Articles | Volume 18, issue 16
https://doi.org/10.5194/bg-18-4755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Frances A. Podrebarac
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Genetics and Sustainable Agriculture Research, U.S.
Agricultural Research Service, Mississippi State, 39762, USA
Sharon A. Billings
Department of Ecology and Evolutionary Biology, Kansas Biological
Survey, University of Kansas, Lawrence, 66047, USA
Kate A. Edwards
Natural Resources Canada, Canadian Forest Service, Ottawa, K1A 0E4,
Canada
Jérôme Laganière
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Natural Resources Canada, Canadian Forest Service, Laurentian
Forestry Centre, Quebec City, G1V 4C7, Canada
Matthew J. Norwood
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Marine and Coastal Research Laboratory, Pacific Northwest National
Laboratory, Sequim, 98382, USA
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
Related authors
No articles found.
Scout M. Quinn, Benjamin Misiuk, Mackenzie E. Patrick, and Susan E. Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-3475, https://doi.org/10.5194/egusphere-2025-3475, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Boreal forest soils store approximately one third of forest soil carbon globally. Stabilization of organic carbon in these soils is largely controlled by reactive aluminum content derived from parent material, which in boreal regions is typically glacial till. We used a Random Forest approach to predictively map and model reactive aluminum and its uncertainty in glacial till across Newfoundland. This supports future modelling efforts and estimates of the soil carbon reservoir in boreal forests.
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70, https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes, and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Justine Lejoly, Sylvie Quideau, Jérôme Laganière, Justine Karst, Christine Martineau, Mathew Swallow, Charlotte Norris, and Abdul Samad
SOIL, 9, 461–478, https://doi.org/10.5194/soil-9-461-2023, https://doi.org/10.5194/soil-9-461-2023, 2023
Short summary
Short summary
Earthworm invasion in North American forests can alter soil functioning. We investigated how the presence of invasive earthworms affected microbial communities, key drivers of soil biogeochemistry, across the major soil types of the Canadian boreal forest, which is a region largely understudied. Although total microbial biomass did not change, community composition shifted in earthworm-invaded mineral soils, where we also found higher fungal biomass and greater microbial species diversity.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
David Paré, Jérôme Laganière, Guy R. Larocque, and Robert Boutin
SOIL, 8, 673–686, https://doi.org/10.5194/soil-8-673-2022, https://doi.org/10.5194/soil-8-673-2022, 2022
Short summary
Short summary
Major soil carbon pools and fluxes were assessed along a climatic gradient expanding 4 °C in mean annual temperature for two important boreal conifer forest stand types. Species and a warmer climate affected soil organic matter (SOM) cycling but not stocks. Contrarily to common hypotheses, SOM lability was not reduced by warmer climatic conditions and perhaps increased. Results apply to cold and wet conditions and a stable vegetation composition along the climate gradient.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Cited articles
Alster, C. J., Fischer, von, J. C., Allison, S. D., and Treseder, K. K.:
Embracing a new paradigm for temperature sensitivity of soil microbes, Glob.
Change Biol., 26, 3221–3229, https://doi.org/10.1111/gcb.15053, 2020.
Basler, A., Dippold, M., Helfrich, M., and Dyckmans, J.: Microbial carbon
recycling – An underestimated process controlling soil carbon dynamics –
Part 1: A long-term laboratory incubation experiment, Biogeosciences,
12, 5929–5940, https://doi.org/10.5194/bg-12-5929-2015, 2015.
Benner, R., Fogel, M., Spargue, K., and Hodson, R.: Depletion of 13C in
lignin and its implications for stable carbon isotope studies, Nature,
329, 708–710, https://doi.org/10.1038/329708a0, 1987.
Billings, S. A. and Ballantyne, F.: How interactions between microbial
resource demands, soil organic matter stoichiometry, and substrate
reactivity determine the direction and magnitude of soil respiratory
responses to warming, Glob. Change Biol., 19, 90–102,
https://doi.org/10.1111/gcb.12029, 2013.
Bingeman, C. W., Varner, J. E., and Martin, W. P.: The Effect of the Addition
of Organic Materials on the Decomposition of an Organic Soil, Soil Sci.
Soc. Am. J., 17, 34–38,
https://doi.org/10.2136/sssaj1953.03615995001700010008x, 1953.
Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., and Kuzyakov, Y.:
Three-source-partitioning of microbial biomass and of CO2 efflux from soil
to evaluate mechanisms of priming effects, Soil Biol. Biochem.,
43, 778–786, https://doi.org/10.1016/j.soilbio.2010.12.011, 2011.
Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H., and Kuzyakov, Y.:
Microbial growth and carbon use efficiency in the rhizosphere and root-free
soil, PLoS ONE, 9, e93282, https://doi.org/10.1371/journal.pone.0093282, 2014.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration
data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bölscher, T., Wadso, L., Borjesson, G., and Herrmann, A. M.: Differences
in substrate use efficiency: impacts of microbial community composition,
land use management, and substrate complexity, Biol. Fert.
Soils, 52, 547–559, https://doi.org/10.1007/s00374-016-1097-5, 2016.
Bölscher, T., Paterson, E., Freitag, T., Thornton, B., and Herrmann, A.
M.: Temperature sensitivity of substrate-use efficiency can result from
altered microbial physiology without change to community composition, Soil
Biol. Biochem., 109, 59–69, https://doi.org/10.1016/j.soilbio.2017.02.005,
2017.
Breecker, D. O., Bergel, S., Nadel, M., Tremblay, M. M., Osuna-Orozco, R.,
Larson, T. E., and Sharp, Z. D.: Minor stable carbon isotope fractionation
between respired carbon dioxide and bulk soil organic matter during
laboratory incubation of topsoil, Biogeochemistry, 123, 83–98,
https://doi.org/10.1007/s10533-014-0054-3, 2015.
Briones, M. J. I., McNamara, N. P., Poskitt, J., Crow, S. E., and Ostle, N.
J.: Interactive biotic and abiotic regulators of soil carbon cycling:
evidence from controlled climate experiments on peatland and boreal soils,
Glob. Change Biol., 20, 2971–2982, https://doi.org/10.1111/gcb.12585, 2014.
Buckeridge, K. M., Banerjee, S., Siciliano, S. D., and Grogan, P.: The
seasonal pattern of soil microbial community structure in mesic low arctic
tundra, Soil Biol. Biochem., 65, 338–347,
https://doi.org/10.1016/j.soilbio.2013.06.012, 2013.
Butnor, J. R., Johnsen, K. H., Oren, R., and Katul, G. G: Reduction of forest floor respiration by fertilization on both carbon dioxide‐enriched and reference 17‐year‐old loblolly pine stands, Glob. Change Biol., 9, 849–861, https://doi.org/10.1046/j.1365-2486.2003.00630.x, 2003.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang,
L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., de
Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson,
A., Johnson, B. R., Larsen, K. S., Luo, Y., Marhan, S., Melillo, J. M.,
Peuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA,
113, 13797–13802, 2016.
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S.,
McNickle, G. G., Brzostek, E., and Jastrow, J. D.: Synthesis and modeling
perspectives of rhizosphere priming, New Phytol., 201, 31–44,
https://doi.org/10.1111/nph.12440, 2014.
Conant, R. T., Steinweg, J. M., Haddix, M. L., Paul, E. A., Plante, A. F.,
and Six, J.: Experimental warming shows that decomposition temperature
sensitivity increases with soil organic matter recalcitrance, Ecology,
89, 2384–2391, https://doi.org/10.1890/08-0137.1, 2008.
Curiel Yuste, J., Janssens, I. A., Carrara, A., and Ceulemans, R.: Annual
Q10 of soil respiration reflects plant phenological patterns as well as
temperature sensitivity, Glob. Change Biol., 10, 161–169,
https://doi.org/10.1111/j.1529-8817.2003.00727.x, 2004.
Czimczik, C. I. and Trumbore, S. E.: Short-term controls on the age of
microbial carbon sources in boreal forest soils, J. Geophys. Res.-Biogeo.,
112, JG000389, https://doi.org/10.1029/2006JG000389, 2007.
Dauwe, B. and Middelburg, J. J.: Amino acids and hexosamines as indicators
of organic matter degradation state in North Sea sediments, Limnol.
Oceangr., 43, 782–798, https://doi.org/10.4319/lo.1998.43.5.0782, 1998.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Di Lonardo, D. P., de Boer, W., Zweers, H., and van der Wal, A.: Effect of
the amount of organic trigger compounds, nitrogen and soil microbial biomass
on the magnitude of priming of soil organic matter, edited by: Wu, F., PLoS
ONE, 14, e0216730, https://doi.org/10.1371/journal.pone.0216730, 2019.
Dijkstra, F. A., Carrillo, Y., Pendall, E., and Morgan, J. A.: Rhizosphere
priming: a nutrient perspective, Front. Microbiol., 4, 00216,
https://doi.org/10.3389/fmicb.2013.00216, 2013.
Dijkstra, P., Ishizu, A., Doucett, R., Hart, S. C., Schwartz, E., Menyailo,
O. V., and Hungate, B. A.: 13C and 15N natural abundance of the soil
microbial biomass, Soil Biol. Biochem., 38, 3257–3266,
https://doi.org/10.1016/j.soilbio.2006.04.005, 2006.
Fang, C. M., Smith, P., Moncrieff, J. B., and Smith, J. U.: Similar response
of labile and resistant soil organic matter pools to changes in temperature, Nature, 436, 881–881,
https://doi.org/10.1038/nature04044, 2005.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B.
A., Kramer, M. A., and Phillips, R. P.: Rhizosphere processes are
quantitatively important components of terrestrial carbon and nutrient
cycles, Glob. Change Biol., 21, 2082–2094, https://doi.org/10.1111/gcb.12816, 2015.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007.
Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J. M. G., Maire,
V., Mary, B., Revaillot, S., and Maron, P. A.: Fungi mediate long term
sequestration of carbon and nitrogen in soil through their priming effect,
Soil Biol. Biochem., 43, 86–96,
https://doi.org/10.1016/j.soilbio.2010.09.017, 2011.
Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response
of soil microbial efficiency and its feedback to climate, Nat. Clim.
Change, 3, 1–4, https://doi.org/10.1038/nclimate1796, 2013.
Glaser, B. and Amelung, W.: Determination of 13C natural abundance of amino
acid enantiomers in soil: methodological considerations and first results,
Rapid Commun. Mass Spectrom., 16, 891–898, https://doi.org/10.1002/rcm.650, 2002.
Hájek, T., Ballance, S., Limpens, J., Zijlstra, M., and Verhoeven, J. T.
A.: Cell-wall polysaccharides play an important role in decay resistance of
Sphagnum and actively depressed decomposition in vitro, Biogeochemistry,
103, 45–57, https://doi.org/10.1007/s10533-010-9444-3, 2011.
Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom,
M., and Forsberg, B. R.: Origins and processing of organic matter in the
Amazon River as indicated by carbohydrates and amino acids, Limnol.
Oceangr., 39, 743–761, https://doi.org/10.4319/lo.1994.39.4.0743, 1994.
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355,
1420–1423, https://doi.org/10.1126/science.aal1319, 2017.
Hobbie, E. and Werner, R.: Intramolecular, compound-specific, and bulk
carbon isotope patterns in C3 and C4 plants: a review and synthesis, New
Phytol., 161, 371–385, doi.org/10.1046/j.1469-8137.2004.00970.x, 2004.
Hogberg, M. N. and Hogberg, P.: Extramatrical ectomycorrhizal mycelium
contributes one-third of microbial biomass and produces, together with
associated roots, half the dissolved organic carbon in a forest soil, New
Phytol., 154, 791–795, 2002.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32,
https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K. and Kaiser, K.: Contribution of dissolved organic matter to
carbon storage in forest mineral soils, J. Plant Nutr. Soil Sci., 171,
52–60, https://doi.org/10.1002/jpln.200700043, 2008.
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for
microbial-derived soil organic matter formation and its ecophysiological
controls, Nat. Commun., 7, 13630, https://doi.org/10.1038/ncomms13630, 2016.
Kane, E. S., Hockaday, W. C., Turetsky, M. R., Masiello, C. A., Valentine,
D. W., Finney, B. P., and Baldock, J. A.: Topographic controls on black
carbon accumulation in Alaskan black spruce forest soils: implications for
organic matter dynamics, Biogeochemistry, 100, 39–56,
https://doi.org/10.1007/s10533-009-9403-z, 2010.
Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J.
I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. I.,
Sebastià, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A.
T., Salinas, N., and Hartley, I. P.: Temperature sensitivity of soil
respiration rates enhanced by microbial community response, Nature,
513, 81–84, https://doi.org/10.1038/nature13604, 2014.
Kohl, L., Laganière, J., Edwards, K. A., Billings, S. A., Morrill, P.
L., Van Biesen, G., and Ziegler, S. E.: Distinct fungal and bacterial δ13C signatures as potential drivers of increasing δ13C of soil
organic matter with depth, Biogeochemistry, 124, 13–26,
https://doi.org/10.1007/s10533-015-0107-2, 2015.
Kohl, L., Philben, M., Edwards, K. A., Podrebarac, F. A., Warren, J., and
Ziegler, S. E.: The origin of soil organic matter controls its composition
and bioreactivity across a mesic boreal forest latitudinal gradient, Glob.
Change Biol., 24, e458–e473, https://doi.org/10.1111/gcb.13887, 2018.
Laganière, J., Podrebarac, F., Billings, S. A., Edwards, K. A., and
Ziegler, S. E.: A warmer climate reduces the bioreactivity of isolated
boreal forest soil horizons without increasing the temperature sensitivity
of respiratory CO2 loss, Soil Biol. Biochem., 84, 177–188,
https://doi.org/10.1016/j.soilbio.2015.02.025, 2015.
Lefevre, R., Barré, P., Moyano, F. E., Christensen, B. T., Bardoux, G.,
Eglin, T., Girardin, C., Houot, S., Kätterer, T., van Oort, F., and
Chenu, C.: Higher temperature sensitivity for stable than for labile soil
organic carbon – Evidence from incubations of long-term bare fallow soils,
Glob. Change Biol., 20, 633–640, https://doi.org/10.1111/gcb.12402, 2014.
Leifeld, J. and Fuhrer, J.: The Temperature Response of CO2 Production
from Bulk Soils and Soil Fractions is Related to Soil Organic Matter
Quality, Biogeochemistry, 75, 433–453, https://doi.org/10.1007/s10533-005-2237-4,
2005.
Li, Q., Tian, Y., Zhang, X., Xu, X., Wang, H., and Kuzyakov, Y.: Labile
carbon and nitrogen additions affect soil organic matter decomposition more
strongly than temperature, Appl. Soil Ecol., 114, 152–160,
https://doi.org/10.1016/j.apsoil.2017.01.009, 2017.
Liski, J., Ilvesniemi, H., Mäkelä, A., and Westman, C. J.: CO2
emissions from soil in response to climatic warming are overestimated – The
decomposition of old soil organic matter is tolerant of temperature, AMBIO, 28, 171–174, 1999.
Maier, C. A. and Kress, L. W.: Soil CO2 evolution and root respiration
in 11 year-old loblolly pine (Pinus taeda) plantations as affected by
moisture and nutrient availability, Can. J. Forest Res.,
30, 347–359, https://doi.org/10.1139/x99-218, 2000
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J.,
Vazquez, P. G. M., Jehmlich, N., Bergen, von, M., Griffiths, R. I., and
Gleixner, G.: Soil Fungal : Bacterial Ratios Are Linked to Altered Carbon
Cycling, Front. Microbiol., 7, 1247,
https://doi.org/10.3389/fmicb.2016.01247, 2016.
Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B.,
Durand, J. O., Bujoli, B., Gan, Z. H., and Hoatson, G.: Modelling one- and
two-dimensional solid-state NMR spectra, Magn. Reson. Chem.,
40, 70–76, https://doi.org/10.1002/mrc.984, 2002.
Min, K., Buckeridge, K., Ziegler, S. E., Edwards, K. A., Bagchi, S., and
Billings, S. A.: Temperature sensitivity of biomass-specific microbial
exo-enzyme activities and CO2 efflux is resistant to change across
short- and long-term timescales, Glob. Change Biol., 25, 1793–1807,
https://doi.org/10.1111/gcb.14605, 2019.
Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F.,
Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger,
K. M., Zechmeister-Boltenstern, S., and Richter, A.: Adjustment of microbial
nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil
nitrogen cycling, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms4694, 2014.
Paterson, E., Osler, G., Dawson, L. A., Gebbing, T., Sim, A., and Ord, B.:
Labile and recalcitrant plant fractions are utilised by distinct microbial
communities in soil: Independent of the presence of roots and mycorrhizal
fungi, Soil Biol. Biochem., 40, 1103–1113,
https://doi.org/10.1016/j.soilbio.2007.12.003, 2008.
Pawar, S., Dell, A. I., Savage, V. M., and Knies, J. L.: Real versus
Artificial Variation in the Thermal Sensitivity of Biological Traits, Am.
Nat., 187, E41–E52, https://doi.org/10.1086/684590, 2016.
Pennington, S. C., McDowell, N. G., Megonigal, J. P., Stegen, J. C., and Bond-Lamberty, B.: Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest, Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, 2020.
Philben, M., Ziegler, S. E., Edwards, K. A., Kahler III, R., and Benner, R.:
Soil organic nitrogen cycling increases with temperature and precipitation
along a boreal forest latitudinal transect, Biogeochemistry, 127,
397–410, https://doi.org/10.1007/s10533-016-0187-7, 2016.
Philben, M., Butler, S., Billings, S. A., Benner, R., Edwards, K. A., and
Ziegler, S. E.: Biochemical and structural controls on the decomposition
dynamics of boreal upland forest moss tissues, Biogeosciences, 15,
6731–6746, https://doi.org/10.5194/bg-15-6731-2018, 2018.
Pietikainen, J., Pettersson, M., and Baath, E.: Comparison of temperature
effects on soil respiration and bacterial and fungal growth rates, FEMS
Microbiol. Ecol., 52, 49–58, https://doi.org/10.1016/j.femsec.2004.10.002, 2005.
Podrebarac, F. A., Laganière, J., Billings, S. A., Edwards, K. A., and
Ziegler, S. E.: Soils isolated during incubation underestimate temperature
sensitivity of respiration and its response to climate history, Soil Biol.
Biochem., 93, 60–68, https://doi.org/10.1016/j.soilbio.2015.10.012, 2016.
Popper, Z. A. and Fry, S. C.: Primary cell wall composition of bryophytes
and charophytes, Ann. Bot., 91, 1–12, https://doi.org/10.1093/aob/mcg013,
2003.
Preston, C. M., Trofymow, J. T., and Working Group, T. C. I. D.: Variability
in litter quality and its relationship to litter decay in Canadian forests,
Can. J. Bot., 78, 1269–1287, https://doi.org/10.1139/b00-101, 2000.
Preston, C. M., Nault, J. R., and Trofymow, J. A.: Chemical Changes During 6
Years of Decomposition of 11 Litters in Some Canadian Forest Sites, Part 2.
13C Abundance, Solid-State 13C NMR Spectroscopy and the Meaning of
“Lignin”, Ecosystems, 12, 1078–1102, https://doi.org/10.1007/s10021-009-9267-z,
2009.
Pumpanen, J. S., Heinonsalo, J., Rasilo, T., Hurme, K.-R., and Ilvesniemi,
H.: Carbon balance and allocation of assimilated CO2 in Scots pine,
Norway spruce, and Silver birch seedlings determined with gas exchange
measurements and 14C pulse labelling, Trees-Struct. Funct.,
23, 611–621, https://doi.org/10.1007/s00468-008-0306-8, 2009.
R Core Team: A Language and Environment for Statistical Computing,
https://www.R-project.org/ (last access: 17 June 2018), 2017.
Rinnan, R. and Baath, E.: Differential Utilization of Carbon Substrates by
Bacteria and Fungi in Tundra Soil, Appl. Environ. Microb., 75, 3611–3620,
https://doi.org/10.1128/AEM.02865-08, 2009.
Robertson, G. P., Coleman, D. C., Sollins, P., and Bledsoe, C. S (Eds.): Standard soil methods for long-term ecological research, Oxford Press, London, 1999.
Rytioja, J., Hilden, K., Yuzon, J., Hatakka, A., de Vries, R. P., and Makela,
M. R.: Plant-polysaccharide-degrading enzymes from basidiomycetes,
Microbiol. Mol. Biol. Rev., 78, 614–649, https://doi.org/10.1128/MMBR.00035-14,
2014.
Schadt, C. W., Martin, A. P., Lipson, D. A., and Schmidt, S. K.: Seasonal
dynamics of previously unknown fungal lineages in tundra soils, Science,
301, 1359–1361, https://doi.org/10.1126/science.1086940, 2003.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity
on microbial carbon and nitrogen limitation in soil: a theoretical model,
Soil Biol. Biochem., 35, 549–563,
https://doi.org/10.1016/S0038-0717(03)00015-4, 2003.
Schipper, L. A., Hobbs, J. K., Rutledge, S., and Arcus, V. L.: Thermodynamic
theory explains the temperature optima of soil microbial processes and high
Q10 values at low temperatures, Glob. Change Biol., 20, 3578–3586,
https://doi.org/10.1111/gcb.12596, 2014.
Sierra, C. A.: Temperature sensitivity of organic matter decomposition in
the Arrhenius equation: some theoretical considerations, Biogeochemistry,
108, 1–15, https://doi.org/10.1007/s10533-011-9596-9, 2012.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
change 2013 the physical science basis: Working Group I contribution to the
fifth assessment report of the intergovernmental panel on climate change,
edited by: Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, 2013.
Streit, K., Hagedorn, F., Hiltbrunner, D., Portmann, M., Saurer, M.,
Buchmann, N., Wild, B., Richter, A., Wipf, S., and Siegwolf, R. T. W.: Soil
warming alters microbial substrate use in alpine soils, Glob. Change Biol.,
20, 1327–1338, https://doi.org/10.1111/gcb.12396, 2014.
Turetsky, M. R., Crow, S. E., Evans, R. J., Vitt, D. H., and Wieder, R. K.:
Trade-offs in resource allocation among moss species control decomposition
in boreal peatlands, J. Ecol., 96, 1297–1305,
https://doi.org/10.1111/j.1365-2745.2008.01438.x, 2008.
Wallenstein, M. D. and Weintraub, M. N.: Emerging tools for measuring and
modeling the in situ activity of soil extracellular enzymes, Soil Biol. Biochem., 40, 2098–2106, https://doi.org/10.1016/j.soilbio.2008.01.024,
2008.
Wang, Q., He, N., Yu, G., Gao, Y., Wen, X., Wang, R., Koerner, S. E., and Yu,
Q.: Soil microbial respiration rate and temperature sensitivity along a
north-south forest transect in eastern China: Patterns and influencing
factors, J. Geophys. Res.-Biogeo., 121, 399–410, https://doi.org/10.1002/2015JG003217,
2016.
Wild, B., Gentsch, N., Čapek, P., Diáková, K., Alves, R. J. E.,
Bárta, J., Gittel, A., Hugelius, G., Knoltsch, A., Kuhry, P.,
Lashchinskiy, N., Mikutta, R., Palmtag, J., Schleper, C., Schnecker, J.,
Shibistova, O., Takriti, M., Torsvik, V. L., Urich, T., Watzka, M.,
Šantrůčková, H., Guggenberger, G., and Richter, A.:
Plant-derived compounds stimulate the decomposition of organic matter in
arctic permafrost soils, Sci. Rep., 6, 25607, https://doi.org/10.1038/srep25607, 2016.
Wilson, M. A., Vassallo, A. M., Perdue, E. M.. and Reuter, J. H.:
Compositional and Solid-State Nuclear Magnetic Resonance Study of Humic and
Fulvic Acid Fractions of Soil Organic Matter, Anal. Chem., 59, 551–558,
https://doi.org/10.1021/ac00131a004, 1987.
Zhu, B. and Cheng, W.: Rhizosphere priming effect increases the temperature
sensitivity of soil organic matter decomposition, Glob. Change Biol., 17,
2172–2183, https://doi.org/10.1111/j.1365-2486.2010.02354.x, 2011.
Zar, J. H.: Biostatistical Analysis, Prentice Hall, New York, USA, 1999.
Ziegler, S. E. and Billings, S. A.: Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2, J. Geophys. Res., 116, G01011, https://doi.org/10.1029/2010JG001434, 2011.
Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., and Fogel, M. L.:
Warming alters routing of labile and slower-turnover carbon through distinct
microbial groups in boreal forest organic soils, Soil Biol.
Biochem., 60, 23–32, https://doi.org/10.1016/j.soilbio.2013.01.001, 2013.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M.,
Zhu, X., and Laganière, J.: Climate Warming Can Accelerate Carbon Fluxes
without Changing Soil Carbon Stocks, Front. Earth Sci., 5, 2,
https://doi.org/10.3389/feart.2017.00002, 2017.
Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W.,
and Pregitzer, K. S.: Compositional and Functional Shifts in Microbial
Communities Due to Soil Warming, Soil Sci. Soc. Am. J.,
61, 475–481, https://doi.org/10.2136/sssaj1997.03615995006100020015x, 1997.
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found...
Altmetrics
Final-revised paper
Preprint