Articles | Volume 18, issue 5
https://doi.org/10.5194/bg-18-1577-2021
https://doi.org/10.5194/bg-18-1577-2021
Research article
 | 
04 Mar 2021
Research article |  | 04 Mar 2021

Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season

Peter Aartsma, Johan Asplund, Arvid Odland, Stefanie Reinhardt, and Hans Renssen

Related authors

A stretched polar vortex increased mid-latitude climate variability during the Last Glacial Maximum
Yurui Zhang, Hans Renssen, Heikki Seppä, Zhen Li, and Xingrui Li
Clim. Past, 21, 67–77, https://doi.org/10.5194/cp-21-67-2025,https://doi.org/10.5194/cp-21-67-2025, 2025
Short summary
Pollen-based reconstructions of Holocene climate trends in the eastern Mediterranean region
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
Clim. Past, 19, 2093–2108, https://doi.org/10.5194/cp-19-2093-2023,https://doi.org/10.5194/cp-19-2093-2023, 2023
Short summary
Modeled storm surge changes in a warmer world: the Last Interglacial
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023,https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1)
Frank Arthur, Didier M. Roche, Ralph Fyfe, Aurélien Quiquet, and Hans Renssen
Clim. Past, 19, 87–106, https://doi.org/10.5194/cp-19-87-2023,https://doi.org/10.5194/cp-19-87-2023, 2023
Short summary
Comparison of the green-to-desert Sahara transitions between the Holocene and the last interglacial
Huan Li, Hans Renssen, and Didier M. Roche
Clim. Past, 18, 2303–2319, https://doi.org/10.5194/cp-18-2303-2022,https://doi.org/10.5194/cp-18-2303-2022, 2022
Short summary

Related subject area

Biogeophysics: Physical - Biological Coupling
Source-to-sink pathways of dissolved organic carbon in the river–estuary–ocean continuum: a modeling investigation
Jialing Yao, Zhi Chen, Jianzhong Ge, and Wenyan Zhang
Biogeosciences, 21, 5435–5455, https://doi.org/10.5194/bg-21-5435-2024,https://doi.org/10.5194/bg-21-5435-2024, 2024
Short summary
Impact of livestock activity on near-surface ground temperatures in central Mongolian grasslands
Robin Benjamin Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
Biogeosciences, 21, 5059–5077, https://doi.org/10.5194/bg-21-5059-2024,https://doi.org/10.5194/bg-21-5059-2024, 2024
Short summary
Impact of canopy environmental variables on the diurnal dynamics of water and carbon dioxide exchange at leaf and canopy level
Raquel González-Armas, Jordi Vilà-Guerau de Arellano, Mary Rose Mangan, Oscar Hartogensis, and Hugo de Boer
Biogeosciences, 21, 2425–2445, https://doi.org/10.5194/bg-21-2425-2024,https://doi.org/10.5194/bg-21-2425-2024, 2024
Short summary
Unique ocean circulation pathways reshape the Indian Ocean oxygen minimum zone with warming
Sam Ditkovsky, Laure Resplandy, and Julius Busecke
Biogeosciences, 20, 4711–4736, https://doi.org/10.5194/bg-20-4711-2023,https://doi.org/10.5194/bg-20-4711-2023, 2023
Short summary
Contribution of the open ocean to the nutrient and phytoplankton inventory in a semi-enclosed coastal sea
Qian Leng, Xinyu Guo, Junying Zhu, and Akihiko Morimoto
Biogeosciences, 20, 4323–4338, https://doi.org/10.5194/bg-20-4323-2023,https://doi.org/10.5194/bg-20-4323-2023, 2023
Short summary

Cited articles

Aartsma, P., Asplund, J., Odland, A., Reinhardt, S., and Renssen, H.: Surface albedo of alpine lichen heaths and shrub vegetation, Arct. Antarct. Alp. Res., 52, 312–322, https://doi.org/10.1080/15230430.2020.1778890, 2020. 
Aartsma, P., Asplund, J., Odland, A., Reinhardt, S., and Renssen, H.: Data from Microclimatic comparison of lichen heaths and shrubs: shrubification generates atmospheric heating but subsurface cooling during the growing season, https://doi.org/10.23642/usn.13637525, 2021. 
Abu-Hamdeh, N. H. and Reeder, R. C.: Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Am. J., 64, 1285–1290, https://doi.org/10.2136/sssaj2000.6441285x, 2000. 
Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. 
Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., and Bonan, G. B.: The representation of arctic soils in the land surface model: the importance of mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520-0442(2001)014<3324:TROASI>2.0.CO;2, 2001. 
Download
Short summary
In the literature, it is generally assumed that alpine lichen heaths keep their direct environment cool due to their relatively high albedo. However, we reveal that the soil temperature and soil heat flux are higher below lichens than below shrubs during the growing season, despite a lower net radiation for lichens. We also show that the differences in microclimatic conditions between these two vegetation types are more pronounced during warm and sunny days than during cold and cloudy days.
Altmetrics
Final-revised paper
Preprint