Articles | Volume 18, issue 12
https://doi.org/10.5194/bg-18-3751-2021
https://doi.org/10.5194/bg-18-3751-2021
Research article
 | 
23 Jun 2021
Research article |  | 23 Jun 2021

Evaluating the potential for Haloarchaea to serve as ice nucleating particles

Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, and Matthew E. Rhodes

Related authors

Active thermokarst regions contain rich sources of ice-nucleating particles
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023,https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023,https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Assessing the vertical structure of Arctic aerosols using balloon-borne measurements
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021,https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Using freezing spectra characteristics to identify ice-nucleating particle populations during the winter in the Alps
Jessie M. Creamean, Claudia Mignani, Nicolas Bukowiecki, and Franz Conen
Atmos. Chem. Phys., 19, 8123–8140, https://doi.org/10.5194/acp-19-8123-2019,https://doi.org/10.5194/acp-19-8123-2019, 2019
Short summary
Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA
Andrew C. Martin, Gavin Cornwell, Charlotte M. Beall, Forest Cannon, Sean Reilly, Bas Schaap, Dolan Lucero, Jessie Creamean, F. Martin Ralph, Hari T. Mix, and Kimberly Prather
Atmos. Chem. Phys., 19, 4193–4210, https://doi.org/10.5194/acp-19-4193-2019,https://doi.org/10.5194/acp-19-4193-2019, 2019
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Crowd-sourced trait data can be used to delimit global biomes
Simon Scheiter, Sophie Wolf, and Teja Kattenborn
Biogeosciences, 21, 4909–4926, https://doi.org/10.5194/bg-21-4909-2024,https://doi.org/10.5194/bg-21-4909-2024, 2024
Short summary
Biomass yield potential, feedstock quality, and nutrient removal of perennial buffer strips under continuous zero fertilizer application
Cheng-Hsien Lin, Colleen Zumpf, Chunhwa Jang, Thomas Voigt, Guanglong Tian, Olawale Oladeji, Albert Cox, Rehnuma Mehzabin, and DoKyoung Lee
Biogeosciences, 21, 4765–4784, https://doi.org/10.5194/bg-21-4765-2024,https://doi.org/10.5194/bg-21-4765-2024, 2024
Short summary
Leaf habit drives leaf nutrient resorption globally alongside nutrient availability and climate
Gabriela Sophia, Silvia Caldararu, Benjamin David Stocker, and Sönke Zaehle
Biogeosciences, 21, 4169–4193, https://doi.org/10.5194/bg-21-4169-2024,https://doi.org/10.5194/bg-21-4169-2024, 2024
Short summary
Linking geomorphological processes and wildlife microhabitat selection: nesting birds select refuges generated by permafrost degradation in the Arctic
Madeleine-Zoé Corbeil-Robitaille, Éliane Duchesne, Daniel Fortier, Christophe Kinnard, and Joël Bêty
Biogeosciences, 21, 3401–3423, https://doi.org/10.5194/bg-21-3401-2024,https://doi.org/10.5194/bg-21-3401-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary

Cited articles

Adams, M. P., Atanasova, N. S., Sofieva, S., Ravantti, J., Heikkinen, A., Brasseur, Z., Duplissy, J., Bamford, D. H., and Murray, B. J.: Ice nucleation by viruses and their potential for cloud glaciation, Biogeosciences Discuss. [preprint], https://doi.org/10.5194/bg-2020-474, in review, 2021. 
Agresti, A. and Coull, B. A.: Approximate is better than “exact” for interval estimation of binomial proportions, Am. Stat., 52, 119–126, https://doi.org/10.2307/2685469, 1998. 
Albers, S. V. and Meyer, B. H.: The archaeal cell envelope, Nat. Rev. Microbiol., 9, 414–426, https://doi.org/10.1038/nrmicro2576, 2011. 
Albers, S. V., Eichler, J., and Aebi, M.: Chapter 22 Archaea, in: Essentials of Glycobiology (3rd edition), edited by: Varki, A., Cummings, R. D., and Esko, J. D., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2017. 
Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Moné, A. I., Deguillaume, L., Delort, A.-M., and Debroas, D.: Active microorganisms thrive among extremely diverse communities in cloud water, PLOS ONE, 12, e0182869, https://doi.org/10.1371/journal.pone.0182869, 2017. 
Download
Short summary
Microorganisms have the unique ability to form ice in clouds at relatively warm temperatures, especially specific types of plant bacteria. However, to date, members of the domain Archaea have not been evaluated for their cloud-forming capabilities. Here, we show the first results of Haloarchaea that have the ability to form cloud ice at moderate supercooled temperatures that are found in hypersaline environments on Earth.
Altmetrics
Final-revised paper
Preprint