Articles | Volume 18, issue 9
https://doi.org/10.5194/bg-18-2827-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-2827-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Toward a global calibration for quantifying past oxygenation in oxygen minimum zones using benthic Foraminifera
Aix-Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
Laetitia Licari
Aix-Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
Ekaterina Ovsepyan
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Kazuyo Tachikawa
Aix-Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
Luc Beaufort
Aix-Marseille Université, CNRS, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
Related authors
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Deborah N. Tangunan, Ian R. Hall, Luc Beaufort, Melissa A. Berke, Alexandra Nederbragt, and Paul R. Bown
EGUsphere, https://doi.org/10.5194/egusphere-2025-3557, https://doi.org/10.5194/egusphere-2025-3557, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We examined ocean sediments from the tropical Indian Ocean to study water column structure and carbon cycling during the mid-Piacenzian Warm Period, about 3 million years ago, when atmospheric carbon dioxide levels were similar to today. Our findings reveal persistent upper ocean stratification and niche separation among plankton groups, which limited nutrient mixing and carbon export to the deep ocean. These results highlight how ocean layering can influence climate feedback in a warmer world.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Pauline Cornuault, Luc Beaufort, Heiko Pälike, Torsten Bickert, Karl-Heinz Baumann, and Michal Kucera
EGUsphere, https://doi.org/10.5194/egusphere-2025-198, https://doi.org/10.5194/egusphere-2025-198, 2025
Short summary
Short summary
We present new high-resolution data of the relative contribution of the two main pelagic carbonate producers (coccoliths and foraminifera) to the total pelagic carbonate production from the tropical Atlantic in past warm periods since the Miocene. Our findings suggests that the two groups responded differently to orbital forcing and oceanic changes in tropical ocean, but their proportion changes did not drive the changes in overall pelagic carbonate deposition.
Luc Beaufort and Anta-Clarisse Sarr
Clim. Past, 20, 1283–1301, https://doi.org/10.5194/cp-20-1283-2024, https://doi.org/10.5194/cp-20-1283-2024, 2024
Short summary
Short summary
At present, under low eccentricity, the tropical ocean experiences a limited seasonality. Based on eight climate simulations of sea surface temperature and primary production, we show that, during high-eccentricity times, significant seasons existed in the tropics due to annual changes in the Earth–Sun distance. Those tropical seasons are slowly shifting in the calendar year to be distinct from classical seasons. Their past dynamics should have influenced phenomena like ENSO and monsoons.
Celina Rebeca Valença, Luc Beaufort, Gustaaf Marinus Hallegraeff, and Marius Nils Müller
Biogeosciences, 21, 1601–1611, https://doi.org/10.5194/bg-21-1601-2024, https://doi.org/10.5194/bg-21-1601-2024, 2024
Short summary
Short summary
Coccolithophores contribute to the global carbon cycle and their calcite structures (coccoliths) are used as a palaeoproxy to understand past oceanographic conditions. Here, we compared three frequently used methods to estimate coccolith mass from the model species Emiliania huxleyi and the results allow for a high level of comparability between the methods, facilitating future comparisons and consolidation of mass changes observed from ecophysiological and biogeochemical studies.
Ruifang Ma, Sophie Sépulcre, Laetitia Licari, Frédéric Haurine, Franck Bassinot, Zhaojie Yu, and Christophe Colin
Clim. Past, 18, 1757–1774, https://doi.org/10.5194/cp-18-1757-2022, https://doi.org/10.5194/cp-18-1757-2022, 2022
Short summary
Short summary
We provide high-resolution Cd / Ca records of benthic foraminifera on two cores from the northern Indian Ocean since the last deglaciation. We reconstructed intermediate Cdw records based on Cd / Ca. Combined with benthic foraminiferal assemblages, we show that intermediate Cdw during the last deglaciation was mainly influenced by the ventilation of intermediate–bottom water masses. Thereafter during the Holocene surface productivity is the main forcing factor related to monsoon precipitation.
Luc Beaufort, Yves Gally, Baptiste Suchéras-Marx, Patrick Ferrand, and Julien Duboisset
Biogeosciences, 18, 775–785, https://doi.org/10.5194/bg-18-775-2021, https://doi.org/10.5194/bg-18-775-2021, 2021
Short summary
Short summary
The coccoliths are major contributors to the particulate inorganic carbon in the ocean. They are extremely difficult to weigh because they are too small to be manipulated. We propose a universal method to measure thickness and weight of fine calcite using polarizing microscopy that does not require fine-tuning of the light or a calibration process. This method named "bidirectional circular polarization" uses two images taken with two directions of a circular polarizer.
Martin Tetard, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron, and Luc Beaufort
Clim. Past, 16, 2415–2429, https://doi.org/10.5194/cp-16-2415-2020, https://doi.org/10.5194/cp-16-2415-2020, 2020
Short summary
Short summary
Radiolarians are marine micro-organisms that produce a siliceous shell that is preserved in the fossil record and can be used to reconstruct past climate variability. However, their study is only possible after a time-consuming manual selection of their shells from the sediment followed by their individual identification. Thus, we develop a new fully automated workflow consisting of microscopic radiolarian image acquisition, image processing and identification using artificial intelligence.
Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin
Clim. Past, 16, 1969–1986, https://doi.org/10.5194/cp-16-1969-2020, https://doi.org/10.5194/cp-16-1969-2020, 2020
Short summary
Short summary
We provide a high-resolution primary productivity (PP) record of the northeastern Bay of Bengal over the last 26 000 years. Combined with climate model outputs, we show that PP over the glacial period is controlled by river input nutrients under low sea level conditions and after the Last Glacial Maximum is controlled by upper seawater salinity stratification related to monsoon precipitation. During the deglaciation the Atlantic meridional overturning circulation is the main forcing factor.
Ross Marchant, Martin Tetard, Adnya Pratiwi, Michael Adebayo, and Thibault de Garidel-Thoron
J. Micropalaeontol., 39, 183–202, https://doi.org/10.5194/jm-39-183-2020, https://doi.org/10.5194/jm-39-183-2020, 2020
Short summary
Short summary
Foraminifera are marine microorganisms with a calcium carbonate shell. Their fossil remains build up on the seafloor, forming kilometres of sediment over time. From analysis of the foraminiferal record we can estimate past climate conditions and the geological history of the Earth. We have developed an artificial intelligence system for automatically identifying foraminifera species, replacing the time-consuming manual approach and thus helping to make these analyses more efficient and accurate.
Cited articles
Bairbakhish, A. N., Bollmann, J., Sprengel, C., and Thierstein, H. R.: Disintegration of aggregates and coccospheres in sediment trap samples, Mar. Micropaleontol., 37, 219–223, 1999. a
Bernhard, J. M. and Reimers, C. E.: Benthic foraminifera population fluctuations related to anoxia: Santa Barbara Basin, Biogeochemistry, 15, 127–149, 1991. a
Blanchet, C. L., Thouveny, N., Vidal, L., Leduc, Tachikawa, K., Bard, E., and Beaufort, L.: Terrigenous input response to glacial/interglacial climatic variations over southern Baja California: a rock magnetic approach, Quaternary Sci. Rev., 26, 3118–3133, 2007. a
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P., and Kageyama, M.: Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth System models, Philos. T. Roy. Soc. A, 375, 20160323, https://doi.org/10.1098/rsta.2016.0323, 2017. a
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018. a, b
Buzas, M. A.: Another look at confidence limits for species proportions, J. Paleontol., 64, 842–843, 1990. a
den Dulk, M., Reichart, G. J., Memon, G. M., Roelofs, E. M. P., Zachariasse, W. J., and Van der Zwaan, G. J.: Benthic foraminiferal response to variations in surface water productivity and oxygenation in the northern Arabian Sea, Mar. Micropaleontol., 35, 43–66, 1998. a
den Dulk, M., Reichart, G. J., van Heyst, S., Zachariasse, W. J., and Van der Zwaan, G. J.: Benthic foraminifera as proxies of organic matter flux and bottom water oxygenation? A case history from the northern Arabian Sea. Palaeogeogr. Palaeocl., 161, 337–359, 2000. a
Fatela, F. and Taborda, R.: Confidence limits of species proportions in microfossil assemblages, Mar. Micropalaeontol., 45, 169–174, 2002. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, in: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, NOAA Atlas NESDIS 70, Vol. 3, S. Levitus, Ed., NOAA Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C., 344 pp., 2010. a, b, c
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013, in: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, NOAA Atlas NESDIS 75, Vol. 3, S. Levitus, Ed.; A. Mishonov, Technical Ed. NOAA Atlas NESDIS 75, 27 pp., 2014. a, b, c, d, e, f, g, h, i, j
Gilbert, D.: Oceans lose oxygen, Nature, 542, 303–304, 2017. a
Glock, N., Eisenhauer, A., Milker, Y., Liebetrau, V., Schonfeld, J., Mallon, J., Sommer, S., and Hensen, C.: Environmental influences on the pore density of Bolivina spissa (Cushman), J. Foramin. Res., 41, 22–32, 2011. a
Glock, N., Schönfeld, J., Eisenhauer, A., Hensen, C., Mallon, J., and Sommer, S.: The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone, Biogeosciences, 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013, 2013. a
Gooday, A. J., Bernhard, J. M., Levin, L. A., and Suhr, S. B.: Foraminifera in the Arabian Sea oxygen minimum zone and
other oxygen-deficient settings: taxonomic composition, diversity, and relation to metazoan faunas, Deep-Sea Res. Pt. II, 47, 25–54, 2000. a
Jannink, N. T., Zachariasse, W. J., and Van der Zwaan, G. J.: Living (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin (northern Arabian Sea), Deep-Sea Res. Pt. I, 45, 1483–1513, 1998. a
Johnsen, S. J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J. P., Clausen, H. B., Miller, H., Masson-Delmotte, V., Sveinbjornsdottir, A. V., and White, J.: Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP, J. Quaternary Sci., 16, 299–307, 2001. a, b
Jorissen, F. J., Fontanier, C., and Thomas, E.: Paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics, in: Proxies in Late Cenozoic Paleoceanography: Pt. 2: Biological tracers and biomarkers, edited by: Hillaire-Marcel, C. and de Vernal, A., 1, Elsevier, Amsterdam, the Netherlands, 264–325, 2007. a, b, c
Kaiho, K., Takeda, K., Petrizzo, M. R., and Zachos, J. C.: Anomalous shifts in tropical Pacific planktonic and benthic foraminiferal test size during the Paleocene-Eocene thermal maximum, Palaeo3, 237, 456–464, 2006. a
Levin, L. A.: Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation, Annu. Rev. Mar. Sci., 32, 1–17, 2018. a
Moffitt, S. E., Hill, T. M., Ohkushi, K., Kennett, J. P., and Behl, R. J.: Vertical oxygen minimum zone oscillations since 20 ka in Santa Barbara Basin: A benthic foraminiferal community perspective, Paleoceanography, 29, 44–57, 2014. a
Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and Hill, T. M.: Paleoceanographic insights on recent oxygen minimum zone expansion: Lessons for modern oceanography, PLoS ONE, 10, e0115246, https://doi.org/10.1371/journal.pone.0115246, 2015a. a
Moffitt, S. E., Hill, T. M., Roopnarine, P. D., and Kennett, J. P.: Response of seafloor ecosystems to abrupt global climate change, P. Natl. Acad. Sci. USA, 112, 4684–4689, 2015b. a
Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., Nakicenovic, N., O'Neill, B., Pichs, R., Riahi, K., Rose, S., Runci, P., Stouffer, R., van Vuuren, D., Weyant, J., Wilbanks, T., van Ypersele J. P., and Zurek, M.: Towards new scenarios for analysis of emissions, climate change, impacts and response strategies. IPCC Expert Meeting Report, 19-21 September, 2007, Noordwijkerhout, Netherlands, Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 132 pp., 2008. a
Nguyen, T. M. P., Petrizzo, M. R., and Speijer, R. P.: Experimental dissolution of a fossil foraminiferal assemblage (Paleocene-Eocene Thermal Maximum, Dababiya, Egypt): implications for paleoenvironmental reconstruction, Mar. Micropaleontol., 73, 241–258, 2009. a
Ohkushi, K., Kennett, J. P., Zeleski, C. M., Moffitt, S. E., Hill, T. M., Robert, C., Beaufort, L., and Behl, R. J.: Quantified intermediate water oxygenation history of the northeast Pacific: A new benthic foraminiferal record from Santa Barbara Basin, Paleoceanography, 29, 1–15, 2013. a, b, c, d, e, f
Ovsepyan, E., Ivanova, E. V., Tetard, M., Max, L., and Tiedemann, R.: Evidence for different intermediate-and deep-water oxygenation history in the subarctic North Pacific throughout the last deglaciation, Front. Earth Sci., in review, 2021. a
Palmer, H. M., Hill, T. M., Roopnarine, P. D., Myhre, S. E., Reyes, K. R., and Donnenfield, J. T.: Southern California margin benthic foraminiferal assemblages record recent centennial-scale changes in oxygen minimum zone, Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, 2020. a, b, c, d
Praetorius, S. K., Mix, A. C., Walczak, M. H., Wilhowe, M. D., Addison, J. A., and Prahl, F. G.: North Pacific deglacial hypoxic events linked to abrupt ocean warming, Nature, 527, 362–366, 2015. a
Schlitzer, R.: Ocean data view, available at: https://odv.awi.de (last access: 4 May 2021), 2020. a
Schmiedl, G., Mackensen, A., and Müller, J.: Recent benthic foraminifera from the eastern South Atlantic Ocean: dependence on food supply and water masses, Mar. Micropaleontol., 32, 249–287, 1997. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: NIH Image to ImageJ: 25 years of image analysis, Nat. Meth., 9, 671–675, 2012. a
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum zones in the tropical oceans, Science, 320, 655–658, 2008. a
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, 2010. a
Tetard, M.: MorFo_.ijm plugin for ImageJ (Version 1), Zenodo, https://doi.org/10.5281/zenodo.4740079, 2021. a
Wyrtki, K.: The oxygen minima in relation to ocean circulation, Deep-Sea Res. Oceanic Abstr., 9, 11–23, 1962. a
Short summary
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently expanding due to global warming. Investigation of their past behaviour will allow better understanding of these areas and better prediction of their future evolution. A new method to estimate past [O2] was developed based on morphometric measurements of benthic foraminifera. This method and two other approaches based on foraminifera assemblages and porosity were calibrated using 45 core tops worldwide.
Oxygen minimum zones are oceanic regions almost devoid of dissolved oxygen and are currently...
Altmetrics
Final-revised paper
Preprint