Articles | Volume 18, issue 14
https://doi.org/10.5194/bg-18-4281-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4281-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Do Loop Current eddies stimulate productivity in the Gulf of Mexico?
Pierre Damien
CORRESPONDING AUTHOR
Departamento de Oceanografía Física, Centro de
Investigación Científica y de Educación Superior de Ensenada, Ensenada,
México
Department of Atmospheric and Oceanic
Sciences, University of California, Los Angeles, CA, USA
Julio Sheinbaum
Departamento de Oceanografía Física, Centro de
Investigación Científica y de Educación Superior de Ensenada, Ensenada,
México
Orens Pasqueron de Fommervault
Departamento de Oceanografía Física, Centro de
Investigación Científica y de Educación Superior de Ensenada, Ensenada,
México
Julien Jouanno
LEGOS, Université de Toulouse, IRD, CNRS, CNES, UPS, Toulouse,
France
Lorena Linacre
Departamento de Oceanografía Biológica, Centro de
Investigación Científica y de Educación Superior de Ensenada,
México
Olaf Duteil
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Related authors
No articles found.
Marc Kakante Mendy, Florent Gasparin, Manon Gévaudan, Moussa Diakhaté, Issa Sakho, and Julien Jouanno
EGUsphere, https://doi.org/10.5194/egusphere-2025-4429, https://doi.org/10.5194/egusphere-2025-4429, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The North Tropical Atlantic plays an important role in shaping climate in the region. In our study we examined how African Easterly Waves influence the ocean surface. Using numerical modelling and buoy records, we found that these waves can warm or cool the sea by more than half a degree. The faster waves have the strongest impact. Because sea temperature affects rainfall and storms, understanding these waves can help improve weather and climate forecasts.
Rosmery Sosa-Gutierrez, Julien Jouanno, and Leo Berline
Ocean Sci., 21, 1505–1514, https://doi.org/10.5194/os-21-1505-2025, https://doi.org/10.5194/os-21-1505-2025, 2025
Short summary
Short summary
Since 2010, pelagic Sargassum spp. blooms have increased in several tropical Atlantic regions, causing socioeconomic and ecosystem impacts. Offshore structuration of Sargassum by mesoscale dynamics may influence transport and growth. Sargassum stays afloat, constantly interacting with currents, waves, winds, and mesoscale eddies. We find that anticyclones and cyclones effectively trap Sargassum throughout its propagation, with a greater tendency for cyclones to accumulate Sargassum.
Gabriela Martinez-Balbontin, Julien Jouanno, Rachid Benshila, Julien Lamouroux, Coralie Perruche, and Stefano Ciavatta
EGUsphere, https://doi.org/10.5194/egusphere-2025-1246, https://doi.org/10.5194/egusphere-2025-1246, 2025
Short summary
Short summary
This study uses machine learning to predict chlorophyll-a levels, which are important for monitoring marine ecosystems and the carbon cycle. By using forecasts of sea surface temperature, salinity, height, and mixed layer depth, we can make global predictions up to six months ahead in just minutes. Our approach is as accurate or better than traditional methods, while being faster and more resource-efficient.
Peter Brandt, Gaël Alory, Founi Mesmin Awo, Marcus Dengler, Sandrine Djakouré, Rodrigue Anicet Imbol Koungue, Julien Jouanno, Mareike Körner, Marisa Roch, and Mathieu Rouault
Ocean Sci., 19, 581–601, https://doi.org/10.5194/os-19-581-2023, https://doi.org/10.5194/os-19-581-2023, 2023
Short summary
Short summary
Tropical upwelling systems are among the most productive ecosystems globally. The tropical Atlantic upwelling undergoes a strong seasonal cycle that is forced by the wind. Local wind-driven upwelling and remote effects, particularly via the propagation of equatorial and coastal trapped waves, lead to an upward and downward movement of the nitracline. Turbulent mixing results in upward supply of nutrients. Here, we review the different physical processes responsible for biological productivity.
Roy Dorgeless Ngakala, Gaël Alory, Casimir Yélognissè Da-Allada, Olivia Estelle Kom, Julien Jouanno, Willi Rath, and Ezinvi Baloïtcha
Ocean Sci., 19, 535–558, https://doi.org/10.5194/os-19-535-2023, https://doi.org/10.5194/os-19-535-2023, 2023
Short summary
Short summary
Surface heat flux is the main driver of the heat budget in the Senegal, Angola, and Benguela regions but not in the equatorial region. In the Senegal and Benguela regions, freshwater flux governs the salt budget, while in equatorial and Angola regions, oceanic processes are the main drivers. Results from numerical simulation show the important role of mesoscale advection for temperature and salinity variations in the mixed layer. Nonlinear processes unresolved by observations play a key role.
José Gerardo Quintanilla, Juan Carlos Herguera, and Julio Sheinbaum
EGUsphere, https://doi.org/10.5194/egusphere-2023-751, https://doi.org/10.5194/egusphere-2023-751, 2023
Preprint archived
Short summary
Short summary
The reduction of the oxygen concentration in the ocean interior is a worrisome global trend that can be harmful for the marine life. This study presents evidence that the central Gulf of Mexico waters at depths between 200 to 800 m has been affected by an oxygen reduction trend that might be aggravating under climate change. We show evidence that link this oxygen reduction to a decrease in the volume of water transported from the Caribbean in to the Gulf of Mexico via enormous ocean gyres.
Sarah Berthet, Julien Jouanno, Roland Séférian, Marion Gehlen, and William Llovel
Earth Syst. Dynam., 14, 399–412, https://doi.org/10.5194/esd-14-399-2023, https://doi.org/10.5194/esd-14-399-2023, 2023
Short summary
Short summary
Phytoplankton absorbs the solar radiation entering the ocean surface and contributes to keeping the associated energy in surface waters. This natural effect is either not represented in the ocean component of climate models or its representation is simplified. An incomplete representation of this biophysical interaction affects the way climate models simulate ocean warming, which leads to uncertainties in projections of oceanic emissions of an important greenhouse gas (nitrous oxide).
Michel Tchilibou, Ariane Koch-Larrouy, Simon Barbot, Florent Lyard, Yves Morel, Julien Jouanno, and Rosemary Morrow
Ocean Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, https://doi.org/10.5194/os-18-1591-2022, 2022
Short summary
Short summary
This high-resolution model-based study investigates the variability in the generation, propagation, and sea height signature (SSH) of the internal tide off the Amazon shelf during two contrasted seasons. ITs propagate further north during the season characterized by weak currents and mesoscale eddies and a shallow and strong pycnocline. IT imprints on SSH dominate those of the geostrophic motion for horizontal scales below 200 km; moreover, the SSH is mainly incoherent below 70 km.
Olaf Duteil, Ivy Frenger, and Julia Getzlaff
Ocean Sci., 17, 1489–1507, https://doi.org/10.5194/os-17-1489-2021, https://doi.org/10.5194/os-17-1489-2021, 2021
Short summary
Short summary
The large oxygen minimum zones in the tropical Pacific Ocean are still not well represented by typical climate models. We analyze a set of ocean models and highlight the fact that an oxygen concentration that is too low at intermediate depth in the subtropical regions associated with a sluggish representation of the intermediate equatorial current system may be responsible for the overly large extension of the modeled oxygen minimum zones, potentially hampering future projections.
Julien Jouanno, Rachid Benshila, Léo Berline, Antonin Soulié, Marie-Hélène Radenac, Guillaume Morvan, Frédéric Diaz, Julio Sheinbaum, Cristele Chevalier, Thierry Thibaut, Thomas Changeux, Frédéric Menard, Sarah Berthet, Olivier Aumont, Christian Ethé, Pierre Nabat, and Marc Mallet
Geosci. Model Dev., 14, 4069–4086, https://doi.org/10.5194/gmd-14-4069-2021, https://doi.org/10.5194/gmd-14-4069-2021, 2021
Short summary
Short summary
The tropical Atlantic has been facing a massive proliferation of Sargassum since 2011, with severe environmental and socioeconomic impacts. We developed a modeling framework based on the NEMO ocean model, which integrates transport by currents and waves, and physiology of Sargassum with varying internal nutrient quota, and considers stranding at the coast. Results demonstrate the ability of the model to reproduce and forecast the seasonal cycle and large-scale distribution of Sargassum biomass.
Julien Jouanno and Xavier Capet
Ocean Sci., 16, 1207–1223, https://doi.org/10.5194/os-16-1207-2020, https://doi.org/10.5194/os-16-1207-2020, 2020
Short summary
Short summary
The dynamical balance of the Antarctic Circumpolar Current and its implications on the functioning of the world ocean are not fully understood and poorly represented in global circulation models. In this study, the sensitivities of an idealized Southern Ocean (SO) storm track are explored with a set of eddy-rich numerical simulations. We show that the classical partition between barotropic and baroclinic modes is sensitive to current–topography interactions in the mesoscale range of 10–100 km.
Cited articles
Ascani, F., Richards, K. J., Firing, E., Grant, S., Johnson, K. S., Jia, Y.,
Lukas, R., and Karl, D. M.: Physical and biological controls of nitrate
concentrations in the upper subtropical North Pacific Ocean, Deep Sea Res. Pt. II, 93, 119–134,
2013.
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, GB2017,
https://doi.org/10.1029/2005GB002591, 2006.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Badan, Jr., A., Candela, J., Sheinbaum, J., and Ochoa, J.: Upper-layer
circulation in the approaches to Yucatan Channel, Washington DC American Geophysical Union Geophysical Monograph Series, 161, 57–69, 2005.
Barnett, T. P., Pierce, D. W., and Schnur, R.: Detection of anthropogenic
climate change in the world's oceans, Science, 292, 270–274, 2001.
Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R.,
Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G.,
Letelier, R. M., and Boss, E. S.: Climate-driven trends in contemporary
ocean productivity, Nature, 444, 752–755, 2006.
Benitez-Nelson, C. R., Bidigare, R. R., Dickey, T. D., Landry, M. R.,
Leonard, C. L., Brown, S. L., Nencioli, F., Rii, Y. M., Maiti, K., Becker,
J. W., and Bibby, T. S.: Mesoscale eddies drive increased silica export in
the subtropical Pacific Ocean, Science, 316, 1017–1021, 2007.
Biggs, D. C. and Ressler, P. H.: Distribution and abundance of
phytoplankton, zooplankton, ichthyoplankton, and micronekton in the
deepwater Gulf of Mexico, Gulf of Mexico Science, 19, 2, https://doi.org/10.18785/goms.1901.02, 2001.
Bracco, A., Provenzale, A., and Scheuring, I.: Mesoscale vortices and the
paradox of the plankton, P. Roy. Soc. B-Bio., 267, 1795–1800, 2000.
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S: An
ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model, 31,
88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Brokaw, R. J., Subrahmanyam, B., and Morey, S. L.: Loop current and eddy
driven salinity variability in the Gulf of Mexico, Geophys. Res. Lett., 46, 5978–5986,
https://doi.org/10.1029/2019GL082931, 2019.
Chelton, D., DeSzoeke, R., Schlax, M., El Naggar, K., and Siwertz, N.:
Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460, 1998.
Ciani, D., Carton, X., Aguiar, A. B., Peliz, A., Bashmachnikov, I., Ienna,
F., Chapron, B., and Santoleri, R.: Surface signature of Mediterranean water
eddies in a long-term high-resolution simulation, Deep Sea Res. Pt. I, 130, 12–29, 2017.
Cooper, C., Forristall, G. Z., and Joyce, T. M.: Velocity and hydrographic
structure of two Gulf of Mexico warm-core rings, J. Geophys. Res.-Oceans, 95, 1663–1679, 1990.
Cullen, J. J. and Eppley, R. W.: Chlorophyll maximum layers of the Southern-California Bight
and possible mechanisms of their formation and maintenance, Oceanol. Ac., 4, 23–32,
1981.
Cullen, J. J.: The deep chlorophyll maximum: Comparing vertical profiles of
chlorophyll a, Can. J. Fish. Aquat. Sci., 39, 791–803, 1982.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: Latitudinal and seasonal variations, J. Hydrometeorol., 3, 660–687, 2002.
Damien, P., Bosse, A., Testor, P., Marsaleix, P., and Estournel, C.: Modeling Postconvective
Submesoscale Coherent Vortices in the Northwestern M editerranean Sea, J. Geophys. Res-Ocean., 122, 9937–9961, https://doi.org/10.1002/2016JC012114, 2017.
Damien, P., Pasqueron de Fommervault, O., Sheinbaum, J., Jouanno, J.,
Camacho-Ibar, V. F., and Duteil, O.: Partitioning of the Open Waters of the
Gulf of Mexico Based on the Seasonal and Interannual Variability of
Chlorophyll Concentration, J. Geophys. Res.-Oceans, 123, 2592–2614, 2018.
Danioux, E., Klein, P., and Rivière, P.: Propagation of wind energy into
the deep ocean through a fully turbulent mesoscale eddy field, J. Phys. Oceanogr., 38,
2224–2241, 2008.
Dewar, W. and Flierl G.: Some effects of the wind on rings, J. Phys. Oceanogr., 17,
1653–1667, 1987.
Doney, S. C., Glover, D. M., McCue, S. J., and Fuentes, M.: Mesoscale
variability of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite
ocean color: Global patterns and spatial scales, J. Geophys. Res.-Oceans, 108, 3024, https://doi.org/10.1029/2001JC000843, 2003.
Dong, C., Lin, X., Liu, Y., Nencioli, F., Chao, Y., Guan, Y., Chen, D., Dickey, T.,
and McWilliams, J. C. : Three-dimensional oceanic eddy analysis in the
Southern California Bight from a numerical product, J. Geophys. Res., 117, C00H14,
https://doi.org/10.1029/2011JC007354, 2012.
Donohue, K. A., Watts, D. R., Hamilton, P., Leben, R., and Kennelly, M.: Loop
current eddy formation and baroclinic instability, Dyn. Atmos. Oceans, 76, 195–216, 2016.
d'Ovidio, F., De Monte, S., Della Penna, A., Cotté, C., and Guinet, C.:
Ecological implications of eddy retention in the open ocean: a Lagrangian
approach, J. Phys. A Math. Theor., 46, 254023, https://doi.org/10.1088/1751-8113/46/25/254023, 2013.
Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J.,
Feng, M., Herbette, S., and Matear, R.: Impact of eddies on surface
chlorophyll in the South Indian Ocean, J. Geophys. Res.-Oceans, 119, 8061–8077, 2014.
Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J.,
Feng, M., and Matear, R. J.: Anticyclonic eddies are more productive than
cyclonic eddies in subtropical gyres because of winter mixing, Sci. Adv., 2,
e1600282, https://doi.org/10.1126/sciadv.1600282, 2016.
Dufois, F., Hardman-Mountford, N. J., Fernandes, M., Wojtasiewicz, B.,
Shenoy, D., Slawinski, D., Gauns., M., Greenwood., J., and Toresen, R.:
Observational insights into chlorophyll distributions of subtropical South
Indian Ocean eddies, Geophys. Res. Lett., 44, 3255–3264, 2017.
Dugdale, R. C. and Goering, J. J. :Uptake of new and regenerated forms of
nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206, 1967.
Early, J. J., Samelson, R. M., and Chelton, D. B.: The evolution and
propagation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41, 1535–1555, 2011.
Elliott, B. A.: Anticyclonic rings in the Gulf of Mexico, J. Phys. Oceanogr., 12, 1292–1309,
1982.
Eppley, R. W. and Peterson B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Falkowski, P., Ziemann, D., Kolber, Z., and Bienfang, P.: Role of eddy
pumping in enhancing primary production in the ocean, Nature, 352, 55–58, 1991.
Flierl, G. R.: Particle motions in large-amplitude wave fields, Geophys. Astro. Fluid, 18,
39–74, 1981.
Flierl, G. R. and McGillicuddy, D. J.: Mesoscale and submesoscale
physical-biological interactions, The Sea, 12, 113–185, 2002.
Forristall, G. Z., Schaudt, K. J., and Cooper, C. K.: Evolution and
kinematics of a Loop Current eddy in the Gulf of Mexico during 1985, J. Geophys. Res.-Oceans,
97, 2173–2184, 1992.
Frolov, S. A., Sutyrin, G. G., Rowe, G. D., and Rothstein, L. M.: Loop Current
eddy interaction with the western boundary in the Gulf of Mexico, J. Phys. Oceanogr., 34,
2223–2237, 2004.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., and Johnson D. R.: World Ocean Atlas 2009, in:
Dissolved oxygen, apparent oxygen utilization, and oxygen saturation (NOAA
Atlas NESDIS 70, edited by: Levitus, S., Vol. 3, Washington, DC: U.S. Government, Printing Office, 344 pp., 2010.
Garcia-Jove Navarro, M., Sheinbaum Pardo, J., and Jouanno, J.: Sensitivity
of Loop Current metrics and eddy detachments to different model
configurations: The impact of topography and Caribbean perturbations,
Atmosfera, 29, 235–265, https://doi.org/10.20937/ATM.2016.29.03.05, 2016.
Garçon, V. C., Oschlies, A., Doney, S. C., McGillicuddy, D., and Waniek,
J.: The role of mesoscale variability on plankton dynamics in the North
Atlantic, Deep Sea Res. Pt. II, 48, 2199–2226, 2001.
Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J.: Satellite
observations of chlorophyll, phytoplankton biomass, and Ekman pumping in
nonlinear mesoscale eddies, J. Geophys. Res.-Oceans, 118, 6349–6370, 2013.
Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and
Strutton, P. G.: Regional variations in the influence of mesoscale eddies on
near-surface chlorophyll, J. Geophys. Res.-Oceans, 119, 8195–8220, 2014.
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O'Neill, L.
W.: Satellite observations of mesoscale eddy-induced Ekman pumping, J. Phys. Oceanogr.,
45, 104–132, 2015.
Geider, R. J.: Light and temperature dependence of the carbon to chlorophyll
a ratio in microalgae and cyanobacteria: implications for physiology and
growth of phytoplankton, New Phytol., 106, 1–34, 1987.
Glenn, S. M. and Ebbesmeyer C. C.: Drifting buoy observations of a
loop current anticyclonic eddy, J. Geophys. Res., 98, 20, https://doi.org/10.1029/93JC02078, 1993.
Green, R. E., Bower, A. S., and Lugo-Fernández, A.: First autonomous
bio-optical profiling float in the Gulf of Mexico reveals dynamic
biogeochemistry in deep waters, PLOS ONE, 9, e101658, https://doi.org/10.1371/journal.pone.0101658, 2014.
Guo, M., Xiu, P., Li, S., Chai, F., Xue, H., Zhou, K., and Dai, M.: Seasonal
variability and mechanisms regulating chlorophyll distribution in mesoscale
eddies in the South China Sea, J. Geophys. Res.-Oceans, 122, 5329–5347, https://doi.org/10.1002/2016JC012670,
2017.
Hamilton, P.: Eddy statistics from Lagrangian drifters and hydrography for
the northern Gulf of Mexico slope, J. Geophys. Res., 112, C09002,
https://doi.org/10.1029/2006JC003988, 2007.
Hamilton, P., Leben, R., Bower, A., Furey, H., and Pérez-Brunius, P.:
Hydrography of the Gulf of Mexico Using Autonomous Floats, J. Phys. Oceanogr., 48, 773–794,
https://doi.org/10.1175/JPO-D-17-0205.1, 2018.
He, Q., Zhan, H., Shuai, Y., Cai, S., Li, Q. P., Huang, G., and Li, J.:
Phytoplankton bloom triggered by an anticyclonic eddy: The combined effect
of eddy Ekman pumping and winter mixing, J. Geophys. Res.-Oceans, 122, 4886–4901, 2017.
Hernandez-Guerra, A. and Joyce, T. M.: Water masses and circulation in the
surface layers of the Caribbean at 66 W, Geophys. Res. Lett., 27, 3497–3500,
https://doi.org/10.1029/1999GL011230, 2000.
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Deque, M.: Modeling
the deep convection in the northwestern Mediterranean Sea using an
eddy-permitting and an eddy-resolving model: Case study of winter
1986–1987, J. Geophys. Res., 113, C04011, https://doi.org/10.1029/2006JC003991, 2008.
Huang, J. and Xu, F: Observational evidence of subsurface chlorophyll
response to mesoscale eddies in the North Pacific, Geophys. Res. Lett., 45, 8462–8470,
https://doi.org/10.1029/2018GL078408, 2018.
Jolliff, J. K., Kindle, J. C., Penta, B., Helber, R., Lee, Z., Shulman, I.,
Arnone, R., and Rowley, C. D.: On the relationship between
satellite-estimated bio-optical and thermal properties in the Gulf of
Mexico, J. Geophys. Res., 113, G01024, https://doi.org/10.1029/2006JG000373,
2008.
Jouanno, J., Ochoa, J., Pallàs-Sanz, E., Sheinbaum, J., Andrade-Canto,
F., Candela, J., and Molines, J. M.: Loop current frontal eddies: Formation
along the Campeche Bank and impact of coastally trapped waves, J. Phys. Oceanogr., 46,
3339–3363, https://doi.org/10.1175/JPO-D-16-0052.1, 2016.
Klein, P. and Lapeyre, G.: The oceanic vertical pump induced by mesoscale
and submesoscale turbulence, Annu. Rev. Mar. Sci., 1, 351–375, 2009.
Koszalka, I. M., Ceballos, L., and Bracco, A.: Vertical mixing and coherent
anticyclones in the ocean: the role of stratification, Nonlinear Process. Geophys., 17, 37–47, 2010.
Kouketsu, S., Tomita, H., Oka, E., Hosoda, S., Kobayashi, T., and Sato, K.:
The role of meso-scale eddies in mixed layer deepening and mode water
formation in the western North Pacific, in: New Developments in Mode-Water Research, Springer, Tokyo, 59–73, 2011.
Kunze, E.: Near-inertial wave propagation in geostrophic shear, J. Phys. Oceanogr., 15,
544–565, 1985.
Lascaratos, A. and Nittis, K.: A high-resolution three-dimensional
numerical study of intermediate water formation in the Levantine Sea, J. Geophys. Res.,
103, 18497–18511, 1998.
Lehahn, Y., d'Ovidio, F., Lévy, M., Amitai, Y., and Heifetz, E.: Long range
transport of a quasi isolated chlorophyll patch by an Agulhas ring,
Geophys. Res. Lett., 38, L16610, https://doi.org/10.1029/2011GL048588, 2011.
Le Hénaff, M., Kourafalou, V. H., Morel, Y., and Srinivasan, A.:
Simulating the dynamics and intensification of cyclonic Loop Current Frontal
Eddies in the Gulf of Mexico, J. Geophys. Res.-Oceans, 117, C02034, https://doi.org/10.1029/2011JC007279, 2012.
Levitus, S.: Climatological atlas of the world ocean (NOAA Prof. Pap. 13), Washington, DC: U.S. Government Printing Office, 173 pp., 1982.
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P., and Rivière,
P.: Bringing physics to life at the submesoscale. Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756, 2012.
Lévy, M., Franks, P. J. S., and Mith, K. S.: The role of submesoscale
currents in structuring marine ecosystems, Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3, 2018.
Linacre, L., Lara-Lara, R., Camacho-Ibar, V., Herguera, J. C.,
Bazán-Guzmán, C., and Ferreira-Bartrina, V.: Distribution pattern of
picoplankton carbon biomass linked to mesoscale dynamics in the southern
gulf of Mexico during winter conditions, Deep Sea Res. Pt. I, 106, 55–67, 2015.
Linacre L., Durazo, R., Camacho-Ibar, V. F., Selph, K. E., Lara-Lara, J. R.,
Mirabal-Gómez, U., Bazán-Guzmán, C., Lago-Lestón, A.,
Fernández-Martín, E. M., and Sidón-Ceseña, K.: Picoplankton
Carbon Biomass Assessments and Distribution of Prochlorococcus Ecotypes
Linked to Loop Current Eddies During Summer in the Southern Gulf of Mexico,
J. Geophys. Res.-Oceans, 124, 8342–8359, 2019.
Lipphardt, B., Poje, A. C., Kirwan, A., Kantha, L., and Zweng, M.: Death of
three Loop Current rings, J. Mar. Res., 66, 25–60, 2008.
Madec, G.: NEMO ocean engine, Note Du Pole De Modelisation (Vol. 27), Paris, France: Institut Pierre-Simon Laplace, 406 pp., 2016.
Madec, G., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Iovino, C., Lea, D.,
Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D., Vancoppenolle,
M., Müeller, S., Nurser, G., Bell, M., and Samson, G.: NEMO ocean engine (Version v4.0), Notes Du
Pôle De Modélisation De L'institut Pierre-simon Laplace (IPSL), Zenodo [Dataset],
https://doi.org/10.5281/zenodo.1464816 (last access: 14 July 2021), 2019.
Mann, K. H. and Lazier, J. R. N.: Dynamics of marine ecosystems (3 Edn.),
Oxford, UK: Blackwell Publishing, 512 pp., 2006.
Mahadevan, A.: Ocean science: Eddy effects on biogeochemistry, Nature,
506, 168–169, https://doi.org/10.1038/nature13048, 2014.
Martin, A. P. and Richards, K. J.: Mechanisms for vertical nutrient
transport within a North Atlantic mesoscale eddy, Deep Sea Res. Pt. II, 48, 757–773, 2001.
Mayot, N., D'Ortenzio, F., Taillandier, V., Prieur, L., de Fommervault, O.
P., Claustre, H., Bosse, A., Testor, P., and Conan, P.: Physical and
biogeochemical controls of the phytoplankton blooms in North Western
Mediterranean Sea: A multiplatform approach over a complete annual cycle
(2012–2013 DEWEX experiment), J. Geophys. Res.-Oceans, 122, 9999–10019, 2017.
McClain, C. R., Signorini, S. R., and Christian, J. R.: Subtropical gyre
variability observed by ocean-color satellites, Deep Sea Res. Pt. II, 51, 281–301, 2004.
McGillicuddy Jr., D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci., 8, 125–159,
https://doi.org/10.1146/annurev-marine-010814-015606, 2016.
McGillicuddy Jr., D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W.,
Johnson, R., Dickey, T. D., McNeil, J., Michaels, A. F., and Knap, A. H.:
Influence of mesoscale eddies on new production in the Sargasso Sea,
Nature, 394, 263–266, https://doi.org/10.1038/28367, 1998.
McGillicuddy Jr., D. J. and Robinson, A. R.: Eddy-induced nutrient supply
and new production in the Sargasso Sea, Deep Sea Res. Pt. I, 44, 1427–1450, 1997.
Meunier, T., Tenreiro, M., Pallàs-Sanz, E., Ochoa, J., Ruiz-Angulo, A.,
Portela, E., Cusí, S., Damien, P., and Carton, X.: Intrathermocline eddies
embedded within an anticyclonic vortex ring, Geophys. Res. Lett., 45, 7624–7633,
https://doi.org/10.1029/2018GL077527, 2018a.
Meunier, T., Pallás-Sanz, E., Tenreiro, M., Rodriguez, E. P., Ochoa, J.,
Ruiz-Angulo, A., and Cusí, S.: The Vertical structure of a Loop Current
Eddy, J. Geophys. Res.-Oceans, 123, 6070–6090, https://doi.org/10.1029/2018JC013801, 2018b.
Meunier, T., Sheinbaum, J., Pallàs-Sanz, E., Tenreiro, M., Ochoa, J.,
Ruiz-Angulo, A., Carton, X., and de Marez, C.: Heat Content Anomaly and Decay of
Warm-Core Rings: the Case of the Gulf of Mexico, Geophys. Res. Lett., 47, e2019GL085600, https://doi.org/10.1029/2019GL085600, 2020.
Mignot, A., Claustre, H., Uitz, J., Poteau, A., D'Ortenzio, F., and Xing,
X.: Understanding the seasonal dynamics of phytoplankton biomass and the
deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float
investigation, Global Biogeochem. Cy., 28, 856–876, 2014.
Monterey, G. and Levitus, S.: Seasonal variability of mixed layer depth for
the World Ocean (NOAA Atlas NESDIS 14), Silver Spring, MD: National
Oceanic and Atmospheric Administration, 100 pp., 1997.
Muller-Karger, F. E., Walsh, J. J., Evans, R. H., and Meyers, M. B.: On the
seasonal phytoplankton concentration and sea surface temperature cycles of
the Gulf of Mexico as determined by satellites, J. Geophys. Res., 96, 12645–12665, 1991.
Myers, V. B. and Iverson, R. I.: Phosphorus and nitrogen limited
phytoplankton productivity in northeastern Gulf of Mexico coastal estuaries,
in: Estuaries and nutrients, Humana Press, 569–582, 1981.
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
vector geometry-based eddy detection algorithm and its application to a
high-resolution numerical model product and high-frequency radar surface
velocities in the Southern California Bight, J. Atmos. Ocean. Tech., 27, 564–579,
https://doi.org/10.1175/2009JTECHO725.1, 2010.
Nof, D.: On the b-induced movement of isolated baroclinic eddies, J. Phys. Oceanogr., 11,
1662–1672, https://doi.org/10.1175/1520-0485(1981)011,1662:OTIMOI.2.0.CO;2, 1981.
Nowlin Jr., W. D. and Parker, C. A.: Effects of a cold-air outbreak on
shelf waters of the Gulf of Mexico, J. Phys. Oceanogr., 4, 467–486, 1974.
Omand, M. M. and Mahadevan, A.: The shape of the oceanic nitracline, Biogeosciences, 12, 3273–3287, https://doi.org/10.5194/bg-12-3273-2015, 2015.
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N.,
Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports
particulate organic carbon from the spring bloom, Science, 348, 222–225, 2015.
Oschlies, A. and Garcon, V.: Eddy-induced enhancement of primary production
in a model of the North Atlantic Ocean, Nature, 394, 266–269, https://doi.org/10.1038/28373, 1998.
Pallàs-Sanz, E., Candela, J., Sheinbaum, J., Ochoa, J., and Jouanno, J.:
Trapping of the near-inertial wave wakes of two consecutive hurricanes in
the Loop Current, J. Geophys. Res.-Oceans, 121, 7431–7454, 2016.
Pasqueron de Fommervault, O., Perez-Brunius, P., Damien, P., Camacho-Ibar, V. F., and Sheinbaum, J.: Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats, Biogeosciences, 14, 5647–5662, https://doi.org/10.5194/bg-14-5647-2017, 2017.
Passalacqua, G. A., Sheinbaum, J., and Martinez, J. A.: Sea surface
temperature influence on a winter cold front position and propagation:
Air-sea interactions of the “Nortes” winds in the Gulf of Mexico, Atmos. Sci. Lett., 17,
302–307, 2016.
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean's least productive
waters are expanding, Geophys. Res. Lett., 35, L03618, https://doi.org/10.1029/2007GL031745, 2008.
Sathyendranath, S., Brewin, R. J. W., Müeller, D., Brockmann, C.,
Deschamps, P.-Y., Doerffer, R., Fomferra, N., Franz, B. A., Grant, M. G., Hu
C., Krasemann, H., Lee, Z., Maritorena, S., Devred, E., Mélin, F.,
Peters, M., Smyth, T., Steinmetz, F., Swinton, J., Werdell, J., and Regner, P.:
Ocean Colour Climate Change Initiative: Approach and Initial Results, IEEE International Geoscience and Remote Sensing Symposium,
2012, 2024–2027, https://doi.org/10.1109/IGARSS.2012.6350979, 2012.
Sherr, E. B. and Sherr, B. F.: Significance of predation by protists in
aquatic microbial food webs, Antonie van Leeuwenhoek, 81, 293–308, 2002.
Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine,
D., Bailey, S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S.
C., and Eplee Jr., R. E.: Regional to global assessments of phytoplankton
dynamics from the SeaWiFS mission, Remote Sens. Environ., 135, 77–91, 2013.
Sosa-Gutiérrez, R., Pallàs-Sanz, E., Jouanno, J., Chaigneau, A.,
Candela, J., and Tenreiro, M.: Erosion of the Subsurface Salinity Maximum of the
Loop Current Eddies From Glider Observations and a Numerical Model, J. Geophys. Res.-Oceans, 125,
e2019JC015397, https://doi.org/10.1029/2019JC015397, 2020.
Strickland, J. D. H.: Production of organic matter in the primary stages of
the marine food chain, Chem. Oceanogr., 1, 477–610, 1965.
Sturges, W. and Leben, R.: Frequency of ring separations from the Loop
Current in the Gulf of Mexico: A revised estimate, J. Phys. Oceanogr., 30, 1814–1819, 2000.
Sweeney, E. N., McGillicuddy, D. J., and Buesseler, K. O. : Biogeochemical
impacts due to mesoscale eddy activity in the Sargasso Sea as measured at
the Bermuda Atlantic Time-series Study (BATS), Deep Sea Res. Pt. II, 50, 3017–3039,
https://doi.org/10.1016/j.dsr2.2003.07.008, 2003.
Tenreiro, M., Candela, J., Sanz, E. P., Sheinbaum, J., and Ochoa, J.:
Near-Surface and Deep Circulation Coupling in the Western Gulf of Mexico,
J. Phys. Oceanogr., 48, 145–161, 2018.
Travis, S. and Qiu, B.: Seasonal Reversal of the Near-Surface Chlorophyll
Response to the Presence of Mesoscale Eddies in the South Pacific
Subtropical Countercurrent, J. Geophys. Res.-Oceans, 125, e2019JC015752, 2020.
Turner, J. S.: Buoyancy effects in fluids, New York, NY: Cambridge
University Press, 368 pp., 1973.
Turner, R. E., Rabalais, N. N., and Justic, D.: Predicting summer hypoxia in
the northern Gulf of Mexico: Riverine N, P, and Si loading, Mar. Pollut. Bull., 52, 139–148,
2006.
Vukovich, F. M.: Climatology of ocean features in the Gulf of Mexico using
satellite remote sensing data, J. Phys. Oceanogr., 37, 689–707,
https://doi.org/10.1175/JPO2989.1, 2007.
Waite, A. M., Pesant, S., Griffin, D. A., Thompson, P. A., and Holl, C. M.:
Oceanography, primary production and dissolved inorganic nitrogen uptake in
two Leeuwin Current eddies, Deep Sea Res., Pt. II, 54, 981–1002, https://doi.org/10.1016/j.dsr2.2007.03.001,
2007.
Wawrik, B., Paul, J., Bronk, D., John, D., and Gray, M.: High rates of ammonium
recycling drive phytoplankton productivity in the offshore Mississippi River
plume, Aquat. Microb. Ecol., 35, 175–184, https://doi.org/10.3354/ame035175,
2004.
Weisberg, R. H. and Liu, Y.: On the Loop Current penetration into the Gulf
of Mexico, J. Geophys Res.-Oceans, 122, 9679–9694, https://doi.org/10.1002/2017JC013330, 2017.
Williams, R. G.: Modification of ocean eddies by air-sea interaction, J. Geophys. Res.-Oceans,
93, 15523–15533, 1988.
Zhao, J., Bower, A., Yang, J., and Lin, X.: Meridional heat transport
variability induced by mesoscale processes in the subpolar North Atlantic,
Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x, 2018.
Zhong, Y. and Bracco, A.: Submesoscale impacts on horizontal and vertical
transport in the Gulf of Mexico, J. Geophys. Res.-Oceans, 118, 5651–5668, 2013.
Short summary
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of nutrients in the upper layers. Using modeling techniques, we find that the long-living anticyclonic Loop Current eddies that are shed episodically from the Yucatan Channel strongly shape the distribution of phytoplankton and, more importantly, stimulate their growth. This results from the contribution of multiple mechanisms of physical–biogeochemical interactions discussed in this study.
The Gulf of Mexico deep waters are relatively poor in phytoplankton biomass due to low levels of...
Altmetrics
Final-revised paper
Preprint