, https://doi.org/10.5194/gc-3-109-2020, 2020
Short summary
Short summary
Training can deter people from joining a citizen science project but may be needed to ensure good data quality. In this study, we found that an online game that was originally developed for data quality control in a citizen science project can be used for training as well. These findings are useful for the development of training strategies for other citizen science projects because they indicate that gamified approaches might be valuable scalable training methods.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert
Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, https://doi.org/10.5194/hess-23-4825-2019, 2019
Short summary
Short summary
Flowing stream networks extend and retract seasonally and in response to precipitation. This affects the distances and thus the time that it takes a water molecule to reach the flowing stream and the stream outlet. When the network is fully extended, the travel times are short, but when the network retracts, the travel times become longer and more uniform. These dynamics should be included when modeling solute or pollutant transport.
Tessa Sophia van der Voort, Utsav Mannu, Frank Hagedorn, Cameron McIntyre, Lorenz Walthert, Patrick Schleppi, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 16, 3233–3246, https://doi.org/10.5194/bg-16-3233-2019, https://doi.org/10.5194/bg-16-3233-2019, 2019
Short summary
Short summary
The carbon stored in soils is the largest reservoir of organic carbon on land. In the context of greenhouse gas emissions and a changing climate, it is very important to understand how stable the carbon in the soil is and why. The deeper parts of the soil have often been overlooked even though they store a lot of carbon. In this paper, we discovered that although deep soil carbon is expected to be old and stable, there can be a significant young component that cycles much faster.
Teamrat A. Ghezzehei, Benjamin Sulman, Chelsea L. Arnold, Nathaniel A. Bogie, and Asmeret Asefaw Berhe
Biogeosciences, 16, 1187–1209, https://doi.org/10.5194/bg-16-1187-2019, https://doi.org/10.5194/bg-16-1187-2019, 2019
Short summary
Short summary
Soil water is a medium from which microbes acquire resources and within which they are able to move. Occupancy and availability of water and oxygen gas in soils are mutually exclusive. In addition, as soil dries the remaining water is held with an increasing degree of adhesive energy, which restricts microbes' ability to extract resources from water. We introduce a mathematical model that describes these interacting effects and organic matter decomposition.
Emily F. Solly, Valentino Weber, Stephan Zimmermann, Lorenz Walthert, Frank Hagedorn, and Michael W. I. Schmidt
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-33, https://doi.org/10.5194/bg-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
Soils are the largest reservoir of carbon on land. In the context of global change, it is important to assess which environmental variables are needed to describe changes in the content of soil organic carbon. We assessed how climatic, vegetation and edaphic variables explain the variance of soil organic carbon content in Swiss forests. Our results provide a first indication that considering the effective cation exchange capacity of soils in future biogeochemical simulations could be beneficial.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Simon Etter, Barbara Strobl, Jan Seibert, and H. J. Ilja van Meerveld
Hydrol. Earth Syst. Sci., 22, 5243–5257, https://doi.org/10.5194/hess-22-5243-2018, https://doi.org/10.5194/hess-22-5243-2018, 2018
Short summary
Short summary
To evaluate the potential value of streamflow estimates for hydrological model calibration, we created synthetic streamflow datasets in various temporal resolutions based on the errors in streamflow estimates of 136 citizens. Our results show that streamflow estimates of untrained citizens are too inaccurate to be useful for model calibration. If, however, the errors can be reduced by training or filtering, the estimates become useful if also a sufficient number of estimates are available.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Samuel N. Araya, Marilyn L. Fogel, and Asmeret Asefaw Berhe
SOIL, 3, 31–44, https://doi.org/10.5194/soil-3-31-2017, https://doi.org/10.5194/soil-3-31-2017, 2017
Short summary
Short summary
This research investigates how fires of different intensities affect soil organic matter properties. This study identifies critical temperature thresholds of significant soil organic matter changes. Findings from this study will contribute towards estimating the amount and rate of changes in soil carbon, nitrogen, and other essential soil properties that can be expected from fires of different intensities under anticipated climate change scenarios.
Samuel N. Araya, Mercer Meding, and Asmeret Asefaw Berhe
SOIL, 2, 351–366, https://doi.org/10.5194/soil-2-351-2016, https://doi.org/10.5194/soil-2-351-2016, 2016
Short summary
Short summary
Using laboratory heating, we studied effects of fire intensity on important topsoil characteristics. This study identifies critical temperature thresholds for significant physical and chemical changes in soils that developed under different climate regimes. Findings from this study will contribute towards estimating the amount and rate of change in essential soil properties that can be expected from topsoil exposure to different intensity fires under anticipated climate change scenarios.
Tessa Sophia van der Voort, Frank Hagedorn, Cameron McIntyre, Claudia Zell, Lorenz Walthert, Patrick Schleppi, Xiaojuan Feng, and Timothy Ian Eglinton
Biogeosciences, 13, 3427–3439, https://doi.org/10.5194/bg-13-3427-2016, https://doi.org/10.5194/bg-13-3427-2016, 2016
Short summary
Short summary
This study explores heterogeneity in 14C content of soil organic matter (SOM) at different spatial scales and across climatic and geologic gradients, which is essential for a better understanding of SOM stability. Results reveal that despite dissimilar environmental conditions, 14C contents in topsoils is relatively uniform and 14C trends with depth are similar. Plot-scale variability is significant. Statistical analysis found a significant correlation of 14C contents (0–5 cm) and temperature.
E. M. Stacy, S. C. Hart, C. T. Hunsaker, D. W. Johnson, and A. A. Berhe
Biogeosciences, 12, 4861–4874, https://doi.org/10.5194/bg-12-4861-2015, https://doi.org/10.5194/bg-12-4861-2015, 2015
Short summary
Short summary
In the southern parts of the Sierra Nevada in California, we investigated erosion of carbon and nitrogen from low-order catchments. We found that eroded sediments were OM rich, with a potential for significant gaseous and dissolved loss of OM during transport or after depositional in downslope or downstream depositional landform positions.
M. S. Studer, R. T. W. Siegwolf, M. Leuenberger, and S. Abiven
Biogeosciences, 12, 1865–1879, https://doi.org/10.5194/bg-12-1865-2015, https://doi.org/10.5194/bg-12-1865-2015, 2015
Short summary
Short summary
We present a new technique to label organic matter (OM) at its place of formation by the application of 13C, 18O and 2H through the gaseous phase. The label diffused into leaves was incorporated into assimilates and was detected in plant tissues. This technique can be applied in soil sciences, e.g. to trace the decomposition pathways of soil OM inputs, or in plant physiology and palaeoclimatic reconstruction, e.g. to further investigate the origin of the 18O and 2H signal in tree ring cellulose.
J. Schwaab, M. Bavay, E. Davin, F. Hagedorn, F. Hüsler, M. Lehning, M. Schneebeli, E. Thürig, and P. Bebi
Biogeosciences, 12, 467–487, https://doi.org/10.5194/bg-12-467-2015, https://doi.org/10.5194/bg-12-467-2015, 2015
B. Maestrini, S. Abiven, N. Singh, J. Bird, M. S. Torn, and M. W. I. Schmidt
Biogeosciences, 11, 5199–5213, https://doi.org/10.5194/bg-11-5199-2014, https://doi.org/10.5194/bg-11-5199-2014, 2014
T. A. Ghezzehei, D. V. Sarkhot, and A. A. Berhe
Solid Earth, 5, 953–962, https://doi.org/10.5194/se-5-953-2014, https://doi.org/10.5194/se-5-953-2014, 2014
M. S. Studer, R. T. W. Siegwolf, and S. Abiven
Biogeosciences, 11, 1637–1648, https://doi.org/10.5194/bg-11-1637-2014, https://doi.org/10.5194/bg-11-1637-2014, 2014
S. R. Lutz, H. J. van Meerveld, M. J. Waterloo, H. P. Broers, and B. M. van Breukelen
Hydrol. Earth Syst. Sci., 17, 4505–4524, https://doi.org/10.5194/hess-17-4505-2013, https://doi.org/10.5194/hess-17-4505-2013, 2013
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci., 17, 3421–3435, https://doi.org/10.5194/hess-17-3421-2013, https://doi.org/10.5194/hess-17-3421-2013, 2013
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-9-14065-2012, https://doi.org/10.5194/hessd-9-14065-2012, 2012
Revised manuscript not accepted
Related subject area
Biogeochemistry: Soils
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?
Estimating maximum fine-fraction organic carbon in UK grasslands
Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass
Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics
Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge
Vertical mobility of pyrogenic organic matter in soils: a column experiment
Vertical partitioning of CO2 production in a forest soil
Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands
Reviews and syntheses: Ironing out wrinkles in the soil phosphorus cycling paradigm
Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation
Reviews and syntheses: The mechanisms underlying carbon storage in soil
Identification of lower-order inositol phosphates (IP5 and IP4) in soil extracts as determined by hypobromite oxidation and solution 31P NMR spectroscopy
Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter
Warming increases soil respiration in a carbon-rich soil without changing microbial respiratory potential
Reviews and syntheses: Soil responses to manipulated precipitation changes – an assessment of meta-analyses
From fibrous plant residues to mineral-associated organic carbon – the fate of organic matter in Arctic permafrost soils
Relevance of aboveground litter for soil organic matter formation – a soil profile perspective
A revised pan-Arctic permafrost soil Hg pool based on Western Siberian peat Hg and carbon observations
Using respiration quotients to track changing sources of soil respiration seasonally and with experimental warming
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Frances A. Podrebarac, Sharon A. Billings, Kate A. Edwards, Jérôme Laganière, Matthew J. Norwood, and Susan E. Ziegler
Biogeosciences, 18, 4755–4772, https://doi.org/10.5194/bg-18-4755-2021, https://doi.org/10.5194/bg-18-4755-2021, 2021
Short summary
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Kirsty C. Paterson, Joanna M. Cloy, Robert M. Rees, Elizabeth M. Baggs, Hugh Martineau, Dario Fornara, Andrew J. Macdonald, and Sarah Buckingham
Biogeosciences, 18, 605–620, https://doi.org/10.5194/bg-18-605-2021, https://doi.org/10.5194/bg-18-605-2021, 2021
Short summary
Short summary
Soil organic carbon sequestration across agroecosystems worldwide can contribute to mitigating the effects of climate change by reducing levels of atmospheric carbon dioxide. The maximum carbon sequestration potential is frequently estimated using the linear regression equation developed by Hassink (1997). This work examines the suitability of this equation for use in grasslands across the United Kingdom. The results highlight the need to ensure the fit of equations to the soils being studied.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Frederick Büks, Gilles Kayser, Antonia Zieger, Friederike Lang, and Martin Kaupenjohann
Biogeosciences, 18, 159–167, https://doi.org/10.5194/bg-18-159-2021, https://doi.org/10.5194/bg-18-159-2021, 2021
Short summary
Short summary
Ultrasonication/density fractionation is a common method used to extract particulate organic matter (POM) and, recently, microplastic (MP) from soil samples. In this study, ultrasonic treatment with mechanical stress increasing from 0 to 500 J mL−1 caused comminution and a reduced recovery rate of soil-derived POMs but no such effects with MP particles. In consequence, the extraction of MP from soils is not affected by particle size and recovery rate artifacts.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Marcus Schiedung, Severin-Luca Bellè, Gabriel Sigmund, Karsten Kalbitz, and Samuel Abiven
Biogeosciences, 17, 6457–6474, https://doi.org/10.5194/bg-17-6457-2020, https://doi.org/10.5194/bg-17-6457-2020, 2020
Short summary
Short summary
The mobility of pyrogenic organic matter (PyOM) in soils is largely unknow, while it is a major and persistent component of the soil organic matter. With a soil column experiment, we identified that only a small proportion of PyOM can migrate through the soil, but its export is continuous. Aging and associated oxidation increase its mobility but also its retention in soils. Further, PyOM can alter the vertical mobility of native soil organic carbon during its downward migration.
Patrick Wordell-Dietrich, Anja Wotte, Janet Rethemeyer, Jörg Bachmann, Mirjam Helfrich, Kristina Kirfel, Christoph Leuschner, and Axel Don
Biogeosciences, 17, 6341–6356, https://doi.org/10.5194/bg-17-6341-2020, https://doi.org/10.5194/bg-17-6341-2020, 2020
Short summary
Short summary
The release of CO2 from soils, known as soil respiration, plays a major role in the global carbon cycle. However, the contributions of different soil depths or the sources of soil CO2 have hardly been studied. We quantified the CO2 production for different soil layers (up to 1.5 m) in three soil profiles for 2 years. We found that 90 % of CO2 production occurs in the first 30 cm of the soil profile, and that the CO2 originated from young carbon sources, as revealed by radiocarbon measurements.
Antonio Rodríguez, Rosa Maria Canals, Josefina Plaixats, Elena Albanell, Haifa Debouk, Jordi Garcia-Pausas, Leticia San Emeterio, Àngela Ribas, Juan José Jimenez, and M.-Teresa Sebastià
Biogeosciences, 17, 6033–6050, https://doi.org/10.5194/bg-17-6033-2020, https://doi.org/10.5194/bg-17-6033-2020, 2020
Short summary
Short summary
The novelty of our work is that it presents a series of potential interactions between drivers of soil organic carbon at broad scales in temperate mountain grasslands. The most relevant contribution of our work is that it illustrates the importance of grazing management for soil carbon stocks, indicating that interactions between grazing species and soil nitrogen and herbage quality may be promising paths in order to design further management policies for palliating climate change.
Curt A. McConnell, Jason P. Kaye, and Armen R. Kemanian
Biogeosciences, 17, 5309–5333, https://doi.org/10.5194/bg-17-5309-2020, https://doi.org/10.5194/bg-17-5309-2020, 2020
Short summary
Short summary
Soil phosphorus (P) management is a critical challenge for agriculture worldwide; yet, simulation models of soil P processes lag those of other essential nutrients. In this review, we identify hindrances to measuring and modeling soil P pools and fluxes. We highlight the need to clarify biological and mineral interactions by defining P pools explicitly and using evolving techniques, such as tracing P in phosphates using oxygen isotopes.
Greta Formaglio, Edzo Veldkamp, Xiaohong Duan, Aiyen Tjoa, and Marife D. Corre
Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, https://doi.org/10.5194/bg-17-5243-2020, 2020
Short summary
Short summary
The intensive management of large-scale oil palm plantations may result in high nutrient leaching losses which reduce soil fertility and potentially pollute water bodies. The reduction in management intensity with lower fertilization rates and with mechanical weeding instead of the use of herbicide results in lower nutrient leaching losses while maintaining high yield. Lower leaching results from lower nutrient inputs from fertilizer and from higher retention by enhanced cover vegetation.
Isabelle Basile-Doelsch, Jérôme Balesdent, and Sylvain Pellerin
Biogeosciences, 17, 5223–5242, https://doi.org/10.5194/bg-17-5223-2020, https://doi.org/10.5194/bg-17-5223-2020, 2020
Short summary
Short summary
The 4 per 1000 initiative aims to restore carbon storage in soils to both mitigate climate change and contribute to food security. The French National Institute for Agricultural Research conducted a study to determine the carbon storage potential in French soils and associated costs. This paper is a part of that study. It reviews recent advances concerning the mechanisms that controls C stabilization in soils. Synthetic figures integrating new concepts should be of pedagogical interest.
Jolanda E. Reusser, René Verel, Daniel Zindel, Emmanuel Frossard, and Timothy I. McLaren
Biogeosciences, 17, 5079–5095, https://doi.org/10.5194/bg-17-5079-2020, https://doi.org/10.5194/bg-17-5079-2020, 2020
Short summary
Short summary
Inositol phosphates (IPs) are a major pool of organic P in soil. However, information on their diversity and abundance in soil is limited. We isolated IPs from soil and characterised them using solution nuclear magnetic resonance (NMR) spectroscopy. For the first time, we provide direct spectroscopic evidence for the existence of a multitude of lower-order IPs in soil extracts previously not detected with NMR. Our findings will help provide new insight into the cycling of IPs in ecosystems.
Katharina Hildegard Elisabeth Meurer, Claire Chenu, Elsa Coucheney, Anke Marianne Herrmann, Thomas Keller, Thomas Kätterer, David Nimblad Svensson, and Nicholas Jarvis
Biogeosciences, 17, 5025–5042, https://doi.org/10.5194/bg-17-5025-2020, https://doi.org/10.5194/bg-17-5025-2020, 2020
Short summary
Short summary
We present a simple model that describes, for the first time, the dynamic two-way interactions between soil organic matter and soil physical properties (porosity, pore size distribution, bulk density and layer thickness). The model was able to accurately reproduce the changes in soil organic carbon, soil bulk density and surface elevation observed during 63 years in a field trial, as well as soil water retention curves measured at the end of the experimental period.
Marion Nyberg and Mark J. Hovenden
Biogeosciences, 17, 4405–4420, https://doi.org/10.5194/bg-17-4405-2020, https://doi.org/10.5194/bg-17-4405-2020, 2020
Short summary
Short summary
Experimental warming increased soil respiration (RS) by more than 25 % in a Tasmanian C-rich soil, but there was no impact on microbial respiration in laboratory experiments. Plant community composition had no effect on RS, suggesting the response is likely due to enhanced belowground plant respiration and C supply through rhizodeposition and root exudates. Results imply we need studies of both C inputs and losses to model net ecosystem C exchange of these crucial, C-dense systems effectively.
Akane O. Abbasi, Alejandro Salazar, Youmi Oh, Sabine Reinsch, Maria del Rosario Uribe, Jianghanyang Li, Irfan Rashid, and Jeffrey S. Dukes
Biogeosciences, 17, 3859–3873, https://doi.org/10.5194/bg-17-3859-2020, https://doi.org/10.5194/bg-17-3859-2020, 2020
Short summary
Short summary
In this study, we provide a holistic view of soil responses to precipitation changes. A total of 16 meta-analyses focusing on the effects of precipitation changes on 42 soil response variables were compared. A strong agreement was found that the belowground carbon and nitrogen cycling accelerate under increased precipitation and slow under decreased precipitation, while bacterial and fungal communities are relatively resistant to decreased precipitation. Knowledge gaps were also identified.
Isabel Prater, Sebastian Zubrzycki, Franz Buegger, Lena C. Zoor-Füllgraff, Gerrit Angst, Michael Dannenmann, and Carsten W. Mueller
Biogeosciences, 17, 3367–3383, https://doi.org/10.5194/bg-17-3367-2020, https://doi.org/10.5194/bg-17-3367-2020, 2020
Short summary
Short summary
Large amounts of soil organic matter stored in permafrost-affected soils from Arctic Russia are present as undecomposed plant residues. This large fibrous organic matter might be highly vulnerable to microbial decay, while small mineral-associated organic matter can most probably attenuate carbon mineralization in a warmer future. Labile soil fractions also store large amounts of nitrogen, which might be lost during permafrost collapse while fostering the decomposition of soil organic matter.
Patrick Liebmann, Patrick Wordell-Dietrich, Karsten Kalbitz, Robert Mikutta, Fabian Kalks, Axel Don, Susanne K. Woche, Leena R. Dsilva, and Georg Guggenberger
Biogeosciences, 17, 3099–3113, https://doi.org/10.5194/bg-17-3099-2020, https://doi.org/10.5194/bg-17-3099-2020, 2020
Short summary
Short summary
We studied the contribution of litter-derived carbon (C) in the formation of subsoil organic matter (OM). Soil core sampling, 13C field labeling, density fractionation, and water extractions were used to track its contribution to different functional OM fractions down to the deep subsoil. We show that while migrating down the soil profile, OM undergoes a sequence of repeated sorption, microbial processing, and desorption. However, the contribution of litter-derived C to subsoil OM is small.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Caitlin Hicks Pries, Alon Angert, Cristina Castanha, Boaz Hilman, and Margaret S. Torn
Biogeosciences, 17, 3045–3055, https://doi.org/10.5194/bg-17-3045-2020, https://doi.org/10.5194/bg-17-3045-2020, 2020
Short summary
Short summary
The apparent respiration quotient (ARQ) changes according to which substrates microbes consume, allowing sources of soil respiration to be traced. In a forest soil warming experiment, ARQ had a strong seasonal pattern that reflected a shift from respiration being fueled by sugars and organic acids derived from roots during the growing season to respiration being fueled by dead microbes during winter. ARQ values also changed with experimental warming.
Cited articles
Abd Elbasit, M. A. M., Yasuda, H., Salmi, A., and Anyoji, H.:
Characterization of rainfall generated by dripper-type rainfall simulator
using piezoelectric transducers and its impact on splash soil erosion,
Earth Surf. Processes, 35, 466–475, https://doi.org/10.1002/esp.1935, 2010.
Abiven, S. and Santín, C.: Editorial: From Fires to Oceans: Dynamics of
Fire-Derived Organic Matter in Terrestrial and Aquatic Ecosystems,
Front. Earth Sci., 7, 31, https://doi.org/10.3389/feart.2019.00031, 2019.
Abney, R. B. and Berhe, A. A.: Pyrogenic Carbon Erosion: Implications for
Stock and Persistence of Pyrogenic Carbon in Soil, Front. Earth Sci., 6,
26, https://doi.org/10.3389/feart.2018.00026, 2018.
Abney, R. B., Sanderman, J., Johnson, D., Fogel, M. L., and Berhe, A. A.:
Post-wildfire Erosion in Mountainous Terrain Leads to Rapid and Major
Redistribution of Soil Organic Carbon, Front. Earth Sci., 5, 99,
https://doi.org/10.3389/feart.2017.00099, 2017.
Abney, R. B., Kuhn, T. J., Chow, A., Hockaday, W., Fogel, M. L., and Berhe,
A. A.: Pyrogenic carbon erosion after the Rim Fire, Yosemite National Park:
the role of burn severity and slope, J. Geophys. Res.-Biogeo., 124, 432–449, https://doi.org/10.1029/2018jg004787, 2019a.
Abney, R. B., Jin, L., and Berhe, A. A.: Soil properties and combustion
temperature: Controls on the decomposition rate of pyrogenic organic matter,
Catena, 182, 104127, https://doi.org/10.1016/j.catena.2019.104127, 2019b.
Abudi, I., Carmi, G., and Berliner, P.: Rainfall simulator for field runoff
studies, J. Hydrol., 454–455, 76–81, https://doi.org/10.1016/j.jhydrol.2012.05.056,
2012.
Aksoy, H., Unal, N. E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci,
S. B., and Eris, E.: A rainfall simulator for laboratory-scale assessment of
rainfall-runoff-sediment transport processes over a two-dimensional flume,
Catena, 98, 63–72, https://doi.org/10.1016/j.catena.2012.06.009, 2012.
Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., and Bradstock, R.
A.: Defining pyromes and global syndromes of fire regimes,
P. Natl. Acad. Sci. USA, 110, 6442–6447, https://doi.org/10.1073/pnas.1211466110, 2013.
Armenise, E., Simmons, R. W., Ahn, S., Garbout, A., Doerr, S. H., Mooney, S.
J., Sturrock, C. J., and Ritz, K.: Soil seal development under simulated
rainfall: Structural, physical and hydrological dynamics, J. Hydrol., 556,
211–219, https://doi.org/10.1016/j.jhydrol.2017.10.073, 2018.
Beguería, S., Angulo-Martínez, M., Gaspar, L., and Navas, A.:
Detachment of soil organic carbon by rainfall splash: Experimental
assessment on three agricultural soils of Spain, Geoderma, 245–246, 21–30,
https://doi.org/10.1016/j.geoderma.2015.01.010, 2015.
Bellè, S. and Abiven, S.: Dataset to Manuscript: Key drivers of
pyrogenic carbon redistribution during a simulated rainfall event, Zenodo,
https://doi.org/10.5281/zenodo.4422514, 2021.
Berger, C., Schulze, M., Rieke-Zapp, D., and Schlunegger, F.: Rill
development and soil erosion: A laboratory study of slope and rainfall
intensity, Earth Surf. Processes, 35, 1456–1467,
https://doi.org/10.1002/esp.1989, 2010.
Berhe, A. A. and Kleber, M.: Erosion, deposition, and the persistence of
soil organic matter: Mechanistic considerations and problems with
terminology, Earth Surf. Processes, 38, 908–912,
https://doi.org/10.1002/esp.3408, 2013.
Berhe, A. A., Harte, J., Harden, J. W., and Torn, M. S.: The Significance of
the Erosion-induced Terrestrial Carbon Sink, Bioscience, 57, 337–346,
https://doi.org/10.1641/B570408, 2007.
Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., and
Harte, J.: Persistence of soil organic matter in eroding versus depositional
landform positions, J. Geophys. Res.-Biogeo., 117, G02019,
https://doi.org/10.1029/2011JG001790, 2012.
Berhe, A. A., Barnes, R. T., Six, J., and Marín-Spiotta, E.: Role of
Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon,
Nitrogen, and Phosphorus, Annu. Rev. Earth Pl. Sc., 46, 521–548, https://doi.org/10.1146/annurev-earth-082517-010018, 2018.
Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M., and McBeath, A.: The
Pyrogenic Carbon Cycle, Annu. Rev. Earth Pl. Sc., 43, 273–298,
https://doi.org/10.1146/annurev-earth-060614-105038, 2015.
Boot, C. M., Haddix, M., Paustian, K., and Cotrufo, M. F.: Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire, Biogeosciences, 12, 3029–3039, https://doi.org/10.5194/bg-12-3029-2015, 2015.
Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M.,
Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison,
S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A.,
Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C.,
Swetnam, T. W., van der Werf, G. R., and Pyne, S. J.: Fire in the Earth
System, Science, 324, 481–484, https://doi.org/10.1126/science.1163886, 2009.
Braun, S., Tresch, S., and Augustin, S.: Soil solution in Swiss forest
stands: A 20 year's time series, PLoS One, 15, e0227530,
https://doi.org/10.1371/journal.pone.0227530, 2020.
Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X.,
Dugan, B., Driver, L. E., Panzacchi, P., Zygourakis, K., and Davies, C. A.:
New approaches to measuring biochar density and porosity,
Biomass Bioenerg., 66, 176–185, https://doi.org/10.1016/j.biombioe.2014.03.059, 2014.
Certini, G.: Effects of fire on properties of forest soils: a review,
Oecologia, 143, 1–10, https://doi.org/10.1007/s00442-004-1788-8, 2005.
Chaplot, V. and Le Bissonnais, Y.: Runoff features for interrill erosion at
different rainfall intensities, slope lengths, and gradients in an
agricultural loessial hillslope, Soil Sci. Soc. Am. J., 67, 844–851,
https://doi.org/10.2136/sssaj2003.8440, 2003.
Chaplot, V., Le Bissonnais, Y., and Bernadou, J.: Runoff, Soil, and Soil Organic Carbon Losses within a Small Sloping-Land Catchment of Laos under Shifting Cultivation, in: Soil Erosion and Carbon Dynamics, 1st Edn., edited by: Roose, E. J., Lal, R., Feller, C., Barthés, B., and Steward, B. A., Taylor & Francis Group, Boca Raton, 167–180, https://doi.org/10.1201/9780203491935, 2005.
Chappell, A., Baldock, J., and Sanderman, J.: The global significance of
omitting soil erosion from soil organic carbon cycling schemes,
Nat. Clim. Change, 6, 187–191, https://doi.org/10.1038/nclimate2829, 2016.
Chatterjee, S., Santos, F., Abiven, S., Itin, B., Stark, R. E., and Bird, J.
A.: Elucidating the chemical structure of pyrogenic organic matter by
combining magnetic resonance, mid-infrared spectroscopy and mass
spectrometry, Org. Geochem., 51, 35–44,
https://doi.org/10.1016/j.orggeochem.2012.07.006, 2012.
Christiansen, J. E.: Irrigation by Sprinkling – Bulletin 670, University of
California, College of Agriculture, Agricultural Experiment Station,
Berkeley, California, USA, 124 pp., 1942.
Chrzazvez, J., Théry-Parisot, I., Fiorucci, G., Terral, J. F., and
Thibaut, B.: Impact of post-depositional processes on charcoal fragmentation
and archaeobotanical implications: Experimental approach combining charcoal
analysis and biomechanics, J. Archaeol. Sci., 44, 30–42,
https://doi.org/10.1016/j.jas.2014.01.006, 2014.
Clarke, M. A. and Walsh, R. P. D.: A portable rainfall simulator for field
assessment of splash and slopewash in remote locations,
Earth Surf. Processes, 32, 2052–2069, https://doi.org/10.1002/esp, 2007.
Conard, S. G. and Solomon, A. M.: Effect of wildland fire on regional and
global carbon stocks in a changing environment, in: Developments in
Environmental Science, edited by: Bytnerowicz, A., Arbaugh, M.,
Riebau, A., and Andersen, C., Elsevier B.V., Oxford, https://doi.org/10.1016/S1474-8177(08)00005-3,
109–138, 2008.
Coppola, A. I. and Druffel, E. R. M.: Cycling of black carbon in the ocean,
Geophys. Res. Lett., 43, 4477–4482, https://doi.org/10.1002/2016GL068574, 2016.
Cotrufo, M. F., Boot, C., Kampf, S., Nelson, P. A., Brogan, D. J., Covino,
T., Haddix, M., MacDonald, L. H., Rathburn, S., Ryan-Bukett, S., Schmeer, S.,
and Hall, E.: Redistribution of pyrogenic carbon from hillslopes to stream
corridors following a large montane wildfire, Global Biogeochem. Cy., 30,
1348–1355, https://doi.org/10.1111/1462-2920.13280, 2016.
Crawford, A. J. and Belcher, C. M.: Charcoal Morphometry for Paleoecological
Analysis: The Effects of Fuel Type and Transportation on Morphological
Parameters, Appl. Plant Sci., 2, 1400004, https://doi.org/10.3732/apps.1400004, 2014.
DeBano, L. F.: The role of fire and soil heating on water repellency in
wildland environments: a review, J. Hydrol., 231–232, 195–206,
https://doi.org/10.1016/S0022-1694(00)00194-3, 2000.
de Nijs, E. A. and Cammeraat, E. L. H.: The stability and fate of Soil
Organic Carbon during the transport phase of soil erosion, Earth-Sci. Rev., 201, 103067, https://doi.org/10.1016/j.earscirev.2019.103067, 2020.
Doerr, S. H.: On standardizing the “water drop penetration time” and the
“molarity of an ethanol droplet” techniques to classify soil
hydrophobicity: a case study using medium textured soils, Earth Surf. Processes, 23, 663–668,
https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6, 1998.
Doetterl, S., Berhe, A. A., Nadeu, E., Wang, Z., Sommer, M., and Fiener, P.:
Erosion, deposition and soil carbon: A review of process-level controls,
experimental tools and models to address C cycling in dynamic landscapes,
Earth-Sci. Rev., 154, 102–122, https://doi.org/10.1016/j.earscirev.2015.12.005,
2016.
Federal Office of Meteorology and Climatology MeteoSwiss: Swiss climate in
detail, Extreme value analysis, available at:
https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/extreme-value-analyses/standard-period.html? (last access: 27 August 2020), 2019.
Fonseca, F., de Figueiredo, T., Nogueira, C., and Queirós, A.: Effect of
prescribed fire on soil properties and soil erosion in a Mediterranean
mountain area, Geoderma, 307, 172–180,
https://doi.org/10.1016/j.geoderma.2017.06.018, 2017.
Galanter, A., Cadol, D., and Lohse, K.: Geomorphic influences on the
distribution and accumulation of pyrogenic carbon (PyC) following a low
severity wildfire in northern New Mexico, Earth Surf. Processes,
43, 2207–2218, https://doi.org/10.1002/esp.4386, 2018.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo., 118,
317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Güereña, D. T., Lehmann, J., Walter, T., Enders, A., Neufeldt, H.,
Odiwour, H., Biwott, H., Recha, J., Shepherd, K., Barrios, E., and Wurster,
C.: Terrestrial pyrogenic carbon export to fluvial ecosystems: Lessons
learned from the White Nile watershed of East Africa, Global Biogeochem. Cy., 29, 1911–1928, https://doi.org/10.1002/2015GB005095, 2015.
Hagedorn, F. H., Spinnler, D., Bundt, M., Blaser, P., and Siegwolf, R.: The
input and fate of new C in two forest soils under elevated CO2,
Global Change Biol., 9, 862–872, https://doi.org/10.1046/j.1365-2486.2003.00638.x, 2003.
Hammes, K. and Abiven, S.: Identification of Black Carbon in the Earth System, in: Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science, edited by: Belcher, C. M., John Wiley & Sons, Ltd, Chichester UK, 157–176, https://doi.org/10.1002/9781118529539, 2013.
Hammes, K., Smernik, R. J., Skjemstad, J. O., Herzog, A., Vogt, U. F., and
Schmidt, M. W. I.: Synthesis and characterisation of laboratory-charred
grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference
materials for black carbon quantification, Org. Geochem., 37,
1629–1633, https://doi.org/10.1016/j.orggeochem.2006.07.003, 2006.
Hilber, I., Blum, F., Leifeld, J., Schmidt, H. P., and Bucheli, T. D.:
Quantitative determination of PAH's in biochar: A prerequisite to ensure its
quality and safe application, J. Agr. Food Chem., 60, 3042–3050,
https://doi.org/10.1021/jf205278v, 2012.
Hilscher, A. and Knicker, H.: Degradation of grass-derived pyrogenic organic
material, transport of the residues within a soil column and distribution in
soil organic matter fractions during a 28 month microcosm experiment, Org.
Geochem., 42, 42–54, https://doi.org/10.1016/j.orggeochem.2010.10.005, 2011.
Iserloh, T., Fister, W., Seeger, M., Willger, H., and Ries, J. B.: A small
portable rainfall simulator for reproducible experiments on soil erosion,
Soil Till. Res., 124, 131–137, https://doi.org/10.1016/j.still.2012.05.016, 2012.
IUSS Working Group WRB: World Reference Base for Soil Resources, International soil classification systems for naming soils and
creating legends for soil maps, Food and Agriculture Organization of the United Nations, Rome, Italy, available at:
http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/ (last access: 23 March 2020), 2015.
Jian, M., Berhe, A. A., Berli, M., and Ghezzehei, T. A.: Vulnerability of
physically protected soil organic carbon to loss under low severity fires,
Front. Environ. Sci., 6, 66, https://doi.org/10.3389/fenvs.2018.00066, 2018.
Jiang, X., Haddix, M. L., and Cotrufo, M. F.: Interactions between biochar
and soil organic carbon decomposition: Effects of nitrogen and low molecular
weight carbon compound addition, Soil Biol. Biochem., 100, 92–101,
https://doi.org/10.1016/j.soilbio.2016.05.020, 2016.
Jiang, X., Tan, X., Cheng, J., Haddix, M. L., and Cotrufo, M. F.:
Interactions between aged biochar, fresh low molecular weight carbon and
soil organic carbon after 3.5 years soil-biochar incubations, Geoderma,
333, 99–107, https://doi.org/10.1016/j.geoderma.2018.07.016, 2019.
Johansen, M. P., Hakonson, T. E., and Breshears, D. D.: Post-fire runoff and
erosion from rainfall simulation: Contrasting forests with shrublands and
grasslands, Hydrol. Process., 15, 2953–2965, https://doi.org/10.1002/hyp.384, 2001.
Jones, M. W., Santín, C., van der Werf, G. R., and Doerr, S. H.: Global
fire emissions buffered by the production of pyrogenic carbon, Nat. Geosci.,
12, 742–747, https://doi.org/10.1038/s41561-019-0403-x, 2019.
Kathiravelu, G., Lucke, T., and Nichols, P.: Rain drop measurement
techniques: A review, Water, 8, 29, https://doi.org/10.3390/w8010029, 2016.
Keiluweit, M., Nico, P. S., Johnson, M., and Kleber, M.: Dynamic molecular
structure of plant biomass-derived black carbon (biochar),
Environ. Sci. Technol., 44, 1247–1253, https://doi.org/10.1021/es9031419, 2010.
Koiter, A. J., Owens, P. N., Petticrew, E. L., and Lobb, D. A.: The role of
soil surface properties on the particle size and carbon selectivity of
interrill erosion in agricultural landscapes, Catena, 153, 194–206,
https://doi.org/10.1016/j.catena.2017.01.024, 2017.
Lal, R.: Soil Carbon Sequestration Impacts on Global Climate Change and Food
Secruity, Science, 304, 1623–1627, https://doi.org/10.1126/science.1097396, 2004.
Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C., and Veraverbeke, S.:
Influence of Fire on the Carbon Cycle and Climate,
Curr. Clim. Change Rep., 5, 112–123, https://doi.org/10.1007/s40641-019-00128-9, 2019.
Lassu, T. and Seeger, M.: Set-up and calibration of an indoor nozzle-type
rainfall simulator for soil erosion studies, Land Degrad. Dev., 26, 604–612,
https://doi.org/10.1002/ldr.2360, 2015.
Le Bissonnais, Y.: Aggregate stability and assessment of soil crustability
and erodibility: I. Theory and methodology, Eur. J. Soil Sci., 67,
11–21, https://doi.org/10.1111/ejss.4_12311, 2016.
Legout, C., Leguédois, S., Le Bissonnais, Y., and Malam Issa, O.: Splash
distance and size distributions for various soils, Geoderma, 124,
279–292, https://doi.org/10.1016/j.geoderma.2004.05.006, 2005.
Maestrini, B., Abiven, S., Singh, N., Bird, J., Torn, M. S., and Schmidt, M. W. I.: Carbon losses from pyrolysed and original wood in a forest soil under natural and increased N deposition, Biogeosciences, 11, 5199–5213, https://doi.org/10.5194/bg-11-5199-2014, 2014.
Major, J., Lehmann, J., Rondon, M., and Goodale, C.: Fate of soil-applied
black carbon: Downward migration, leaching and soil respiration, Global Change Biol., 16, 1366–1379, https://doi.org/10.1111/j.1365-2486.2009.02044.x, 2010.
Malam Issa, O., Le Bissonnais, Y., Planchon, O., Favis-Mortlock, D., Silvera,
N., and Wainwright, J.: Soil detachment and transport on field- and
laboratory-scale interrill areas: Erosion processes and the size-selectivity
of eroded sediment, Earth Surf. Processes, 31, 929–939,
https://doi.org/10.1002/esp.1303, 2006.
Malvar, M. C., Martins, M. A. S., Nunes, J. P., Robichaud, P. R., and Keizer,
J. J.: Assessing the role of pre-fire ground preparation operations and soil
water repellency in post-fire runoff and inter-rill erosion by repeated
rainfall simulation experiments in Portuguese eucalypt plantations, Catena,
108, 69–83, https://doi.org/10.1016/j.catena.2012.11.004, 2013.
Masiello, C. A.: New directions in black carbon organic geochemistry,
Mar. Chem., 92, 201–213, https://doi.org/10.1016/j.marchem.2004.06.043, 2004.
Masiello, C. A. and Berhe, A. A.: First Interactions with the Hydrologic
Cycle Determine Pyrogenic Carbon's Fate in the Earth System, Earth Surf. Processes, 45, 2394–2398, https://doi.org/10.1002/esp.4925, 2020.
McCorkle, E. P., Berhe, A. A., Hunsaker, C. T., Johnson, D. W., McFarlane,
K. J., Fogel, M. L., and Hart, S. C.: Tracing the source of soil organic
matter eroded from temperate forest catchments using carbon and nitrogen
isotopes, Chem. Geol., 445, 172–184, https://doi.org/10.1016/j.chemgeo.2016.04.025, 2016.
Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H., and Martin,
D. A.: Current research issues related to post-wildfire runoff and erosion
processes, Earth-Sci. Rev., 122, 10–37,
https://doi.org/10.1016/j.earscirev.2013.03.004, 2013.
Moragues-Saitua, L., Arias-González, A., and Gartzia-Bengoetxea, N.:
Effects of biochar and wood ash on soil hydraulic properties: A field
experiment involving contrasting temperate soils, Geoderma, 305,
144–152, https://doi.org/10.1016/j.geoderma.2017.05.041, 2017.
Onda, Y., Dietrich, W. E., and Booker, F.: Evolution of overland flow after a
severe forest fire, Point Reyes, California, Catena, 72, 13–20,
https://doi.org/10.1016/j.catena.2007.02.003, 2008.
Pierson, F. B., Jason Williams, C., Hardegree, S. P., Clark, P. E., Kormos,
P. R., and Al-Hamdan, O. Z.: Hydrologic and erosion responses of sagebrush
steppe following juniper encroachment, wildfire, and tree cutting,
Rangeland Ecol. Manag., 66, 274–289, https://doi.org/10.2111/REM-D-12-00104.1, 2013.
Pignatello, J. J., Uchimiya, M., Abiven, S., and Schmidt, M. W. I.: Evolution of biochar properties in soil, in: Biochar for Environmental Management – Science, Technology and Implementation, edited by: Lehmann, J. and Joseph, S., Taylor & Francis Group, London, 195–233, https://doi.org/10.4324/9780203762264, 2015.
Poeplau, C., Vos, C., and Don, A.: Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content, SOIL, 3, 61–66, https://doi.org/10.5194/soil-3-61-2017, 2017.
Proulx, R., Rheault, G., Bonin, L., Roca, I. T., Martin, C. A., Desrochers,
L., and Seiferling, I.: How much biomass do plant communities pack per unit
volume?, PeerJ, 3, e849, https://doi.org/10.7717/peerj.849, 2015.
Pyle, L. A., Magee, K. L., Gallagher, M. E., Hockaday, W. C., and Masiello,
C. A.: Short-Term Changes in Physical and Chemical Properties of Soil
Charcoal Support Enhanced Landscape Mobility, J. Geophys. Res.-Biogeo., 122, 3098–3107, https://doi.org/10.1002/2017JG003938, 2017.
R Core Team: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at:
https://www.R-project.org/ (last access: 1 January 2020), 2020.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton,
D. C.: Global burned area and biomass burning emissions from small fires,
J. Geophys. Res.-Biogeo., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012.
Reisser, M., Purves, R. S., Schmidt, M. W. I., and Abiven, S.: Pyrogenic
Carbon in Soils: A Literature-Based Inventory and a Global Estimation of Its
Content in Soil Organic Carbon and Stocks, Front. Earth Sci., 4, 80,
https://doi.org/10.3389/feart.2016.00080, 2016.
Robichaud, P. R., Wagenbrenner, J. W., Pierson, F. B., Spaeth, K. E.,
Ashmun, L. E., and Moffet, C. A.: Infiltration and interrill erosion rates
after a wildfire in western Montana, USA, Catena, 142, 77–88,
https://doi.org/10.1016/j.catena.2016.01.027, 2016.
Ruehr, N. K., Knohl, A., and Buchmann, N.: Environmental variables
controlling soil respiration on diurnal, seasonal and annual time-scales in
a mixed mountain forest in Switzerland, Biogeochemistry, 98, 153–170,
https://doi.org/10.1007/s10533-009-9383-z, 2010.
Rumpel, C., Chaplot, V., Planchon, O., Bernadou, J., Valentin, C., and
Mariotti, A.: Preferential erosion of black carbon on steep slopes with
slash and burn agriculture, Catena, 65, 30–40,
https://doi.org/10.1016/j.catena.2005.09.005, 2006.
Rumpel, C., Ba, A., Darboux, F., Chaplot, V., and Planchon, O.: Erosion
budget and process selectivity of black carbon at meter scale, Geoderma,
154, 131–137, https://doi.org/10.1016/j.geoderma.2009.10.006, 2009.
Rumpel, C., Leifeld, J., Santin, C., and Doerr, S.: Movement of biochar in the environment, in: Biochar for Environmental Management – Science, Technology and Implementation, edited by: Lehmann, J. and Joseph, S., Taylor & Francis Group, London, 281–298, https://doi.org/10.4324/9780203762264, 2015.
Saiz, G., Goodrick, I., Wurster, C., Nelson, P. N., Wynn, J., and Bird, M.:
Preferential Production and Transport of Grass-Derived Pyrogenic Carbon in
NE-Australian Savanna Ecosystems, Front. Earth Sci., 5, 115,
https://doi.org/10.3389/feart.2017.00115, 2018.
Santín, C., Doerr, S. H., Preston, C. M., and
González-Rodríguez, G.: Pyrogenic organic matter production from
wildfires: a missing sink in the global carbon cycle, Global Change Biol.,
21, 1621–1633, https://doi.org/10.1111/gcb.12800, 2015.
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M.,
de la Rosa, J. M., Preston, C. M., and Dittmar, T.: Towards a global assessment
of pyrogenic carbon from vegetation fires, Global Change Biol., 22, 76–91, https://doi.org/10.1111/gcb.12985, 2016.
Schindler Wildhaber, Y., Bänninger, D., Burri, K., and Alewell, C.:
Evaluation and application of a portable rainfall simulator on subalpine
grassland, Catena, 91, 56–62, https://doi.org/10.1016/j.catena.2011.03.004, 2012.
Shakesby, R. A.: Post-wildfire soil erosion in the Mediterranean: Review and
future research directions, Earth-Sci. Rev., 105, 71–100,
https://doi.org/10.1016/j.earscirev.2011.01.001, 2011.
Shakesby, R. A. and Doerr, S. H.: Wildfire as a hydrological and
geomorphological agent, Earth-Sci. Rev., 74, 269–307,
https://doi.org/10.1016/j.earscirev.2005.10.006, 2006.
Shakesby, R. A., Bento, C. P. M., Ferreira, C. S. S., Ferreira, A. J. D.,
Stoof, C. R., Urbanek, E., and Walsh, R. P. D.: Impacts of prescribed fire on
soil loss and soil quality: An assessment based on an experimentally-burned
catchment in central Portugal, Catena, 128, 278–293,
https://doi.org/10.1016/j.catena.2013.03.012, 2015.
Singh, N., Abiven, S., Torn, M. S., and Schmidt, M. W. I.: Fire-derived organic carbon in soil turns over on a centennial scale, Biogeosciences, 9, 2847–2857, https://doi.org/10.5194/bg-9-2847-2012, 2012.
Singh, N., Abiven, S., Maestrini, B., Bird, J. A., Torn, M. S., and Schmidt,
M. W. I.: Transformation and stabilization of pyrogenic organic matter in a
temperate forest field experiment, Global Change Biol., 20, 1629–1642,
https://doi.org/10.1111/gcb.12459, 2014.
Soucémarianadin, L., Reisser, M., Cécillon, L., Barré, P.,
Nicolas, M., and Abiven, S.: Pyrogenic carbon content and dynamics in top and
subsoil of French forests, Soil Biol. Biochem., 133, 12–15,
https://doi.org/10.1016/j.soilbio.2019.02.013, 2019.
Spokas, K. A., Novak, J. M., Masiello, C. A., Johnson, M. G., Colosky, E.
C., Ippolito, J. A., and Trigo, C.: Physical Disintegration of Biochar: An
Overlooked Process, Environ. Sci. Tech. Let., 1, 326–332,
https://doi.org/10.1021/ez500199t, 2014.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling
weathering and erosion to carbon burial, Global Biogeochem. Cy., 12,
231–257, https://doi.org/10.1029/98GB00741, 1998.
Stoof, C. R., Gevaert, A. I., Baver, C., Hassanpour, B., Morales, V. L.,
Zhang, W., Martin, D., Giri, S. K., and Steenhuis, T. S.: Can pore-clogging
by ash explain post-fire runoff?, Int. J. Wildland Fire, 25, 294–305,
https://doi.org/10.1071/WF15037, 2016.
Thomaz, E. L.: Interaction between ash and soil microaggregates reduces
runoff and soil loss, Sci. Total Environ., 625, 1257–1263,
https://doi.org/10.1016/j.scitotenv.2018.01.046, 2018.
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T.,
Zimmermann, L., and Zweifell, R.: Long-distance transport of macroscopic
charcoal by an intensive crown fire in the Swiss Alps – implications for
fire history reconstruction, Holocene, 16, 287–292, https://doi.org/10.1191/0959683606hl925rr, 2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Vieira, D. C. S., Fernández, C., Vega, J. A., and Keizer, J. J.: Does
soil burn severity affect the post-fire runoff and interrill erosion
response? A review based on meta-analysis of field rainfall simulation data,
J. Hydrol., 523, 452–464, https://doi.org/10.1016/j.jhydrol.2015.01.071, 2015.
Vieira, D. C. S., Malvar, M. C., Martins, M. A. S., Serpa, D., and Keizer, J.
J.: Key factors controlling the post-fire hydrological and erosive response
at micro-plot scale in a recently burned Mediterranean forest,
Geomorphology, 319, 161–173, https://doi.org/10.1016/j.geomorph.2018.07.014, 2018.
Wang, Z., Govers, G., Steegen, A., Clymans, W., van der Putte, A., Langhans,
C., Merckx, R., and van Oost, K.: Catchment-scale carbon redistribution and
delivery by water erosion in an intensively cultivated area, Geomorphology,
124, 65–74, https://doi.org/10.1016/j.geomorph.2010.08.010, 2010.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and earlier spring increase Western US forest wildfire activity, Science, 313, 940–943, https://doi.org/10.1126/science.1128834, 2006.
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However,...
Altmetrics
Final-revised paper
Preprint