Articles | Volume 18, issue 15
https://doi.org/10.5194/bg-18-4587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4587-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula
Indah Ardiningsih
CORRESPONDING AUTHOR
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, 1797SH, the
Netherlands
Kyyas Seyitmuhammedov
Centre for Trace Element Analysis and Chemistry Department, University
of Otago, Dunedin, New Zealand
Sylvia G. Sander
International Atomic Energy Agency, 4a Quai Antoine 1er, 98000,
Principality of Monaco, Monaco
Claudine H. Stirling
Centre for Trace Element Analysis and Chemistry Department, University
of Otago, Dunedin, New Zealand
Gert-Jan Reichart
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, 1797SH, the
Netherlands
Faculty of Geosciences, Earth Sciences Department, Utrecht University, Utrecht, 3512JE, the
Netherlands
Kevin R. Arrigo
Department of Earth System Science, Stanford University, USA
Loes J. A. Gerringa
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, 1797SH, the
Netherlands
Rob Middag
Department of Ocean Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, 1797SH, the
Netherlands
Centre for Trace Element Analysis and Chemistry Department, University
of Otago, Dunedin, New Zealand
Related authors
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Louise Delaigue, Gert-Jan Reichart, Li Qiu, Eric P. Achterberg, Yasmina Ourradi, Chris Galley, André Mutzberg, and Matthew P. Humphreys
Biogeosciences, 22, 5103–5121, https://doi.org/10.5194/bg-22-5103-2025, https://doi.org/10.5194/bg-22-5103-2025, 2025
Short summary
Short summary
Our study analysed pH in ocean surface waters to understand how it fluctuates with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Yannick F. Bats, Klaas G. J. Nierop, Alice Stuart-Lee, Joost Frieling, Linda van Roij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 22, 4689–4704, https://doi.org/10.5194/bg-22-4689-2025, https://doi.org/10.5194/bg-22-4689-2025, 2025
Short summary
Short summary
In this study, we analyzed the molecular and stable carbon isotopic composition (δ13C) of pollen and spores (sporomorphs) that underwent chemical treatments that simulate diagenesis during fossilization. We show that the successive removal of sugars and lipids results in the depletion of 13C in the residual sporomorph, leaving rich aromatic compounds. This residual aromatic-rich structure likely represents diagenetically resistant sporopollenin, implying that diagenesis results in the depletion of 13C in pollen.
Evert de Froe, Christian Mohn, Karline Soetaert, Anna-Selma van der Kaaden, Gert-Jan Reichart, Laurence H. De Clippele, Sandra R. Maier, and Dick van Oevelen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3385, https://doi.org/10.5194/egusphere-2025-3385, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Cold-water corals are important reef-building animals in the deep sea, and are found all over the world. So far, researchers have been mapping and predicting where cold-water corals can be found using video transects and statistics. This study provides the first process-based model in which corals are predicted based on ocean currents and food particle movement. The renewal of food by tidal currents close to the seafloor and corals proved essential in predicting where they can grow or not.
Anna Cutmore, Nicole Bale, Rick Hennekam, Bingjie Yang, Darci Rush, Gert-Jan Reichart, Ellen C. Hopmans, and Stefan Schouten
Clim. Past, 21, 957–971, https://doi.org/10.5194/cp-21-957-2025, https://doi.org/10.5194/cp-21-957-2025, 2025
Short summary
Short summary
As human activities lower marine oxygen levels, understanding the impact on the marine nitrogen cycle is vital. The Black Sea, which became oxygen-deprived 9600 years ago, offers key insights. By studying organic compounds linked to nitrogen cycle processes, we found that, 7200 years ago, the Black Sea's nitrogen cycle significantly altered due to severe deoxygenation. This suggests that continued marine oxygen decline could similarly alter the marine nitrogen cycle, affecting vital ecosystems.
Peter Kraal, Kristin A. Ungerhofer, Darci Rush, and Gert-Jan Reichart
EGUsphere, https://doi.org/10.5194/egusphere-2025-1870, https://doi.org/10.5194/egusphere-2025-1870, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Element cycles in oxygen-depleted areas such as upwelling areas inform future deoxygenation scenarios. The Benguela upwelling system shows strong decoupling of nitrogen and phosphorus cycling due to seasonal shelf anoxia. Anaerobic processes result in pelagic nitrogen loss as N2. At the same time, sediments are rich in fish-derived and bacterial phosphorus, with high fluxes of excess phosphate, altering deep-water nitrogen:phosphorus ratios. Such alterations can affect ocean functioning.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Devika Varma, Laura Villanueva, Nicole J. Bale, Pierre Offre, Gert-Jan Reichart, and Stefan Schouten
Biogeosciences, 21, 4875–4888, https://doi.org/10.5194/bg-21-4875-2024, https://doi.org/10.5194/bg-21-4875-2024, 2024
Short summary
Short summary
Archaeal hydroxylated tetraether lipids are increasingly used as temperature indicators in marine settings, but the factors influencing their distribution are still unclear. Analyzing membrane lipids of two thaumarchaeotal strains showed that the growth phase of the cultures does not affect the lipid distribution, but growth temperature profoundly affects the degree of cyclization of these lipids. Also, the abundance of these lipids is species-specific and is not influenced by temperature.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Guangnan Wu, Klaas G. J. Nierop, Bingjie Yang, Stefan Schouten, Gert-Jan Reichart, and Peter Kraal
EGUsphere, https://doi.org/10.5194/egusphere-2024-3192, https://doi.org/10.5194/egusphere-2024-3192, 2024
Short summary
Short summary
Estuaries store and process large amounts of carbon, making them vital to the global carbon cycle. In the Port of Rotterdam, we studied the source of organic matter (OM) in sediments and how it influences OM breakdown. We found that marine OM degrades faster than land OM, and human activities like dredging can accelerate this by exposing sediments to oxygen. Our findings highlight the impact of human activities on carbon storage in estuaries, which is key for managing estuarine carbon dynamics.
Joost Frieling, Linda van Roij, Iris Kleij, Gert-Jan Reichart, and Appy Sluijs
Biogeosciences, 20, 4651–4668, https://doi.org/10.5194/bg-20-4651-2023, https://doi.org/10.5194/bg-20-4651-2023, 2023
Short summary
Short summary
We present a first species-specific evaluation of marine core-top dinoflagellate cyst carbon isotope fractionation (εp) to assess natural pCO2 dependency on εp and explore its geological deep-time paleo-pCO2 proxy potential. We find that εp differs between genera and species and that in Operculodinium centrocarpum, εp is controlled by pCO2 and nutrients. Our results highlight the added value of δ13C analyses of individual micrometer-scale sedimentary organic carbon particles.
Laura Pacho, Lennart de Nooijer, and Gert-Jan Reichart
Biogeosciences, 20, 4043–4056, https://doi.org/10.5194/bg-20-4043-2023, https://doi.org/10.5194/bg-20-4043-2023, 2023
Short summary
Short summary
We analyzed Mg / Ca and other El / Ca (Na / Ca, B / Ca, Sr / Ca and Ba / Ca) in Nodosariata. Their calcite chemistry is markedly different to that of the other calcifying orders of foraminifera. We show a relation between the species average Mg / Ca and its sensitivity to changes in temperature. Differences were reflected in both the Mg incorporation and the sensitivities of Mg / Ca to temperature.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Rick Hennekam, Katharine M. Grant, Eelco J. Rohling, Rik Tjallingii, David Heslop, Andrew P. Roberts, Lucas J. Lourens, and Gert-Jan Reichart
Clim. Past, 18, 2509–2521, https://doi.org/10.5194/cp-18-2509-2022, https://doi.org/10.5194/cp-18-2509-2022, 2022
Short summary
Short summary
The ratio of titanium to aluminum (Ti/Al) is an established way to reconstruct North African climate in eastern Mediterranean Sea sediments. We demonstrate here how to obtain reliable Ti/Al data using an efficient scanning method that allows rapid acquisition of long climate records at low expense. Using this method, we reconstruct a 3-million-year North African climate record. African environmental variability was paced predominantly by low-latitude insolation from 3–1.2 million years ago.
Carolien M. H. van der Weijst, Koen J. van der Laan, Francien Peterse, Gert-Jan Reichart, Francesca Sangiorgi, Stefan Schouten, Tjerk J. T. Veenstra, and Appy Sluijs
Clim. Past, 18, 1947–1962, https://doi.org/10.5194/cp-18-1947-2022, https://doi.org/10.5194/cp-18-1947-2022, 2022
Short summary
Short summary
The TEX86 proxy is often used by paleoceanographers to reconstruct past sea-surface temperatures. However, the origin of the TEX86 signal in marine sediments has been debated since the proxy was first proposed. In our paper, we show that TEX86 carries a mixed sea-surface and subsurface temperature signal and should be calibrated accordingly. Using our 15-million-year record, we subsequently show how a TEX86 subsurface temperature record can be used to inform us on past sea-surface temperatures.
Carolien M. H. van der Weijst, Josse Winkelhorst, Wesley de Nooijer, Anna von der Heydt, Gert-Jan Reichart, Francesca Sangiorgi, and Appy Sluijs
Clim. Past, 18, 961–973, https://doi.org/10.5194/cp-18-961-2022, https://doi.org/10.5194/cp-18-961-2022, 2022
Short summary
Short summary
A hypothesized link between Pliocene (5.3–2.5 million years ago) global climate and tropical thermocline depth is currently only backed up by data from the Pacific Ocean. In our paper, we present temperature, salinity, and thermocline records from the tropical Atlantic Ocean. Surprisingly, the Pliocene thermocline evolution was remarkably different in the Atlantic and Pacific. We need to reevaluate the mechanisms that drive thermocline depth, and how these are tied to global climate change.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Hans van Haren, Corina P. D. Brussaard, Loes J. A. Gerringa, Mathijs H. van Manen, Rob Middag, and Ruud Groenewegen
Ocean Sci., 17, 301–318, https://doi.org/10.5194/os-17-301-2021, https://doi.org/10.5194/os-17-301-2021, 2021
Short summary
Short summary
Changes in ocean temperature may affect vertical density stratification, which may hamper turbulent exchange and thus nutrient availability for phytoplankton growth. To quantify varying physical conditions, we sampled the upper 500 m along 17 ± 5° W between [30, 63]° N in summer. South to north, temperature decreased with stratification while turbulence and nutrient fluxes remained constant, likely due to internal waves breaking and little affected by the physical process of global warming.
Delphine Dissard, Gert Jan Reichart, Christophe Menkes, Morgan Mangeas, Stephan Frickenhaus, and Jelle Bijma
Biogeosciences, 18, 423–439, https://doi.org/10.5194/bg-18-423-2021, https://doi.org/10.5194/bg-18-423-2021, 2021
Short summary
Short summary
Results from a data set acquired from living foraminifera T. sacculifer collected from surface waters are presented, allowing us to establish a new Mg/Ca–Sr/Ca–temperature equation improving temperature reconstructions. When combining equations, δ18Ow can be reconstructed with a precision of ± 0.5 ‰, while successive reconstructions involving Mg/Ca and δ18Oc preclude salinity reconstruction with a precision better than ± 1.69. A new direct linear fit to reconstruct salinity could be established.
Siham de Goeyse, Alice E. Webb, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 393–401, https://doi.org/10.5194/bg-18-393-2021, https://doi.org/10.5194/bg-18-393-2021, 2021
Short summary
Short summary
Foraminifera are calcifying organisms that play a role in the marine inorganic-carbon cycle and are widely used to reconstruct paleoclimates. However, the fundamental process by which they calcify remains essentially unknown. Here we use inhibitors to show that an enzyme is speeding up the conversion between bicarbonate and CO2. This helps the foraminifera acquire sufficient carbon for calcification and might aid their tolerance to elevated CO2 level.
Linda K. Dämmer, Lennart de Nooijer, Erik van Sebille, Jan G. Haak, and Gert-Jan Reichart
Clim. Past, 16, 2401–2414, https://doi.org/10.5194/cp-16-2401-2020, https://doi.org/10.5194/cp-16-2401-2020, 2020
Short summary
Short summary
The compositions of foraminifera shells often vary with environmental parameters such as temperature or salinity; thus, they can be used as proxies for these environmental variables. Often a single proxy is influenced by more than one parameter. Here, we show that while salinity impacts shell Na / Ca, temperature has no effect. We also show that the combination of different proxies (Mg / Ca and δ18O) to reconstruct salinity does not seem to work as previously thought.
Cited articles
Abualhaija, M. M. and van den Berg, C. M. G.: Chemical speciation of iron
in seawater using catalytic cathodic stripping voltammetry with ligand
competition against salicylaldoxime, Mar. Chem., 164,
60–74, https://doi.org/10.1016/j.marchem.2014.06.005, 2014.
Alderkamp, A.-C., Kulk, G., Buma, A. G. J., Visser, R. J. W., Van Dijken, G.
L., Mills, M. M., and Arrigo, K. R.: The effect of iron limitation on the
photophysiology of phaeocystis antarctica (prymnesiophyceae) and
fragilariopsis cylindrus (bacillariophyceae) under dynamic irradiance,
J. Phycol., 48, 45–59, https://doi.org/10.1111/j.1529-8817.2011.01098.x, 2012.
Ardiningsih, I.: Fe-binding organic ligands in coastal and frontal regions of the western Antarctic Peninsula [data set], available at: https://dataverse.nioz.nl/dataset.xhtml?persistentId=doi:10.25850/nioz/7b.b.5, last access: 20 January 2021.
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G.
R., VanWoert, M., and Lizotte, M. P.: Phytoplankton Community Structure and
the Drawdown of Nutrients and CO2 in the Southern Ocean, Science, 283, 365–367, https://doi.org/10.1126/science.283.5400.365, 1999.
Arrigo, K. R., van Dijken, G., and Long, M.: Coastal Southern Ocean: A
strong anthropogenic CO2 sink, Geophys. Res. Lett., 35, L21602, https://doi.org/10.1029/2008GL035624, 2008.
Arrigo, K. R., van Dijken, G. L., and Strong, A. L.: Environmental controls
of marine productivity hot spots around Antarctica,
J. Geophys. Res.-Oceans, 120, 5545–5565, https://doi.org/10.1002/2015JC010888, 2015.
Arrigo, K. R., van Dijken, G. L., Alderkamp, A.-C., Erickson, Z. K., Lewis,
K. M., Lowry, K. E., Joy-Warren, H. L., Middag, R., Nash-Arrigo, J. E.,
Selz, V., and van de Poll, W.: Early Spring Phytoplankton Dynamics in the
Western Antarctic Peninsula, J. Geophys. Res.-Oceans, 122,
9350–9369, https://doi.org/10.1002/2017jc013281, 2017.
Barbeau, K., Rue, E. L., Bruland, K. W., and Butler, A.: Photochemical
cycling of iron in the surface ocean mediated by microbial iron(iii)-binding
ligands, Nature, 413, 409–413, https://doi.org/10.1038/35096545, 2001.
Biller, D. V. and Bruland, K. W.: Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd,
and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector
inductively coupled plasma mass spectrometry (ICP-MS), Mar. Chem.,
130, 12–20, https://doi.org/10.1016/j.marchem.2011.12.001, 2012.
Boiteau, R. M., Fitzsimmons, J. N., Repeta, D. J., and Boyle, E. A.:
Detection of iron ligands in seawater and marine cyanobacteria cultures by
high-performance liquid chromatography-inductively coupled plasma-mass
spectrometry, Anal. Chem., 85, 4357–4362, https://doi.org/10.1021/ac3034568, 2013.
Boiteau, R. M., Mende, D. R., Hawco, N. J., McIlvin, M. R., Fitzsimmons, J.
N., Saito, M. A., Sedwick, P. N., DeLong, E. F., and Repeta, D. J.:
Siderophore-based microbial adaptations to iron scarcity across the eastern
Pacific Ocean, P. Natl. Acad. Sci. USA, 113, 14237–14242, https://doi.org/10.1073/pnas.1608594113, 2016.
Boiteau, R. M., Till, C. P., Coale, T. H., Fitzsimmons, J. N., Bruland, K.
W., and Repeta, D. J.: Patterns of iron and siderophore distributions across
the California Current System, Limnol. Oceanogr., 64, 376–389, https://doi.org/10.1002/lno.11046, 2019.
Boye, M., van den Berg, C. M. G., de Jong, J. T. M., Leach, H., Croot, P.,
and de Baar, H. J. W.: Organic complexation of iron in the Southern Ocean,
Deep-Sea Res. Pt. I, 48, 1477–1497, https://doi.org/10.1016/s0967-0637(00)00099-6, 2001.
Brzezinski, M. A., Pride, C. J., Franck, V. M., Sigman, D. M., Sarmiento, J.
L., Matsumoto, K., Gruber, N., Rau, G. H., and Coale, K. H.: A switch from
Si(OH)4 to depletion in the glacial Southern Ocean, Geophys. Res. Lett., 29, 5.1–5.4 , https://doi.org/10.1029/2001gl014349, 2002.
Buck, K. N., Selph, K. E., and Barbeau, K. A.: Iron-binding ligand
production and copper speciation in an incubation experiment of Antarctic
Peninsula shelf waters from the Bransfield Strait, Southern Ocean, Mar. Chem., 122, 148–159, https://doi.org/10.1016/j.marchem.2010.06.002, 2010.
Buck, K. N., Sedwick, P. N., Sohst, B., and Carlson, C. A.: Organic
complexation of iron in the eastern tropical South Pacific: Results from US
GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16), Mar. Chem., 201, 229–251, https://doi.org/10.1016/j.marchem.2017.11.007, 2017.
Bundy, R. M., Boiteau, R. M., McLean, C., Turk-Kubo, K. A., McIlvin, M. R.,
Saito, M. A., Van Mooy, B. A. S., and Repeta, D. J.: Distinct Siderophores
Contribute to Iron Cycling in the Mesopelagic at Station ALOHA,
Frontiers in Marine Science, 5, 61, https://doi.org/10.3389/fmars.2018.00061, 2018.
Burkhardt, B. G., Watkins-Brandt, K. S., Defforey, D., Paytan, A., and
White, A. E.: Remineralization of phytoplankton-derived organic matter by
natural populations of heterotrophic bacteria, Mar. Chem., 163, 1–9, https://doi.org/10.1016/j.marchem.2014.03.007, 2014.
Butler, A.: Marine siderophores and microbial iron mobilization, Biometals,
18, 369–374, https://doi.org/10.1007/s10534-005-3711-0 2005.
Croot, P. L., Andersson, K., Öztürk, M., and Turner, D. R.: The
distribution and speciation of iron along 6∘ E in the Southern
Ocean, Deep-Sea Res. Pt. II, 51, 2857–2879, https://doi.org/10.1016/j.dsr2.2003.10.012, 2004.
de Baar, H. J.: On iron limitation of the Southern Ocean: experimental
observations in the Weddell and Scotia Seas, Mar. Ecol. Prog. Ser., 65,
105–122, https://doi.org/10.3354/meps065105, 1990.
de Baar, H. J., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A., Assmy,
P., Bakker, D. C., Bozec, Y., Barber, R. T., and Brzezinski, M. A.:
Synthesis of iron fertilization experiments: from the iron age in the age of
enlightenment, J. Geophys. Res.-Oceans, 110, C09S16, https://doi.org/10.1029/2004JC002601, 2005.
De Jong, J. T. M., Stammerjohn, S. E., Ackley, S. F., Tison, J. L.,
Mattielli, N., and Schoemann, V.: Sources and fluxes of dissolved iron in
the Bellingshausen Sea (West Antarctica): The importance of sea ice,
icebergs and the continental margin, Mar. Chem., 177, 518–535, https://doi.org/10.1016/j.marchem.2015.08.004, 2015.
De La Rocha, C.: 8.4 – The Biological Pump, in: The oceans and marine
geochemistry, edn. 2, Elsevier, Oxford, UK, p. 83, 2006.
Genovese, C., Grotti, M., Pittaluga, J., Ardini, F., Janssens, J., Wuttig,
K., Moreau, S., and Lannuzel, D.: Influence of organic complexation on
dissolved iron distribution in East Antarctic pack ice, Mar. Chem.,
203, 28–37, https://doi.org/10.1016/j.marchem.2018.04.005, 2018.
Gerringa, L. J. A., Blain, S., Laan, P., Sarthou, G., Veldhuis, M. J. W.,
Brussaard, C. P. D., Viollier, E., and Timmermans, K. R.: Fe-binding
dissolved organic ligands near the Kerguelen Archipelago in the Southern
Ocean (Indian sector), Deep-Sea Res. Pt. II, 55, 606–621, https://doi.org/10.1016/j.dsr2.2007.12.007, 2008.
Gerringa, L. J. A., Rijkenberg, M. J., Thuróczy, C.-E., and Maas, L. R.: A critical look at the calculation of the binding characteristics and
concentration of iron complexing ligands in seawater with suggested
improvements, Environ. Chem., 11, 114–136, https://doi.org/10.1071/EN13072, 2014.
Gerringa, L. J. A., Rijkenberg, M. J. A., Schoemann, V., Laan, P., and de Baar, H. J. W.: Organic complexation of iron in the West Atlantic Ocean,
Mar. Chem., 177, 434–446, https://doi.org/10.1016/j.marchem.2015.04.007, 2015.
Gerringa, L. J. A., Laan, P., Arrigo, K., van Dijken, G., and Alderkamp, A.-C.: The organic complexation of iron in the Ross sea, Mar. Chem., 215, 103672, https://doi.org/10.1016/j.marchem.2019.103672, 2019.
Gerringa, L. J. A., Gledhill, M., Ardiningsih, I., Muntjewerf, N., and Laglera, L. M.: Comparing CLE-AdCSV applications using SA and TAC to determine the Fe binding characteristics of model ligands in seawater, Biogeosciences, in review, 2021.
Gledhill, M. and Buck, K.: The organic complexation of iron in the marine
environment: A review, Front. Microbiol., 3, 69, https://doi.org/10.3389/fmicb.2012.00069, 2012.
Gledhill, M. and Gerringa, L. J. A.: The Effect of Metal Concentration on
the Parameters Derived from Complexometric Titrations of Trace Elements in
Seawater – A Model Study, Frontiers in Marine Science, 4, 254, https://doi.org/10.3389/fmars.2017.00254, 2017.
Grotov, A. S., Nechaev, D. A., Panteleev, G. G., and Yaremchuk, M. I.: Large
scale circulation in the Bellingshausen and Amundsen seas as a variational
inverse of climatological data, J. Geophys. Res.-Oceans,
103, 13011–13022, https://doi.org/10.1029/98jc00449, 1998.
Hassler, C., Cabanes, D., Blanco-Ameijeiras, S., Sander, S. G., and Benner,
R.: Importance of refractory ligands and their photodegradation for iron
oceanic inventories and cycling, Mar. Freshwater Res., 71,
311–320, https://doi.org/10.1071/MF19213, 2020.
Hassler, C. S., van den Berg, C. M. G., and Boyd, P. W.: Toward a Regional
Classification to Provide a More Inclusive Examination of the Ocean
Biogeochemistry of Iron-Binding Ligands, Frontiers in Marine Science, 4, 19, https://doi.org/10.3389/fmars.2017.00019, 2017.
Henley, S. F., Schofield, O. M., Hendry, K. R., Schloss, I. R., Steinberg,
D. K., Moffat, C., Peck, L. S., Costa, D. P., Bakker, D. C. E., Hughes, C.,
Rozema, P. D., Ducklow, H. W., Abele, D., Stefels, J., Van Leeuwe, M. A.,
Brussaard, C. P. D., Buma, A. G. J., Kohut, J., Sahade, R., Friedlaender, A.
S., Stammerjohn, S. E., Venables, H. J., and Meredith, M. P.: Variability
and change in the west Antarctic Peninsula marine system: Research
priorities and opportunities, Prog. Oceanogr., 173, 208–237, https://doi.org/10.1016/j.pocean.2019.03.003, 2019.
Hofmann, E. E. and Klinck, J. M.: Thermohaline variability of the waters
overlying the west Antarctic Peninsula continental shelf, Ocean, Ice, and
Atmosphere: Interactions at the Antarctic Continental Margin,
Antarct. Res. Ser, 75, 67–81, https://doi.org/10.1029/AR075p0067, 1998.
Joy-Warren, H. L., van Dijken, G. L., Alderkamp, A.-C., Leventer, A., Lewis,
K. M., Selz, V., Lowry, K. E., van de Poll, W., and Arrigo, K. R.: Light Is
the Primary Driver of Early Season Phytoplankton Production Along the
Western Antarctic Peninsula, J. Geophys. Res.-Oceans, 124,
7375–7399, https://doi.org/10.1029/2019jc015295, 2019.
Klinck, J. M., Hofmann, E. E., Beardsley, R. C., Salihoglu, B., and Howard,
S.: Water-mass properties and circulation on the west Antarctic Peninsula
Continental Shelf in Austral Fall and Winter 2001, Deep-Sea Res. Pt. II, 51, 1925–1946, https://doi.org/10.1016/j.dsr2.2004.08.001, 2004.
Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W., and van Ooijen, J.
C.: Dissolved iron in the Southern Ocean (Atlantic sector), Deep-Sea Res. Pt. II, 58, 2678–2694, https://doi.org/10.1016/j.dsr2.2010.10.042, 2011.
Krachler, R., Krachler, R. F., Wallner, G., Hann, S., Laux, M., Cervantes
Recalde, M. F., Jirsa, F., Neubauer, E., von der Kammer, F., Hofmann, T.,
and Keppler, B. K.: River-derived humic substances as iron chelators in
seawater, Mar. Chem., 174, 85–93, https://doi.org/10.1016/j.marchem.2015.05.009, 2015.
Kuma, K., Nishioka, J., and Matsunaga, K.: Controls on iron(III) hydroxide
solubility in seawater: The influence of pH and natural organic chelators,
Limnol. Oceanogr., 41, 396–407, https://doi.org/10.4319/lo.1996.41.3.0396, 1996.
Laglera, L. M., Sukekava, C. F., Slagter, H. A., Downes, J.,
Aparicio-Gonzalez, A., and Gerringa, L. J.: First Quantification of the
Controlling Role of Humic Substances in the Transport of Iron Across the
Surface of the Arctic Ocean, Environ. Sci. Technol., 53,
13136–13145, https://doi.org/10.1021/acs.est.9b04240, 2019a.
Laglera, L. M., Tovar-Sanchez, A., Sukekava, C. F., Naik, H., Naqvi, S. W.
A., and Wolf-Gladrow, D. A.: Iron organic speciation during the LOHAFEX
experiment: Iron ligands release under biomass control by copepod grazing,
J. Marine Syst., 103151, 207, https://doi.org/10.1016/j.jmarsys.2019.02.002, 2019b.
Lam, P. J., Doney, S. C., and Bishop, J. K. B.: The dynamic ocean biological
pump: Insights from a global compilation of particulate organic carbon,
CaCO3, and opal concentration profiles from the mesopelagic,
Global Biogeochem. Cy., 25, 3, https://doi.org/10.1029/2010gb003868, 2011.
Lannuzel, D., Grotti, M., Abelmoschi, M. L., and van der Merwe, P.: Organic
ligands control the concentrations of dissolved iron in Antarctic sea ice,
Mar. Chem., 174, 120–130, https://doi.org/10.1016/j.marchem.2015.05.005, 2015.
Lannuzel, D., Vancoppenolle, M., van der Merwe, P., de Jong, J. T. M.,
Meiners, K. M., Grotti, M., Nishioka, J., and Schoemann, V.: Iron in sea
ice: Review and new insights, Elementa, 4, 000130, https://doi.org/10.12952/journal.elementa.000130, 2016.
Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S., and Follows, M.
J.: Microbial feedbacks optimize ocean iron availability,
P. Natl. Acad. Sci. USA, 117, 4842–4849, https://doi.org/10.1073/pnas.1917277117, 2020.
Le Quéré, C., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Peters, G. P., Manning, A. C., Boden, T. A., Tans, P. P., Houghton, R. A., Keeling, R. F., Alin, S., Andrews, O. D., Anthoni, P., Barbero, L., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Currie, K., Delire, C., Doney, S. C., Friedlingstein, P., Gkritzalis, T., Harris, I., Hauck, J., Haverd, V., Hoppema, M., Klein Goldewijk, K., Jain, A. K., Kato, E., Körtzinger, A., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Lombardozzi, D., Melton, J. R., Metzl, N., Millero, F., Monteiro, P. M. S., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., O'Brien, K., Olsen, A., Omar, A. M., Ono, T., Pierrot, D., Poulter, B., Rödenbeck, C., Salisbury, J., Schuster, U., Schwinger, J., Séférian, R., Skjelvan, I., Stocker, B. D., Sutton, A. J., Takahashi, T., Tian, H., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., Viovy, N., Walker, A. P., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2016, Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, 2016.
Lin, H. and Twining, B. S.: Chemical speciation of iron in Antarctic waters
surrounding free-drifting icebergs, Mar. Chem., 128–129, 81–91, https://doi.org/10.1016/j.marchem.2011.10.005, 2012.
Liu, X. and Millero, F. J.: The solubility of iron hydroxide in sodium
chloride solutions, Geochim. Cosmochim. Ac., 63, 3487–3497, https://doi.org/10.1016/S0016-7037(99)00270-7, 1999.
Liu, X. and Millero, F. J.: The solubility of iron in seawater, Mar. Chem., 77, 43–54, https://doi.org/10.1016/S0304-4203(01)00074-3, 2002.
Macrellis, H. M., Trick, C. G., Rue, E. L., Smith, G., and Bruland, K. W.:
Collection and detection of natural iron-binding ligands from seawater,
Mar. Chem., 76, 175–187, 2001.
Maldonado, M. T., Strzepek, R. F., Sander, S., and Boyd, P. W.: Acquisition
of iron bound to strong organic complexes, with different Fe binding groups
and photochemical reactivities, by plankton communities in Fe-limited
subantarctic waters, Global Biogeochem. Cy., 19, 4,
https://doi.org/10.1029/2005GB002481, 2005.
Martin, J. H., Gordon, M., and Fitzwater, S. E.: The case for iron, 36, Limnol. Oceanogr., 1793–1802, https://doi.org/10.4319/lo.1991.36.8.1793, 1991.
Mawji, E., Gledhill, M., Milton, J. A., Tarran, G. A., Ussher, S., Thompson,
A., Wolff, G. A., Worsfold, P. J., and Achterberg, E. P.: Hydroxamate
Siderophores: Occurrence and Importance in the Atlantic Ocean,
Environ. Sci. Technol., 42, 8675–8680, https://doi.org/10.1021/es801884r, 2008.
Middag, R., De Baar, H., Laan, P., and Bakker, K.: Dissolved aluminium and
the silicon cycle in the Arctic Ocean, Mar. Chem., 115, 176–195, https://doi.org/10.1016/j.marchem.2009.08.002, 2009.
Middag, R., de Baar, H. J. W., Klunder, M. B., and Laan, P.: Fluxes of
dissolved aluminum and manganese to the Weddell Sea and indications for
manganese co-limitation, Limnol. Oceanogr., 58, 287–300, https://doi.org/10.4319/lo.2013.58.1.0287, 2013.
Middag, R., de Baar, H. J. W., Bruland, K. W., and van Heuven, S. M. A. C.:
The Distribution of Nickel in the West-Atlantic Ocean, Its Relationship With
Phosphate and a Comparison to Cadmium and Zinc, Frontiers in Marine Science,
7, 105, https://doi.org/10.3389/fmars.2020.00105, 2020.
Mikaloff Fletcher, S., Gruber, N., Jacobson, A. R., Doney, S., Dutkiewicz,
S., Gerber, M., Follows, M., Joos, F., Lindsay, K., and Menemenlis, D.:
Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the
ocean, Global Biogeochem. Cy., 20, 2, https://doi.org/10.1029/2005GB002530, 2006.
Moffat, C. and Meredith, M.: Shelf-ocean exchange and hydrography west of
the Antarctic Peninsula: a review,
Philos. T. Roy. Soc. A, 376, 20170164, https://doi.org/10.1098/rsta.2017.0164, 2018.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov,
I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T.
F., Tsuda, A., and Ulloa, O.: Processes and patterns of oceanic nutrient
limitation, Nat. Geosci., 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Mopper, K., Kieber, D. J., and Stubbins, A.: Marine Photochemistry of Organic Matter: Processes and Impacts, in: Biogeochemistry of Marine Dissolved Organic Matter, edn. 2, edited by: Hansell, D. A. and Carlson, C. A., Academic Press, Boston, Massachusetts, USA, 389–450, 2015.
Nolting, R. F., Gerringa, L. J. A., Swagerman, M. J. W., Timmermans, K. R.,
and de Baar, H. J. W.: Fe(III) speciation in the high nutrient, low
chlorophyll Pacific region of the Southern Ocean, Mar. Chem., 62,
335–352, https://doi.org/10.1016/S0304-4203(98)00046-2, 1998.
Norman, L., Thomas, D. N., Stedmon, C. A., Granskog, M. A., Papadimitriou,
S., Krapp, R. H., Meiners, K. M., Lannuzel, D., van der Merwe, P., and
Dieckmann, G. S.: The characteristics of dissolved organic matter (DOM) and
chromophoric dissolved organic matter (CDOM) in Antarctic sea ice, Deep-Sea Res. Pt. II, 58, 1075–1091, https://doi.org/10.1016/j.dsr2.2010.10.030, 2011.
Norman, L., Worms, I. A. M., Angles, E., Bowie, A. R., Nichols, C. M., Ninh Pham, A., Slaveykova, V. I., Townsend, A. T., David Waite, T., and Hassler, C. S.: The role of bacterial and algal exopolymeric substances in iron chemistry, Mar. Chem., 173, 148–161, https://doi.org/10.1016/j.marchem.2015.03.015,
2015.
Orsi, A. H., Whitworth, T., and Nowlin, W. D.: On the meridional extent and
fronts of the Antarctic Circumpolar Current, Deep-Sea Res. Pt. I, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W, 1995.
Poorvin, L., Sander, S. G., Velasquez, I., Ibisanmi, E., LeCleir, G. R., and
Wilhelm, S. W.: A comparison of Fe bioavailability and binding of a
catecholate siderophore with virus-mediated lysates from the marine
bacterium Vibrio alginolyticus PWH3a,
J. Exp. Mar. Biol. Ecol., 399, 43–47, https://doi.org/10.1016/j.jembe.2011.01.016, 2011.
Powell, R. T. and Wilson-Finelli, A.: Photochemical degradation of organic
iron complexing ligands in seawater, Aquat. Sci., 65, 367–374, https://doi.org/10.1007/s00027-003-0679-0, 2003.
Raven, J. A. and Falkowski, P. G.: Oceanic sinks for atmospheric CO2, Plant Cell Environ., 22, 741–755, https://doi.org/10.1046/j.1365-3040.1999.00419.x, 1999.
Rijkenberg, M. J., Gerringa, L. J. A., Timmermans, K. R., Fischer, A. C.,
Kroon, K. J., Buma, A. G., Wolterbeek, B. T., and de Baar, H. J.:
Enhancement of the reactive iron pool by marine diatoms, Mar. Chem.,
109, 29–44, https://doi.org/10.1016/j.marchem.2007.12.001, 2008.
Saito, M. A. and Goepfert, T. J.: Zinc-cobalt colimitation of Phaeocystis
antarctica, Limnol. Oceanogr., 53, 266–275, https://doi.org/10.4319/lo.2008.53.1.0266, 2008.
Saito, M. A., Goepfert, T. J., Noble, A. E., Bertrand, E. M., Sedwick, P. N., and DiTullio, G. R.: A seasonal study of dissolved cobalt in the Ross Sea, Antarctica: micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P, Biogeosciences, 7, 4059–4082, https://doi.org/10.5194/bg-7-4059-2010, 2010.
Sato, M., Takeda, S., and Furuya, K.: Iron regeneration and organic
iron(III)-binding ligand production during in situ zooplankton grazing
experiment, Mar. Chem., 106, 471–488, https://doi.org/10.1016/j.marchem.2007.05.001,
2007.
Schoffman, H., Lis, H., Shaked, Y., and Keren, N.: Iron-Nutrient
Interactions within Phytoplankton, Front. Plant Sci., 7, 1223, https://doi.org/10.3389/fpls.2016.01223, 2016.
Schofield, O., Saba, G., Coleman, K., Carvalho, F., Couto, N., Ducklow, H.,
Finkel, Z., Irwin, A., Kahl, A., Miles, T., Montes-Hugo, M., Stammerjohn,
S., and Waite, N.: Decadal variability in coastal phytoplankton community
composition in a changing West Antarctic Peninsula, Deep-Sea Res. Pt. I, 124, 42–54, https://doi.org/10.1016/j.dsr.2017.04.014, 2017.
Seyitmuhammedov, K., Stirling, C. H., Reid, M. R., van Hale, R., Laan, P.,
Arrigo, K. R., van Dijken, G., Alderkamp, A.-C., and Middag, R.: The
distribution of Fe across the shelf of the Western Antarctic Peninsula at
the start of the phytoplankton growing season, Mar. Chem., in review., 2021.
Sherrell, R. M., Annett, A. L., Fitzsimmons, J. N., Roccanova, V. J., and
Meredith, M. P.: A shallow bathtub ring of local sedimentary iron input
maintains the Palmer Deep biological hotspot on the West Antarctic Peninsula
shelf, Philos. T. Roy. Soc. A, 376, 20170171, https://doi.org/10.1098/rsta.2017.0171,
2018.
Slagter, H. A., Gerringa, L. J. A., and Brussaard, C. P. D.: Phytoplankton
Virus Production Negatively Affected by Iron Limitation, Frontiers in Marine
Science, 3, 156, https://doi.org/10.3389/fmars.2016.00156, 2016.
Slagter, H. A., Reader, H. E., Rijkenberg, M. J. A., Rutgers van der Loeff,
M., de Baar, H. J. W., and Gerringa, L. J. A.: Organic Fe speciation in the
Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM,
Mar. Chem., 197, 11–25, https://doi.org/10.1016/j.marchem.2017.10.005, 2017.
Smith, D. A., Hofmann, E. E., Klinck, J. M., and Lascara, C. M.: Hydrography
and circulation of the West Antarctic Peninsula Continental Shelf, Deep-Sea Res. Pt. I, 46, 925–949, https://doi.org/10.1016/S0967-0637(98)00103-4, 1999.
Stammerjohn, S., Massom, R., Rind, D., and Martinson, D.: Regions of rapid
sea ice change: An inter-hemispheric seasonal comparison, Geophys. Res. Lett., 39, L06501, https://doi.org/10.1029/2012GL050874, 2012.
Sunda, W. G.: Trace metal interactions with marine phytoplankton, Biological Oceanography, 6, 411–442, https://doi.org/10.1080/01965581.1988.10749543, 1989.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of
diatoms in oceanic waters, Nature, 393, 774–777, https://doi.org/10.1038/31674, 1998.
Thuróczy, C.-E., Gerringa, L. J. A., Klunder, M. B., Laan, P., and de Baar, H. J. W.: Observation of consistent trends in the organic complexation of dissolved iron in the Atlantic sector of the Southern Ocean, Deep-Sea Res. Pt. II, 58, 2695–2706, https://doi.org/10.1016/j.dsr2.2011.01.002, 2011.
Thuróczy, C.-E., Alderkamp, A.-C., Laan, P., Gerringa, L. J. A., Mills,
M. M., Van Dijken, G. L., De Baar, H. J. W., and Arrigo, K. R.: Key role of
organic complexation of iron in sustaining phytoplankton blooms in the Pine
Island and Amundsen Polynyas (Southern Ocean), Deep-Sea Res. Pt. II, 71–76, 49–60, https://doi.org/10.1016/j.dsr2.2012.03.009, 2012.
Tomczak, M. and Godfrey, J.: Regional oceanography: An introduction, Daya,
New Delhi, India, Daya Publishing House,
xi+390p, https://doi.org/10.1016/C2009-0-14825-0, 2003.
Turner, J., Maksym, T., Phillips, T., Marshall, G. J., and Meredith, M. P.:
The impact of changes in sea ice advance on the large winter warming on the
western Antarctic Peninsula, Int. J. Climatol., 33,
852–861, https://doi.org/10.1002/joc.3474, 2013.
Turner, J., Marshall, G. J., Clem, K., Colwell, S., Phillips, T., and Lu,
H.: Antarctic temperature variability and change from station data,
Int. J. Climatol., 40, 2986–3007, https://doi.org/10.1002/joc.6378, 2020.
Twining, B. S., Baines, S. B., and Fisher, N. S.: Element stoichiometries of
individual plankton cells collected during the Southern Ocean Iron
Experiment (SOFeX), Limnol. Oceanogr., 49, 2115–2128, https://doi.org/10.4319/lo.2004.49.6.2115, 2004.
Velasquez, I., Nunn, B. L., Ibisanmi, E., Goodlett, D. R., Hunter, K. A.,
and Sander, S. G.: Detection of hydroxamate siderophores in coastal and
Sub-Antarctic waters off the South Eastern Coast of New Zealand, Mar. Chem., 126, 97–107, https://doi.org/10.1016/j.marchem.2011.04.003, 2011.
Velasquez, I. B., Ibisanmi, E., Maas, E. W., Boyd, P. W., Nodder, S., and
Sander, S. G.: Ferrioxamine siderophores detected amongst iron binding
ligands produced during the remineralization of marine particles, Frontiers
in Marine Science, 3, 172, https://doi.org/10.3389/fmars.2016.00172, 2016.
Viljoen, J. J., Philibert, R., Van Horsten, N., Mtshali, T., Roychoudhury,
A. N., Thomalla, S., and Fietz, S.: Phytoplankton response in growth,
photophysiology and community structure to iron and light in the Polar
Frontal Zone and Antarctic waters, Deep-Sea Res. Pt. I, 141, 118–129, https://doi.org/10.1016/j.dsr.2018.09.006, 2018.
Whitby, H., Planquette, H., Cassar, N., Bucciarelli, E., Osburn, C. L.,
Janssen, D. J., Cullen, J. T., González, A. G., Völker, C., and
Sarthou, G.: A call for refining the role of humic-like substances in the
oceanic iron cycle, Sci. Rep.-UK, 10, 6144–6144, https://doi.org/10.1038/s41598-020-62266-7, 2020.
Wu, M., McCain, J. S. P., Rowland, E., Middag, R., Sandgren, M., Allen, A.
E., and Bertrand, E. M.: Manganese and iron deficiency in Southern Ocean
Phaeocystis antarctica populations revealed through taxon-specific protein
indicators, Nat. Commun., 10, 3582, https://doi.org/10.1038/s41467-019-11426-z,
2019.
Ye, Y., Völker, C., and Gledhill, M.: Exploring the Iron-Binding
Potential of the Ocean Using a Combined pH and DOC Parameterization, Global Biogeochem. Cy., 34, e2019GB006425, https://doi.org/10.1029/2019GB006425, 2020.
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Organic Fe speciation is investigated along a natural gradient of the western Antarctic...
Altmetrics
Final-revised paper
Preprint