Articles | Volume 18, issue 10
https://doi.org/10.5194/bg-18-3005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-3005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ideas and perspectives: Biogeochemistry – some key foci for the future
Dept. of Geological Science, University of Florida, Gainesville, FL,
USA
Madhur Anand
School of Environmental Sciences, University of Guelph, Guelph,
Ontario, Canada
Chris T. Bauch
University of Waterloo, Department of Applied Mathematics, Waterloo, Canada
Donald E. Canfield
Nordcee, University of Southern Denmark, Odense, Denmark
Luc De Meester
Dept. of Biology, University of Leuven, Leuven, Belgium
Leibniz Institut für Gewässerökologie und Binnenfischerei
(IGB), Berlin, Germany
Institute of Biology, Freie Universität Berlin, Berlin, Germany
Katja Fennel
Dept. of Oceanography, Dalhousie University, Halifax, Nova Scotia,
Canada
Peter M. Groffman
City University of New York Advanced Science Research Center at the
Graduate Center, New York, NY, USA
Cary Institute of Ecosystem Studies,
Millbrook, NY, USA
Michael L. Pace
Dept. of Environmental Sciences, University of
Virginia, Charlottesville, VA, USA
Mak Saito
Marine Chemistry and Geochemistry, Woods Hole Oceanographic
Institution, Woods Hole, MA, USA
Myrna J. Simpson
Dept. of Physical and Environmental Sciences, University of Toronto,
Toronto, Canada
Related authors
Manab Kumar Dutta, Krishnan Sreelash, Damodaran Padmalal, Nicholas D. Ward, and Thomas S. Bianchi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-200, https://doi.org/10.5194/bg-2022-200, 2022
Revised manuscript not accepted
Short summary
Short summary
Indian estuaries contribute to 2.62 % and 1.09 % of global riverine DIC and DOC export to the ocean, respectively. Major Indian estuaries emit ~9718 Gg yr-1 and 3.27 Gg yr-1 of CO2 and CH4 to the atmosphere, respectively, which contributes ~0.67 % and ~0.12 % to global CO2 and CH4 outgassing from estuaries.
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Lina Garcia-Suarez, Katja Fennel, Neha Mehendale, Tronje Peer Kemena, and David Peter Keller
EGUsphere, https://doi.org/10.22541/essoar.173758192.24328151/v2, https://doi.org/10.22541/essoar.173758192.24328151/v2, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study shows that regional ocean warming can make the Gulf Stream appear to shift north, even when its path remains stable in a changing climate. Temperature-based proxies, like the Gulf Stream North Wall, overestimate changes in its position. Methods based on sea surface height provide a more accurate view. These results help improve how we track changes in ocean currents and avoid misinterpreting signs of climate-related shifts.
Gianpiero Cossarini, Andrew Moore, Stefano Ciavatta, and Katja Fennel
State Planet, 5-opsr, 12, https://doi.org/10.5194/sp-5-opsr-12-2025, https://doi.org/10.5194/sp-5-opsr-12-2025, 2025
Short summary
Short summary
Marine biogeochemistry refers to the cycling of chemical elements resulting from physical transport, chemical reaction, uptake, and processing by living organisms. Biogeochemical models can have a wide range of complexity, from a single nutrient to fully explicit representations of multiple nutrients, trophic levels, and functional groups. Uncertainty sources are the lack of knowledge about the parameterizations, the initial and boundary conditions, and the lack of observations.
Riss M. Kell, Adam V. Subhas, Nicole L. Schanke, Lauren E. Lees, Rebecca J. Chmiel, Deepa Rao, Margaret M. Brisbin, Dawn M. Moran, Matthew R. McIlvin, Francesco Bolinesi, Olga Mangoni, Raffaella Casotti, Cecilia Balestra, Tristan Horner, Robert B. Dunbar, Andrew E. Allen, Giacomo R. DiTullio, and Mak A. Saito
EGUsphere, https://doi.org/10.1101/2023.11.05.565706, https://doi.org/10.1101/2023.11.05.565706, 2025
Short summary
Short summary
Photosynthetic productivity is strongly influenced by water column nutrient availability. Despite the importance of zinc, definitive evidence for oceanic zinc limitation of photosynthesis has been scarce. We applied multiple biogeochemical measurements to a field site in Terra Nova Bay, Antarctica, to demonstrate that the phytoplankton community was experiencing zinc limitation. This field evidence paves the way for future experimental studies to consider Zn as a limiting oceanic micronutrient.
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025, https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary
Short summary
We describe and test the size-based Nutrient-Unicellular-Multicellular model, which defines unicellular plankton using a single set of parameters, on a eutrophic and oligotrophic ecosystem. The results demonstrate that both sites can be modeled with similar parameters and robust performance over a wide range of parameters. The study shows that the model is useful for non-experts and applicable for modeling ecosystems with limited data. It holds promise for evolutionary and deep-time climate models.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Riss M. Kell, Rebecca J. Chmiel, Deepa Rao, Dawn M. Moran, Matthew R. McIlvin, Tristan J. Horner, Nicole L. Schanke, Ichiko Sugiyama, Robert B. Dunbar, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 21, 5685–5706, https://doi.org/10.5194/bg-21-5685-2024, https://doi.org/10.5194/bg-21-5685-2024, 2024
Short summary
Short summary
Despite interest in modeling the biogeochemical uptake and cycling of the trace metal zinc (Zn), measurements of Zn uptake in natural marine phytoplankton communities have not been conducted previously. To fill this gap, we employed a stable isotope uptake rate measurement method to quantify Zn uptake into natural phytoplankton assemblages within the Southern Ocean. Zn demand was high and rapid enough to depress the inventory of Zn available to phytoplankton on seasonal timescales.
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024, https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
Short summary
We developed a modelling system of the northwest Atlantic Ocean that simulates the currents, temperature, salinity, and parts of the biochemical cycle of the ocean, as well as sea ice. The system combines advanced, open-source models and can be used to study, for example, the ocean capture of atmospheric carbon dioxide, which is a key process in the global climate. The system produces realistic results, and we use it to investigate the roles of tides and sea ice in the northwest Atlantic Ocean.
Mak A. Saito, Jaclyn K. Saunders, Matthew R. McIlvin, Erin M. Bertrand, John A. Breier, Margaret Mars Brisbin, Sophie M. Colston, Jaimee R. Compton, Tim J. Griffin, W. Judson Hervey, Robert L. Hettich, Pratik D. Jagtap, Michael Janech, Rod Johnson, Rick Keil, Hugo Kleikamp, Dagmar Leary, Lennart Martens, J. Scott P. McCain, Eli Moore, Subina Mehta, Dawn M. Moran, Jaqui Neibauer, Benjamin A. Neely, Michael V. Jakuba, Jim Johnson, Megan Duffy, Gerhard J. Herndl, Richard Giannone, Ryan Mueller, Brook L. Nunn, Martin Pabst, Samantha Peters, Andrew Rajczewski, Elden Rowland, Brian Searle, Tim Van Den Bossche, Gary J. Vora, Jacob R. Waldbauer, Haiyan Zheng, and Zihao Zhao
Biogeosciences, 21, 4889–4908, https://doi.org/10.5194/bg-21-4889-2024, https://doi.org/10.5194/bg-21-4889-2024, 2024
Short summary
Short summary
The ability to assess the functional capabilities of microbes in the environment is of increasing interest. Metaproteomics, the ability to measure proteins across microbial populations, has been increasing in capability and popularity in recent years. Here, an international team of scientists conducted an intercomparison study using samples collected from the North Atlantic Ocean and observed consistency in the peptides and proteins identified, their functions, and their taxonomic origins.
Isaiah Farahbakhsh, Chris T. Bauch, and Madhur Anand
Earth Syst. Dynam., 15, 947–967, https://doi.org/10.5194/esd-15-947-2024, https://doi.org/10.5194/esd-15-947-2024, 2024
Short summary
Short summary
Mathematical models that include interactions between humans and the environment can provide valuable information to further our understanding of tipping points. Many social processes such as social norms and rates of social change can affect these tipping points in ways that are often specific to the system being modeled. Higher complexity of social structure can increase the likelihood of these transitions. We discuss how data are used to predict tipping events across many coupled systems.
Krysten Rutherford, Katja Fennel, Lina Garcia Suarez, and Jasmin G. John
Biogeosciences, 21, 301–314, https://doi.org/10.5194/bg-21-301-2024, https://doi.org/10.5194/bg-21-301-2024, 2024
Short summary
Short summary
We downscaled two mid-century (~2075) ocean model projections to a high-resolution regional ocean model of the northwest North Atlantic (NA) shelf. In one projection, the NA shelf break current practically disappears; in the other it remains almost unchanged. This leads to a wide range of possible future shelf properties. More accurate projections of coastal circulation features would narrow the range of possible outcomes of biogeochemical projections for shelf regions.
Robert W. Izett, Katja Fennel, Adam C. Stoer, and David P. Nicholson
Biogeosciences, 21, 13–47, https://doi.org/10.5194/bg-21-13-2024, https://doi.org/10.5194/bg-21-13-2024, 2024
Short summary
Short summary
This paper provides an overview of the capacity to expand the global coverage of marine primary production estimates using autonomous ocean-going instruments, called Biogeochemical-Argo floats. We review existing approaches to quantifying primary production using floats, provide examples of the current implementation of the methods, and offer insights into how they can be better exploited. This paper is timely, given the ongoing expansion of the Biogeochemical-Argo array.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Rebecca J. Chmiel, Riss M. Kell, Deepa Rao, Dawn M. Moran, Giacomo R. DiTullio, and Mak A. Saito
Biogeosciences, 20, 3997–4027, https://doi.org/10.5194/bg-20-3997-2023, https://doi.org/10.5194/bg-20-3997-2023, 2023
Short summary
Short summary
Cobalt is an important micronutrient for plankton, yet it is often scarce throughout the oceans. A 2017/2018 expedition to coastal Antarctica, including regions of the Amundsen Sea and the Ross Sea, discovered lower concentrations of cobalt compared to two past expeditions in 2005 and 2006, particularly for the type of cobalt preferred as a nutrient by phytoplankton. This loss may be due to changing inputs of other nutrients, causing higher uptake of cobalt by plankton over the last decade.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Benjamin Richaud, Katja Fennel, Eric C. J. Oliver, Michael D. DeGrandpre, Timothée Bourgeois, Xianmin Hu, and Youyu Lu
The Cryosphere, 17, 2665–2680, https://doi.org/10.5194/tc-17-2665-2023, https://doi.org/10.5194/tc-17-2665-2023, 2023
Short summary
Short summary
Sea ice is a dynamic carbon reservoir. Its seasonal growth and melt modify the carbonate chemistry in the upper ocean, with consequences for the Arctic Ocean carbon sink. Yet, the importance of this process is poorly quantified. Using two independent approaches, this study provides new methods to evaluate the error in air–sea carbon flux estimates due to the lack of biogeochemistry in ice in earth system models. Those errors range from 5 % to 30 %, depending on the model and climate projection.
Arnaud Laurent, Haiyan Zhang, and Katja Fennel
Biogeosciences, 19, 5893–5910, https://doi.org/10.5194/bg-19-5893-2022, https://doi.org/10.5194/bg-19-5893-2022, 2022
Short summary
Short summary
The Changjiang is the main terrestrial source of nutrients to the East China Sea (ECS). Nutrient delivery to the ECS has been increasing since the 1960s, resulting in low oxygen (hypoxia) during phytoplankton decomposition in summer. River phosphorus (P) has increased less than nitrogen, and therefore, despite the large nutrient delivery, phytoplankton growth can be limited by the lack of P. Here, we investigate this link between P limitation, phytoplankton production/decomposition, and hypoxia.
Manab Kumar Dutta, Krishnan Sreelash, Damodaran Padmalal, Nicholas D. Ward, and Thomas S. Bianchi
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-200, https://doi.org/10.5194/bg-2022-200, 2022
Revised manuscript not accepted
Short summary
Short summary
Indian estuaries contribute to 2.62 % and 1.09 % of global riverine DIC and DOC export to the ocean, respectively. Major Indian estuaries emit ~9718 Gg yr-1 and 3.27 Gg yr-1 of CO2 and CH4 to the atmosphere, respectively, which contributes ~0.67 % and ~0.12 % to global CO2 and CH4 outgassing from estuaries.
Rebecca Chmiel, Nathan Lanning, Allison Laubach, Jong-Mi Lee, Jessica Fitzsimmons, Mariko Hatta, William Jenkins, Phoebe Lam, Matthew McIlvin, Alessandro Tagliabue, and Mak Saito
Biogeosciences, 19, 2365–2395, https://doi.org/10.5194/bg-19-2365-2022, https://doi.org/10.5194/bg-19-2365-2022, 2022
Short summary
Short summary
Dissolved cobalt is present in trace amounts in seawater and is a necessary nutrient for marine microbes. On a transect from the Alaskan coast to Tahiti, we measured seawater concentrations of dissolved cobalt. Here, we describe several interesting features of the Pacific cobalt cycle including cobalt sources along the Alaskan coast and Hawaiian vents, deep-ocean particle formation, cobalt activity in low-oxygen regions, and how our samples compare to a global biogeochemical model’s predictions.
Krysten Rutherford, Katja Fennel, Dariia Atamanchuk, Douglas Wallace, and Helmuth Thomas
Biogeosciences, 18, 6271–6286, https://doi.org/10.5194/bg-18-6271-2021, https://doi.org/10.5194/bg-18-6271-2021, 2021
Short summary
Short summary
Using a regional model of the northwestern North Atlantic shelves in combination with a surface water time series and repeat transect observations, we investigate surface CO2 variability on the Scotian Shelf. The study highlights a strong seasonal cycle in shelf-wide pCO2 and spatial variability throughout the summer months driven by physical events. The simulated net flux of CO2 on the Scotian Shelf is out of the ocean, deviating from the global air–sea CO2 flux trend in continental shelves.
Natalie R. Cohen, Abigail E. Noble, Dawn M. Moran, Matthew R. McIlvin, Tyler J. Goepfert, Nicholas J. Hawco, Christopher R. German, Tristan J. Horner, Carl H. Lamborg, John P. McCrow, Andrew E. Allen, and Mak A. Saito
Biogeosciences, 18, 5397–5422, https://doi.org/10.5194/bg-18-5397-2021, https://doi.org/10.5194/bg-18-5397-2021, 2021
Short summary
Short summary
A previous study documented an intense hydrothermal plume in the South Pacific Ocean; however, the iron release associated with this plume and the impact on microbiology were unclear. We describe metal concentrations associated with multiple hydrothermal plumes in this region and protein signatures of plume-influenced microbes. Our findings demonstrate that resources released from these systems can be transported away from their source and may alter the physiology of surrounding microbes.
Bin Wang, Katja Fennel, and Liuqian Yu
Ocean Sci., 17, 1141–1156, https://doi.org/10.5194/os-17-1141-2021, https://doi.org/10.5194/os-17-1141-2021, 2021
Short summary
Short summary
We demonstrate that even sparse BGC-Argo profiles can substantially improve biogeochemical prediction via a priori model tuning. By assimilating satellite surface chlorophyll and physical observations, subsurface distributions of physical properties and nutrients were improved immediately. The improvement of subsurface chlorophyll was modest initially but was greatly enhanced after adjusting the parameterization for light attenuation through further a priori tuning.
Arnaud Laurent, Katja Fennel, and Angela Kuhn
Biogeosciences, 18, 1803–1822, https://doi.org/10.5194/bg-18-1803-2021, https://doi.org/10.5194/bg-18-1803-2021, 2021
Short summary
Short summary
CMIP5 and CMIP6 models, and a high-resolution regional model, were evaluated by comparing historical simulations with observations in the northwest North Atlantic, a climate-sensitive and biologically productive ocean margin region. Many of the CMIP models performed poorly for biological properties. There is no clear link between model resolution and skill in the global models, but there is an overall improvement in performance in CMIP6 from CMIP5. The regional model performed best.
Haiyan Zhang, Katja Fennel, Arnaud Laurent, and Changwei Bian
Biogeosciences, 17, 5745–5761, https://doi.org/10.5194/bg-17-5745-2020, https://doi.org/10.5194/bg-17-5745-2020, 2020
Short summary
Short summary
In coastal seas, low oxygen, which is detrimental to coastal ecosystems, is increasingly caused by man-made nutrients from land. This is especially so near mouths of major rivers, including the Changjiang in the East China Sea. Here a simulation model is used to identify the main factors determining low-oxygen conditions in the region. High river discharge is identified as the prime cause, while wind and intrusions of open-ocean water modulate the severity and extent of low-oxygen conditions.
Randelle M. Bundy, Alessandro Tagliabue, Nicholas J. Hawco, Peter L. Morton, Benjamin S. Twining, Mariko Hatta, Abigail E. Noble, Mattias R. Cape, Seth G. John, Jay T. Cullen, and Mak A. Saito
Biogeosciences, 17, 4745–4767, https://doi.org/10.5194/bg-17-4745-2020, https://doi.org/10.5194/bg-17-4745-2020, 2020
Short summary
Short summary
Cobalt (Co) is an essential nutrient for ocean microbes and is scarce in most areas of the ocean. This study measured Co concentrations in the Arctic Ocean for the first time and found that Co levels are extremely high in the surface waters of the Canadian Arctic. Although the Co primarily originates from the shelf, the high concentrations persist throughout the central Arctic. Co in the Arctic appears to be increasing over time and might be a source of Co to the North Atlantic.
Cited articles
Allen, T., Murray, K. A., Zambrana-Torrelio, C., Morse, S. S., Rondinini, C.,
Di Marco, M., Breit, N., Olival, K. J., and Daszak, P.: Global hotspots and
correlates of emerging zoonotic diseases. Nat. Comm., 8, 1124, https://doi.org/10.1038/s41467-017-00923-8, 2017.
Bassar, R. D., Marshall, M. C., López-Sepulcre, A., Zandonà, E.,
Auer, S. K., Travis, J., Pringle, C. M., Flecker, A. S., Thomas, S. A., Fraser, D. F., and Reznick, D. N.: Local adaptation in
Trinidadian guppies alters ecosystem processe, P. Natl. Acad. Sci. USA,
107, 3616–3621, https://doi.org/10.1073/pnas.0908023107, 2010.
Bell, G. and Collins, S.: Adaptation, extinction and global change, Evol.
Appl., 1, 3–16, https://doi.org/10.1111/j.1752-4571.2007.00011.x, 2008.
Bergauer, K., Fernandez-Guerra, A., Garcia, J. A. L., Sprenger,
R. R., Stepanauskas, R., Pachiadaki, M. G., Jensen, O. N., and Herndl, G. J.:
Organic matter processing by microbial communities throughout the Atlantic
water column as revealed by metaproteomics, P. Natl. Acad. Sci. USA, 115,
400–408, https://doi.org/10.1073/pnas.1708779115, 2018.
Bianchi, T. S.: The evolution of biogeochemistry, revisited,
Biogeochemistry, 13, 199–239, https://doi.org/10.1007/s10533-020-00708-0, 2020.
Bianchi, T. S., Aller, R. C., Atwood, T., Buatois, L. A., Levin, L. A., Levinton, J. S., Middelburg, J. J., Morrison, E. S., Regnier, P., Shields, M. R., Snelgrove, P. V. R.,
Sotka, E. E., and Stanley, R. R. E.: What Global Biogeochemical
Consequences Will Marine Animal-Sediment Interactions Have During Climate
Change? Elementa: Science of the Anthropocene, https://doi.org/10.1525/elementa.2020.00180, 2021.
Bianchi, T. S. and Morrison, E.: Human activities create corridors of change in
aquatic zones, EOS, 99, 13–15, https://doi.org/10.1029/2018EO104743, 2018.
Boyle, R. A., Dahl, T. W., Dale, A. W., Shields-Zhou, G. A., Zhu, M., Brasier,
M. D., Canfield, D. E., and Lenton, T. M.: Stabilization of the coupled oxygen and
phosphorus cycles by the evolution of bioturbation, Nat. Geosci., 7,
671–676, https://doi.org/10.1038/ngeo2213, 2014.
Buatois, L. A., Mangano, M. G., Monter, N. J., and Zhou, K.: Quantifying ecospace
utilization and ecosystem engineering during the early Phanerozoic – The
role of bioturbation and bioerosion, Sci. Adv., 6, eabb0618
https://doi.org/10.1126/sciadv.abb0618, 2020.
Bury, T. M., Bauch, C. T., and Anand, M.: Charting pathways to climate
change mitigation in a coupled socio-climate model, PLoS Comput. Biol., 15, e1007000, https://doi.org/10.1371/journal.pcbi.1007000, 2019.
Canfield, D. E., Poulton, S. W., and Narbonne, G. M.: Late-Neoproterozoic
deep-ocean oxygenation and the rise of animal life, Science, 315, 92–95,
https://doi.org/10.1126/science.1135013, 2007.
Carlson, S. M., Quinn, T. P., and Hendry, A. P.: Eco-evolutionary dynamics in
Pacific salmon, Heredity, 106, 438–447, https://doi.org/10.1038/hdy.2010.163, 2011.
Carney, M. A. and Krause, K. C.: Immigration/migration and healthy publics: the threat of food insecurity, Palgrave Communications, 6, 1–12, 2020.
Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D. L.: Soil biogeochemical
processes within the critical zone, Elements, 3, 321–326, 2007.
Coles, V. J., Stukel, M. R., Brooks, M. T., Burd, A., Crump, B. C., Moran,
M. A., Paul, J. H., Satinsky, B. M., Yager, P. L., Zielinski, B. L., and Hood,
R. R.: Ocean biogeochemistry modeled with emergent trait-based
genomics, Science, 358, 1149–1154, https://doi.org/10.1126/science.aan5712, 2017.
Collins, S. and Bell, G.: Evolution of natural algal populations at
elevated CO2, Ecol. Lett., 9, 129–135, https://doi.org/10.1111/j.1461-0248.2005.00854.x, 2006.
Crain, R., Cooper, C., and Dickinson, J. L.: Citizen science: a tool for
integrating studies of human and natural systems, Annu. Rev. Environ. Res., 39, 641–665, https://doi.org/10.1146/annurev-environ-030713-154609, 2014.
Cutter, G. A.: Biogeochemistry: now and into the future, Palaeogeogr.,
Palaeoclimatol., Palaeoecol., 219, 191–198, https://doi.org/10.1016/j.palaeo.2004.10.021, 2005.
Dakos, V. Matthews, B., Hendry, A. P., Levine, J., Loeuille, N., Norberg, J.,
Nosil, P., Scheffer, M., and De Meester, L.:
Ecosystem tipping points in an evolving world, Nat. Ecol. Evol., 3, 355–362,
https://doi.org/10.1038/s41559-019-0797-2, 2019.
Darwin, C.: The formation of vegetable mould through the action of worms with
some observations on their habits,
John Murray, London, available at: https://hdl.handle.net/2027/hvd.32044092526755, 1881.
David, L. A. and Alm, E. J.: Rapid evolutionary innovation during an
Archaean genetic expansion, Nature, 469, 93–96, 2011.
Declerck, S. A. J., Malo, A. R., Diehl, S., Waasdorp, D., Lemmen, K. D.,
Proios, K., and Papakosta, S.: Rapid adaptation of herbivore consumers to
nutrient limitation: eco-evolutionary feedbacks to population demography and
resource control, Ecol. Lett., 18, 553–562, https://doi.org/10.1111/ele.12436, 2015.
Delgado-Baquerizo, M., Guerra, C. A., Cano-Díaz, C., Egidi, E., Wang,
J., Eisenhauer, N., Singh, B. K., and Maestre, F. T.: The proportion of
soil-borne pathogens increases with warming at the global scale, Nat. Clim.
Chang., 10, 550–554, https://doi.org/10.1038/s41558-020-0759-3,
2020.
Derouin, S.: Geoscientists help map the pandemic, Eos, 101, https://doi.org/10.1029/2020EO143538, 2020.
Falkowski, P. G., Fenchel, T., and Delong, E. F.: The microbial engines that
drive Earth's biogeochemical cycles, Science
320, 1034–1039, https://doi.org/10.1126/science.1153213, 2008.
Fennel, K., Gehlen, M., Brasseur, P., Brown, C.W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C.A., Ford, D., Friedrichs, M.A., Gregoire, M.,
Jones, E., Kim, H., Lamouroux, J., Murtugudde, R., Perruche, C., and the
GODAE Ocean View: Marine Ecosystem Analysis and Prediction Task Team
Advancing marine biogeochemical and ecosystem reanalyses and forecasts as
tools for monitoring and managing ecosystem health, Front. Mar. Sci., 6,
https://doi.org/10.3389/fmars.2019.00089, 2019.
Fussman, G. F., Loreau, M., and Abrams, P. A.: Eco-evolutionary dynamics of
communities and ecosystems, Func. Ecol., 21, 465–477, https://doi.org/10.1111/j.1365-2435.2007.01275.x, 2007.
Gifford, S. M., Sharma, S., Rinta-Kanto, J. M., and Moran, M. A.:
Quantitative analysis of a deeply sequenced marine microbial
metatranscriptome, The ISME J., 5, 461–472, https://doi.org/10.1038/ismej.2010.14, 2011.
Gorham, E.: Biogeochemistry: Its origins and development, Biogeochemistry, 13,
199–239, https://doi.org/10.1007/BF00002942, 1991.
Groffman, P. M., Cadenasso, M. L., Cavender-Bares, J., Childers, D. L., Grimm,
N. B., Morgan Grove, J., Hobbie, S. E., Hutyra, L. R., Darrel Jenerette, G.,
McPhearson, T., Pataki, D. E., Pickett, S. T. S., Pouyat, R. V., Rosi-Marshall,
E., and Ruddell, B. L.:
Moving towards a new urban systems science, Ecosystems, 20, 38–43,
https://doi.org/10.1007/s10021-016-0053-4, 2017.
Han, B. A., Schmidt, J. P., Bowden, S. E, and Drake, J. M.: Rodent reservoirs
of future zoonotic diseases, P. Natl. Acad. Sci. USA, 112, 7039–7044, https://doi.org/10.1073/pnas.1501598112, 2015.
Hawlena, D., Strickland, M. S., Bradford, M. A., and Schmitz, O. J.: Fear of
predation slows plant-litter decomposition, Science, 336, 1434–1438,
https://doi.org/10.1126/science.1220097, 2012.
Held, N. A., McIlvin, M. R., Moran, D. M., Laub, M. T., and Saito, M. A.:
Unique patterns and biogeochemical relevance of two-component sensing in
marine bacteria, MSystems, 4, e00317-18, https://doi.org/10.1128/mSystems.00317-18, 2019.
Hendry, A. P. and Green, D. M.: Eco-Evolutionary Dynamics in Cold Blood,
Ichthyol, Herpetol., 105, 441–450,
https://doi.org/10.1643/OT-17-631, 2017.
Hutchins, D. A., Jansson, J. K., Remais, J. V., Rich, V. I., Singh, B. K., and
Trivedi, P.: Climate change microbiology – problems and perspectives, Nat.
Rev. Microbiol., 17, 391–396, https://doi.org/10.1038/s41579-019-0178-5, 2019.
Hutchins, D. A., Walworth, N. G., Webb, E. A., Saito, M. A., Moran, D., McIlvin,
M. R., Gale, J., and Fu, F. X.: Irreversibly increased nitrogen fixation in
Trichodesmium experimentally adapted to elevated carbon dioxide, Nat. Comm., 6, 1–7,
https://doi.org/10.1038/ncomms9155, 2015.
Kress, W. B., Mazet, J. A. K., and Hebert, P. D. N.: Intercepting pandemics
through genomics, P. Natl. Acad. Sci. USA, 117, 13852–13855, https://doi.org/10.1073/pnas.2009508117, 2020.
Kuebbing, S. E., Reimer, A. P., Rosenthal, S. A., Feinberg, G., Leiserowitz, A.,
Lau, J. A., and Bradford, M. A.: Long-term research in ecology and evolution:
a survey of challenges and opportunities, Ecol. Monogr., 88, 245–258,
https://doi.org/10.1002/ecm.1289, 2018.
Lawrence, D., Fiegna, F., Behrends, V., Bundy, J. G., Phillimore, A. B., Bell,
T., and Barraclough, T. G.: Species interactions alter evolutionary responses
to a novel environment, PLoS Biol., 10, e1001330, https://doi.org/10.1371/journal.pbio.1001330, 2012.
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., and
Butterfield, N. J.: Co-evolution of eurkaryotes and ocean oxygenation in the
Neoproterozoic era, Nat. Geosci., 7, 257–265, https://doi.org/10.1038/ngeo2108, 2014.
Likens, G. E.: Biogeochemistry: some opportunities and challenges for the
future, Wat. Air Soil Pollut. Focus, 4, 5–24, https://doi.org/10.1023/B:WAFO.0000028341.75842.08, 2004.
Macke, E., Tasiemski, A., Massol, F., Callens, M., and Decaestecker, E.: Life
history and eco-evolutionary dynamics in light of the gut microbiota, Oikos,
126, 508–531, https://doi.org/10.1111/oik.03900, 2017.
Mángano, M. G. and Buatois, L. A.:. Decoupling of body-plan
diversification and ecological structuring during the Ediacaran-Cambrian
transition: Evolutionary and geobiological feedbacks, P. Roy. Soc. A-Biol. Sci., 281, 20140038, https://doi.org/10.1098/rspb.2014.0038, 2014.
Martiny, A. C., Coleman, M. L., and Chisholm, S. W.: Phosphate acquisition
genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation, P. Natl. Acad. Sci. USA, 103, 12552-12557, https://doi.org/10.1073/pnas.0601301103, 2006.
Matthews, B., Narwani, A., Hausch, S., Nonaka, E., Peter, H., Yamamichi, M.,
Sullam, K. E., Bird, K. C., Thomas, M. K., Hanley, T. C., and Turner, C. B.:
Towards an integration of evolutionary biology and ecosystem science, Ecol.
Lett., 14, 690–701, https://doi.org/10.1111/j.1461-0248.2011.01627.x, 2011.
Mazzucato, M.: Mission-oriented innovation policies: challenges and
opportunities, Industrial and Corporate Change, 27, 803–815, https://doi.org/10.1093/icc/dty034, 2018.
Newman, D. K. and J. F.: Banfield. Geomicrobiology: how molecular-scale
interactions underpin biogeochemical systems, Science, 10, 1071–1077, https://doi.org/10.1126/science.1010716, 2002.
Palumbi, S. R.: The Evolution Explosion: How Humans Cause Rapid Evolutionary
Change, W. W. Norton & Company, ISBN 9780393323382, 2002.
Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L., and Venter, J.
C.: Characterization of Prochlorococcus clades from iron-depleted oceanic regions, P. Natl. Acad. Sci. USA, 107, 16184–16189, https://doi/org/10.1073/pnas.1009513107, 2010.
Saito, M. A., Saunders, J. K., Chagnon, M., Gaylord, D., Shepherd, A., Held,
N. A., Dupont, C., Symmonds, N., York, A., Charron, M., and Kinkade, D.:
Development of an ocean protein portal for interactive discovery and
education, Journal of Proteome Research, https://doi.org/10.1101/2020.05.29.124388, 2020a.
Saito, M. A., McIlvin, M. R., Moran, D. M., Santoro, A. E., Dupont, C. L.,
Rafter, P. A., Saunders, J. K., Kaul, D., Lamborg, C. H., Westley, M., Valois,
F., and Waterbury, J. B.: Abundant nitrite-oxidizing metalloenzymes in the
mesopelagic zone of the tropical Pacific Ocean, Nat. Geosci., 13, 355–362,
https://doi.org/10.1038/s41561-020-0565-6, 2020b.
Saito, M. A., Sigman, D. M., and Morel, F. M.: The bioinorganic chemistry of
the ancient ocean: the co-evolution of cyanobacterial metal requirements and
biogeochemical cycles at the Archean-Proterozoic boundary, Inorg. Chim.
Acta, 356, 308–318, https://doi.org/10.1016/S0020-1693(03)00442-0, 2003.
Schaffner, L. R., Govaert, L., De Meester, L., Ellner, S. P., Fairchild, E.,
Miner, B. E., Rudstam, L. G., Spaak, P., and Hairston, N. G.: Consumer-resource
dynamics is an eco-evolutionary process in a natural plankton community, Nat.
Ecol. Evol., 3, 1351–1358, https://doi.org/10.1038/s41559-019-0960-9, 2019.
Scheffers, B. R., De Meester, L., Bridge, T. C. L., Hoffmann, A. A., Pandolfi,
J. M., Corlett, R. T., Butchart, S. H. M., Pearce-Kelly, P., Kovacs, K. M.,
Dudgeon, D., Pacifici, M., Rondinini, C., Foden, W. B., Martin, T. G., Mora,
C., Bickford, D., and Watson, J. E. M.: The broad footprint of climate change
from genes to biomes to people, Science, 354, aaf7671, https://doi.org/10.1126/science.aaf7671, 2016.
Schlesinger, W. H.: Biogeochemistry: An Analysis of Global Change, Academic
Press, ISBN 9780323137843, 1991.
Schlesinger, W. H.: Translational Ecology, Science, 609, https://doi.org/10.1126/science.1195624, 2010.
Schoener, T. W.: The newest synthesis: understanding the interplay of
evolutionary and ecological dynamics, Science, 331, 426–429, https://doi.org/10.1126/science.1193954, 2011.
Seibel, B. A. and Deutsch, C.: Oxygen supply capacity in animals evolves to
meet maximum demand at the current oxygen partial pressure regardless of
size or temperature, J. Exp. Biol., https://doi.org/10.1242/jeb.210492, 2020.
Seitzinger, S. P., Mayorga, E., Bouwman, A. F., Kroeze, C., Beusen, A. H. W.,
Billen, G., Van Drecht, G., Dumont, E., Fekete, B. M., Garnier, J., and
Harrison J. A.: Global river nutrient export: A scenario analysis of past and
future trends, Global Biogeochem. Cy., 24, GB0A08, https://doi.org/10.1029/2009GB003587, 2010.
Soule, M. C. K., Longnecker, K., Johnson, W. M., and Kujawinski, E. B.:
Environmental metabolomics: Analytical strategies, Mar. Chem., 177, 374–387,
https://doi.org/10.1016/j.marchem.2015.06.029, 2015.
Steffen, W., Richardson, K., Rockström, J., Schellnhuber, H. J., Dube,
O. P., Dutreuil, S., Lenton, T. M., and Lubchenco, L.: The emergence and
evolution of Earth System Science, Nat. Rev. Earth Environ., 1, 54–63,
https://doi.org/10.1038/s43017-019-0005-6, 2020.
Tanhua, T., Pouliquen, S., Hausman, J., O'Brien, K., Bricher, P., de Bruin,
T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S.,
Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H.,
Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E.,
Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S.,
Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Lyborn,
L., and Zhao, Z.: Ocean FAIR Data Services, Front. Mar. Sci., 6, 440,
https://doi.org/10.3389/fmars.2019.00440, 2019.
Urban, M., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe'er, G., Singer, A.,
Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe, W., Gonzalez, A.,
Hellmann, J. J., Holt, R. D., Huth, A., Johst, K., Krug, C. B., Leadley, P. W.,
Palmer, S. C. F., Pantel, J. H., Schmitz, A., Zollner, P. A., and Travis,
J. M. J.: Improving the forecast for biodiversity under climate change,
Science, 353, aad8466, https://doi.org/10.1126/science.aad8466, 2016.
Vernadsky, V. I.: Biosfera. Leningrad, Seen in abridged English translation,
Synergetic Press, Oracle, Arizona (1986), also available in a complete
French translation, La Biosphere, by the author, Alcan, Paris (1929)
(1945), https://doi.org/10.1017/S0376892900036584, 1926.
Villar, E., Vannier, T., Vernette, C., Lescot, M., Cuenca, M.,
Alexandre, A., Bachelerie, P., Rosnet, T., Pelletier, E.,
Sunagawa, S., and Hingamp, P.: The Ocean Gene Atlas: exploring the
biogeography of plankton genes online, Nucl. Acids Res., 46, 289–295 https://doi.org/10.1093/nar/gky376, 2018.
Short summary
Better development of interdisciplinary ties between biology, geology, and chemistry advances biogeochemistry through (1) better integration of contemporary (or rapid) evolutionary adaptation to predict changing biogeochemical cycles and (2) universal integration of data from long-term monitoring sites in terrestrial, aquatic, and human systems that span broad geographical regions for use in modeling.
Better development of interdisciplinary ties between biology, geology, and chemistry advances...
Altmetrics
Final-revised paper
Preprint