Articles | Volume 18, issue 16
https://doi.org/10.5194/bg-18-4755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-4755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil profile connectivity can impact microbial substrate use, affecting how soil CO2 effluxes are controlled by temperature
Frances A. Podrebarac
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Genetics and Sustainable Agriculture Research, U.S.
Agricultural Research Service, Mississippi State, 39762, USA
Sharon A. Billings
Department of Ecology and Evolutionary Biology, Kansas Biological
Survey, University of Kansas, Lawrence, 66047, USA
Kate A. Edwards
Natural Resources Canada, Canadian Forest Service, Ottawa, K1A 0E4,
Canada
Jérôme Laganière
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Natural Resources Canada, Canadian Forest Service, Laurentian
Forestry Centre, Quebec City, G1V 4C7, Canada
Matthew J. Norwood
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
now at: Marine and Coastal Research Laboratory, Pacific Northwest National
Laboratory, Sequim, 98382, USA
Department of Earth Sciences, Memorial University, St. John's, A1B
3X5, Canada
Related authors
No articles found.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Justine Lejoly, Sylvie Quideau, Jérôme Laganière, Justine Karst, Christine Martineau, Mathew Swallow, Charlotte Norris, and Abdul Samad
SOIL, 9, 461–478, https://doi.org/10.5194/soil-9-461-2023, https://doi.org/10.5194/soil-9-461-2023, 2023
Short summary
Short summary
Earthworm invasion in North American forests can alter soil functioning. We investigated how the presence of invasive earthworms affected microbial communities, key drivers of soil biogeochemistry, across the major soil types of the Canadian boreal forest, which is a region largely understudied. Although total microbial biomass did not change, community composition shifted in earthworm-invaded mineral soils, where we also found higher fungal biomass and greater microbial species diversity.
Keri L. Bowering, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 20, 2189–2206, https://doi.org/10.5194/bg-20-2189-2023, https://doi.org/10.5194/bg-20-2189-2023, 2023
Short summary
Short summary
Dissolved organic matter (DOM) mobilized from surface soils is a source of carbon (C) for deeper mineral horizons but also a mechanism of C loss. Composition of DOM mobilized in boreal forests varied more by season than as a result of forest harvesting. Results suggest reduced snowmelt and increased fall precipitation enhance DOM properties promoting mineral soil C stores. These findings, coupled with hydrology, can inform on soil C fate and boreal forest C balance in response to climate change.
Allison N. Myers-Pigg, Karl Kaiser, Ronald Benner, and Susan E. Ziegler
Biogeosciences, 20, 489–503, https://doi.org/10.5194/bg-20-489-2023, https://doi.org/10.5194/bg-20-489-2023, 2023
Short summary
Short summary
Boreal forests, historically a global sink for atmospheric CO2, store carbon in vast soil reservoirs. To predict how such stores will respond to climate warming we need to understand climate–ecosystem feedbacks. We find boreal forest soil carbon stores are maintained through enhanced nitrogen cycling with climate warming, providing direct evidence for a key feedback. Further application of the approach demonstrated here will improve our understanding of the limits of climate–ecosystem feedbacks.
David Paré, Jérôme Laganière, Guy R. Larocque, and Robert Boutin
SOIL, 8, 673–686, https://doi.org/10.5194/soil-8-673-2022, https://doi.org/10.5194/soil-8-673-2022, 2022
Short summary
Short summary
Major soil carbon pools and fluxes were assessed along a climatic gradient expanding 4 °C in mean annual temperature for two important boreal conifer forest stand types. Species and a warmer climate affected soil organic matter (SOM) cycling but not stocks. Contrarily to common hypotheses, SOM lability was not reduced by warmer climatic conditions and perhaps increased. Results apply to cold and wet conditions and a stable vegetation composition along the climate gradient.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Kate M. Buckeridge, Kate A. Edwards, Kyungjin Min, Susan E. Ziegler, and Sharon A. Billings
SOIL, 6, 399–412, https://doi.org/10.5194/soil-6-399-2020, https://doi.org/10.5194/soil-6-399-2020, 2020
Short summary
Short summary
We do not understand the short- and long-term temperature response of soil denitrifiers, which produce and consume N2O. Boreal forest soils from a long-term climate gradient were incubated in short-term warming experiments. We found stronger N2O consumption at depth, inconsistent microbial gene abundance and function, and consistent higher N2O emissions from warmer-climate soils at warmer temperatures. Consideration of our results in models will contribute to improved climate projections.
Keri L. Bowering, Kate A. Edwards, Karen Prestegaard, Xinbiao Zhu, and Susan E. Ziegler
Biogeosciences, 17, 581–595, https://doi.org/10.5194/bg-17-581-2020, https://doi.org/10.5194/bg-17-581-2020, 2020
Short summary
Short summary
We examined the effects of season and tree harvesting on the flow of water and the organic carbon (OC) it carries from boreal forest soils. We found that more OC was lost from the harvested forest because more precipitation reached the soil surface but that during periods of flushing in autumn and snowmelt a limit on the amount of water-extractable OC is reached. These results contribute to an increased understanding of carbon loss from boreal forest soils.
Michael Philben, Sara Butler, Sharon A. Billings, Ronald Benner, Kate A. Edwards, and Susan E. Ziegler
Biogeosciences, 15, 6731–6746, https://doi.org/10.5194/bg-15-6731-2018, https://doi.org/10.5194/bg-15-6731-2018, 2018
Short summary
Short summary
We explored the relationship between chemical composition and the temperature sensitivity of moss decomposition using 959-day lab incubations. Mass loss was low despite the predominance of carbohydrates, indicating the persistence of labile C. Scanning electron microscopy revealed little change in the moss cell-wall structure. These results suggest that the moss cell-wall matrix protects labile C from decomposition, contributing to the globally important stocks of moss-derived C.
Bryan K. Place, Aleya T. Quilty, Robert A. Di Lorenzo, Susan E. Ziegler, and Trevor C. VandenBoer
Atmos. Meas. Tech., 10, 1061–1078, https://doi.org/10.5194/amt-10-1061-2017, https://doi.org/10.5194/amt-10-1061-2017, 2017
Short summary
Short summary
Amines are important drivers in particle formation and growth, which has implications for Earth’s climate. We developed a novel ion chromatographic method for separating and quantifying the 11 most abundant atmospheric alkyl amines, including three sets of structural isomers and two diamines. The detection limits are in the picogram per injection range. We quantified these analytes in two Canadian biomass burning aerosol samples with ammonium ratios of 1 : 2 up to 1000 : 1.
Related subject area
Biogeochemistry: Soils
Vegetation patterns associated with nutrient availability and supply in high-elevation tropical Andean ecosystems
Technical note: An open-source, low-cost system for continuous monitoring of low nitrate concentrations in soil and open water
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal salt marsh
Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau
Technical Note: A validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis
Non-mycorrhizal root-associated fungi increase soil C stocks and stability via diverse mechanisms
Nine years of warming and nitrogen addition in the Tibetan grassland promoted loss of soil organic carbon but did not alter the bulk change in chemical structure
Diverse organic carbon dynamics captured by radiocarbon analysis of distinct compound classes in a grassland soil
Soil priming effects and involved microbial community along salt gradients
Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification
Ecosystem-specific patterns and drivers of global reactive iron mineral-associated organic carbon
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Global patterns and drivers of phosphorus fractions in natural soils
Reviews and syntheses: Iron – a driver of nitrogen bioavailability in soils?
The Effects of Land Use on Soil Carbon Stocks in the UK
How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter
Differential temperature sensitivity of intracellular metabolic processes and extracellular soil enzyme activities
Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty
Technical note: The recovery rate of free particulate organic matter from soil samples is strongly affected by the method of density fractionation
Deforestation for agriculture leads to soil warming and enhanced litter decomposition in subarctic soils
Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda
The influence of elevated CO2 and soil depth on rhizosphere activity and nutrient availability in a mature Eucalyptus woodland
The paradox of assessing greenhouse gases from soils for nature-based solutions
Management-induced changes in soil organic carbon on global croplands
Pore network modeling as a new tool for determining gas diffusivity in peat
Temperature sensitivity of dark CO2 fixation in temperate forest soils
Effects of precipitation seasonality, irrigation, vegetation cycle and soil type on enhanced weathering – modeling of cropland case studies across four sites
Stable isotope profiles of soil organic carbon in forested and grassland landscapes in the Lake Alaotra basin (Madagascar): insights in past vegetation changes
Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential
Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (Pseudotsuga menziesii) and European beech (Fagus sylvatica L.) litter degradation
To what extent can soil moisture and soil Cu contamination stresses affect nitrous species emissions? Estimation through calibration of a nitrification–denitrification model
Carbon, nitrogen, and phosphorus stoichiometry of organic matter in Swedish forest soils and its relationship with climate, tree species, and soil texture
Soil geochemistry as a driver of soil organic matter composition: insights from a soil chronosequence
Leaching of inorganic and organic phosphorus and nitrogen in contrasting beech forest soils – seasonal patterns and effects of fertilization
Age and chemistry of dissolved organic carbon reveal enhanced leaching of ancient labile carbon at the permafrost thaw zone
Soil organic carbon stabilization mechanisms and temperature sensitivity in old terraced soils
Effect of organic carbon addition on paddy soil organic carbon decomposition under different irrigation regimes
Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments
Cycling and retention of nitrogen in European beech (Fagus sylvatica L.) ecosystems under elevated fructification frequency
Mercury mobility, colloid formation and methylation in a polluted Fluvisol as affected by manure application and flooding–draining cycle
Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined MEMS 2.0 model
Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world
Representing methane emissions from wet tropical forest soils using microbial functional groups constrained by soil diffusivity
Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica
Age distribution, extractability, and stability of mineral-bound organic carbon in central European soils
Denitrification in soil as a function of oxygen availability at the microscale
Key drivers of pyrogenic carbon redistribution during a simulated rainfall event
Subsurface flow and phosphorus dynamics in beech forest hillslopes during sprinkling experiments: how fast is phosphorus replenished?
Armando Molina, Veerle Vanacker, Oliver Chadwick, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp
Biogeosciences, 21, 3075–3091, https://doi.org/10.5194/bg-21-3075-2024, https://doi.org/10.5194/bg-21-3075-2024, 2024
Short summary
Short summary
The tropical Andes contains unique landscapes where forest patches are surrounded by tussock grasses and cushion-forming plants. The aboveground vegetation composition informs us about belowground nutrient availability: patterns in plant-available nutrients resulted from strong biocycling of cations and removal of soil nutrients by plant uptake or leaching. Future changes in vegetation distribution will affect soil water and solute fluxes and the aquatic ecology of Andean rivers and lakes.
Sahiti Bulusu, Cristina Prieto García, Helen E. Dahlke, and Elad Levintal
Biogeosciences, 21, 3007–3013, https://doi.org/10.5194/bg-21-3007-2024, https://doi.org/10.5194/bg-21-3007-2024, 2024
Short summary
Short summary
Do-it-yourself hardware is a new way to improve measurement resolution. We present a low-cost, automated system for field measurements of low nitrate concentrations in soil porewater and open water bodies. All data hardware components cost USD 1100, which is much cheaper than other available commercial solutions. We provide the complete building guide to reduce technical barriers, which we hope will allow easier reproducibility and set up new soil and environmental monitoring applications.
Violeta Mendoza-Martinez, Scott L. Collins, and Jennie R. McLaren
Biogeosciences, 21, 2655–2667, https://doi.org/10.5194/bg-21-2655-2024, https://doi.org/10.5194/bg-21-2655-2024, 2024
Short summary
Short summary
We examine the impacts of multi-decadal nitrogen additions on a dryland ecosystem N budget, including the soil, microbial, and plant N pools. After 26 years, there appears to be little impact on the soil microbial or plant community and only minimal increases in N pools within the soil. While perhaps encouraging from a conservation standpoint, we calculate that greater than 95 % of the nitrogen added to the system is not retained and is instead either lost deeper in the soil or emitted as gas.
Sean Fettrow, Andrew Wozniak, Holly A. Michael, and Angelia L. Seyfferth
Biogeosciences, 21, 2367–2384, https://doi.org/10.5194/bg-21-2367-2024, https://doi.org/10.5194/bg-21-2367-2024, 2024
Short summary
Short summary
Salt marshes play a big role in global carbon (C) storage, and C stock estimates are used to predict future changes. However, spatial and temporal gradients in C burial rates over the landscape exist due to variations in water inundation, dominant plant species and stage of growth, and tidal action. We quantified soil C concentrations in soil cores across time and space beside several porewater biogeochemical variables and discussed the controls on variability in soil C in salt marsh ecosystems.
Andrés Tangarife-Escobar, Georg Guggenberger, Xiaojuan Feng, Guohua Dai, Carolina Urbina-Malo, Mina Azizi-Rad, and Carlos A. Sierra
Biogeosciences, 21, 1277–1299, https://doi.org/10.5194/bg-21-1277-2024, https://doi.org/10.5194/bg-21-1277-2024, 2024
Short summary
Short summary
Soil organic matter stability depends on future temperature and precipitation scenarios. We used radiocarbon (14C) data and model predictions to understand how the transit time of carbon varies under environmental change in grasslands and peatlands. Soil moisture affected the Δ14C of peatlands, while temperature did not have any influence. Our models show the correspondence between Δ14C and transit time and could allow understanding future interactions between terrestrial and atmospheric carbon
Marija Stojanova, Pierre Arbelet, François Baudin, Nicolas Bouton, Giovanni Caria, Lorenza Pacini, Nicolas Proix, Edouard Quibel, Achille Thin, and Pierre Barré
EGUsphere, https://doi.org/10.5194/egusphere-2024-578, https://doi.org/10.5194/egusphere-2024-578, 2024
Short summary
Short summary
Because of its importance for climate regulation and soil health, many studies are focusing on carbon dynamics in soils. However, quantifying organic and inorganic carbon remains an issue in carbonated soils. In this technical note, we propose a validated correction method to quantify organic and inorganic carbon in soils using Rock-Eval® thermal analysis. With this correction, Rock-Eval® method has the potential to become the standard method for quantifying carbon in carbonate soils.
Emiko K. Stuart, Laura Castañeda-Gómez, Wolfram Buss, Jeff R. Powell, and Yolima Carrillo
Biogeosciences, 21, 1037–1059, https://doi.org/10.5194/bg-21-1037-2024, https://doi.org/10.5194/bg-21-1037-2024, 2024
Short summary
Short summary
We inoculated wheat plants with various types of fungi whose impacts on soil carbon are poorly understood. After several months of growth, we examined both their impacts on soil carbon and the underlying mechanisms using multiple methods. Overall the fungi benefitted the storage of carbon in soil, mainly by improving the stability of pre-existing carbon, but several pathways were involved. This study demonstrates their importance for soil carbon storage and, therefore, climate change mitigation.
Huimin Sun, Michael W. I. Schmidt, Jintao Li, Jinquan Li, Xiang Liu, Nicholas O. E. Ofiti, Shurong Zhou, and Ming Nie
Biogeosciences, 21, 575–589, https://doi.org/10.5194/bg-21-575-2024, https://doi.org/10.5194/bg-21-575-2024, 2024
Short summary
Short summary
A soil organic carbon (SOC) molecular structure suggested that the easily decomposable and stabilized SOC is similarly affected after 9-year warming and N treatments despite large changes in SOC stocks. Given the long residence time of some SOC, the similar loss of all measurable chemical forms of SOC under global change treatments could have important climate consequences.
Katherine E. Grant, Marisa N. Repasch, Kari M. Finstad, Julia D. Kerr, Maxwell A. T. Marple, Christopher J. Larson, Taylor A. B. Broek, Jennifer Pett-Ridge, and Karis J. McFarlane
EGUsphere, https://doi.org/10.5194/egusphere-2023-3125, https://doi.org/10.5194/egusphere-2023-3125, 2024
Short summary
Short summary
Soils store organic carbon composed of different compounds from plants and microbes that stays in the soils for different lengths of time. To understand this process, we measure the time each carbon fraction is in a grassland soil profile. Our results show that the length of time each individual soil fraction is in our soil changes. Our approach allows a detailed look at the different components in soils. This study can help improve our understanding of soil dynamics.
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, and Kaiyong Wang
Biogeosciences, 21, 1–11, https://doi.org/10.5194/bg-21-1-2024, https://doi.org/10.5194/bg-21-1-2024, 2024
Short summary
Short summary
Soil salinity mediates microorganisms and soil processes like soil organic carbon (SOC) cycling. We observed that negative priming effects at the early stages might be due to the preferential utilization of cottonseed meal. The positive priming that followed decreased with the increase in salinity.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, and Tiphaine Chevallier
Biogeosciences, 20, 5229–5242, https://doi.org/10.5194/bg-20-5229-2023, https://doi.org/10.5194/bg-20-5229-2023, 2023
Short summary
Short summary
This study adapts the Rock-Eval® protocol to quantify soil organic carbon (SOC) and soil inorganic carbon (SIC) on a non-pretreated soil aliquot. The standard protocol properly estimates SOC contents once the TOC parameter is corrected. However, it cannot complete the thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to quantify any SIC amount.
Bo Zhao, Amin Dou, Zhiwei Zhang, Zhenyu Chen, Wenbo Sun, Yanli Feng, Xiaojuan Wang, and Qiang Wang
Biogeosciences, 20, 4761–4774, https://doi.org/10.5194/bg-20-4761-2023, https://doi.org/10.5194/bg-20-4761-2023, 2023
Short summary
Short summary
This study provided a comprehensive analysis of the spatial variability and determinants of Fe-bound organic carbon (Fe-OC) among terrestrial, wetland, and marine ecosystems and its governing factors globally. We illustrated that reactive Fe was not only an important sequestration mechanism for OC in terrestrial ecosystems but also an effective “rusty sink” of OC preservation in wetland and marine ecosystems, i.e., a key factor for long-term OC storage in global ecosystems.
Han Sun, Tomoyasu Nishizawa, Hiroyuki Ohta, and Kazuhiko Narisawa
Biogeosciences, 20, 4737–4749, https://doi.org/10.5194/bg-20-4737-2023, https://doi.org/10.5194/bg-20-4737-2023, 2023
Short summary
Short summary
In this research, we assessed the diversity and function of the dark septate endophytic (DSE) fungi community associated with Miscanthus condensatus root in volcanic ecosystems. Both metabarcoding and isolation were adopted in this study. We further validated effects on plant growth by inoculation of some core DSE isolates. This study helps improve our understanding of the role of Miscanthus condensatus-associated DSE fungi during the restoration of post-volcanic ecosystems.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Ying-Ping Wang, Julian Helfenstein, Yuanyuan Huang, and Enqing Hou
Biogeosciences, 20, 4147–4163, https://doi.org/10.5194/bg-20-4147-2023, https://doi.org/10.5194/bg-20-4147-2023, 2023
Short summary
Short summary
We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. We predicted soil P pools’ distributions in natural systems, which can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
Imane Slimani, Xia Zhu-Barker, Patricia Lazicki, and William Horwath
Biogeosciences, 20, 3873–3894, https://doi.org/10.5194/bg-20-3873-2023, https://doi.org/10.5194/bg-20-3873-2023, 2023
Short summary
Short summary
There is a strong link between nitrogen availability and iron minerals in soils. These minerals have multiple outcomes for nitrogen availability depending on soil conditions and properties. For example, iron can limit microbial degradation of nitrogen in aerated soils but has opposing outcomes in non-aerated soils. This paper focuses on the multiple ways iron can affect nitrogen bioavailability in soils.
Peter Levy, Laura Bentley, Bridget Emmett, Angus Garbutt, Aidan Keith, Inma Lebron, and David Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1681, https://doi.org/10.5194/egusphere-2023-1681, 2023
Short summary
Short summary
We collated a large data set (15790 soil cores) on soil carbon stock in different land uses. Soil carbon stocks were highest in woodlands and lowest in croplands. The variability in the effects were large. This has important implications for agri-environment schemes, seeking to sequester carbon in the soil by altering land use, because the effect of a given intervention is very hard to verify.
Shane W. Stoner, Marion Schrumpf, Alison Hoyt, Carlos A. Sierra, Sebastian Doetterl, Valier Galy, and Susan Trumbore
Biogeosciences, 20, 3151–3163, https://doi.org/10.5194/bg-20-3151-2023, https://doi.org/10.5194/bg-20-3151-2023, 2023
Short summary
Short summary
Soils store more carbon (C) than any other terrestrial C reservoir, but the processes that control how much C stays in soil, and for how long, are very complex. Here, we used a recent method that involves heating soil in the lab to measure the range of C ages in soil. We found that most C in soil is decades to centuries old, while some stays for much shorter times (days to months), and some is thousands of years old. Such detail helps us to estimate how soil C may react to changing climate.
Adetunji Alex Adekanmbi, Laurence Dale, Liz Shaw, and Tom Sizmur
Biogeosciences, 20, 2207–2219, https://doi.org/10.5194/bg-20-2207-2023, https://doi.org/10.5194/bg-20-2207-2023, 2023
Short summary
Short summary
The decomposition of soil organic matter and flux of carbon dioxide are expected to increase as temperatures rise. However, soil organic matter decomposition is a two-step process whereby large molecules are first broken down outside microbial cells and then respired within microbial cells. We show here that these two steps are not equally sensitive to increases in soil temperature and that global warming may cause a shift in the rate-limiting step from outside to inside the microbial cell.
Mercedes Román Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, and Ross Searle
Biogeosciences, 20, 1559–1586, https://doi.org/10.5194/bg-20-1559-2023, https://doi.org/10.5194/bg-20-1559-2023, 2023
Short summary
Short summary
Soil organic carbon (SOC) is of a heterogeneous nature and varies in chemistry, stabilisation mechanisms, and persistence in soil. In this study we mapped the stocks of SOC fractions with different characteristics and turnover rates (presumably PyOC >= MAOC > POC) across Australia, combining spectroscopy and digital soil mapping. The SOC stocks (0–30 cm) were estimated as 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC.
Frederick Büks
Biogeosciences, 20, 1529–1535, https://doi.org/10.5194/bg-20-1529-2023, https://doi.org/10.5194/bg-20-1529-2023, 2023
Short summary
Short summary
Ultrasonication with density fractionation of soils is a commonly used method to separate soil organic matter pools, which is, e.g., important to calculate carbon turnover in landscapes. It is shown that the approach that merges soil and dense solution without mixing has a low recovery rate and causes co-extraction of parts of the retained labile pool along with the intermediate pool. An alternative method with high recovery rates and no cross-contamination was recommended.
Tino Peplau, Christopher Poeplau, Edward Gregorich, and Julia Schroeder
Biogeosciences, 20, 1063–1074, https://doi.org/10.5194/bg-20-1063-2023, https://doi.org/10.5194/bg-20-1063-2023, 2023
Short summary
Short summary
We buried tea bags and temperature loggers in a paired-plot design in soils under forest and agricultural land and retrieved them after 2 years to quantify the effect of land-use change on soil temperature and litter decomposition in subarctic agricultural systems. We could show that agricultural soils were on average 2 °C warmer than forests and that litter decomposition was enhanced. The results imply that deforestation amplifies effects of climate change on soil organic matter dynamics.
Joseph Okello, Marijn Bauters, Hans Verbeeck, Samuel Bodé, John Kasenene, Astrid Françoys, Till Engelhardt, Klaus Butterbach-Bahl, Ralf Kiese, and Pascal Boeckx
Biogeosciences, 20, 719–735, https://doi.org/10.5194/bg-20-719-2023, https://doi.org/10.5194/bg-20-719-2023, 2023
Short summary
Short summary
The increase in global and regional temperatures has the potential to drive accelerated soil organic carbon losses in tropical forests. We simulated climate warming by translocating intact soil cores from higher to lower elevations. The results revealed increasing temperature sensitivity and decreasing losses of soil organic carbon with increasing elevation. Our results suggest that climate warming may trigger enhanced losses of soil organic carbon from tropical montane forests.
Johanna Pihlblad, Louise C. Andresen, Catriona A. Macdonald, David S. Ellsworth, and Yolima Carrillo
Biogeosciences, 20, 505–521, https://doi.org/10.5194/bg-20-505-2023, https://doi.org/10.5194/bg-20-505-2023, 2023
Short summary
Short summary
Elevated CO2 in the atmosphere increases forest biomass productivity when growth is not limited by soil nutrients. This study explores how mature trees stimulate soil availability of nitrogen and phosphorus with free-air carbon dioxide enrichment after 5 years of fumigation. We found that both nutrient availability and processes feeding available pools increased in the rhizosphere, and phosphorus increased at depth. This appears to not be by decomposition but by faster recycling of nutrients.
Rodrigo Vargas and Van Huong Le
Biogeosciences, 20, 15–26, https://doi.org/10.5194/bg-20-15-2023, https://doi.org/10.5194/bg-20-15-2023, 2023
Short summary
Short summary
Quantifying the role of soils in nature-based solutions requires accurate estimates of soil greenhouse gas (GHG) fluxes. We suggest that multiple GHG fluxes should not be simultaneously measured at a few fixed time intervals, but an optimized sampling approach can reduce bias and uncertainty. Our results have implications for assessing GHG fluxes from soils and a better understanding of the role of soils in nature-based solutions.
Kristine Karstens, Benjamin Leon Bodirsky, Jan Philipp Dietrich, Marta Dondini, Jens Heinke, Matthias Kuhnert, Christoph Müller, Susanne Rolinski, Pete Smith, Isabelle Weindl, Hermann Lotze-Campen, and Alexander Popp
Biogeosciences, 19, 5125–5149, https://doi.org/10.5194/bg-19-5125-2022, https://doi.org/10.5194/bg-19-5125-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) has been depleted by anthropogenic land cover change and agricultural management. While SOC models often simulate detailed biochemical processes, the management decisions are still little investigated at the global scale. We estimate that soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, since 1975, SOC has been increasing again by 4 GtC due to a higher productivity, recycling of crop residues and manure, and no-tillage practices.
Petri Kiuru, Marjo Palviainen, Arianna Marchionne, Tiia Grönholm, Maarit Raivonen, Lukas Kohl, and Annamari Laurén
Biogeosciences, 19, 5041–5058, https://doi.org/10.5194/bg-19-5041-2022, https://doi.org/10.5194/bg-19-5041-2022, 2022
Short summary
Short summary
Peatlands are large carbon stocks. Emissions of carbon dioxide and methane from peatlands may increase due to changes in management and climate. We studied the variation in the gas diffusivity of peat with depth using pore network simulations and laboratory experiments. Gas diffusivity was found to be lower in deeper peat with smaller pores and lower pore connectivity. However, gas diffusivity was not extremely low in wet conditions, which may reflect the distinctive structure of peat.
Rachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Biogeosciences, 19, 4011–4028, https://doi.org/10.5194/bg-19-4011-2022, https://doi.org/10.5194/bg-19-4011-2022, 2022
Short summary
Short summary
Soils will likely become warmer in the future, and this can increase the release of carbon dioxide (CO2) into the atmosphere. As microbes can take up soil CO2 and prevent further escape into the atmosphere, this study compares the rate of uptake and release of CO2 at two different temperatures. With warming, the rate of CO2 uptake increases less than the rate of release, indicating that the capacity to modulate soil CO2 release into the atmosphere will decrease under future warming.
Giuseppe Cipolla, Salvatore Calabrese, Amilcare Porporato, and Leonardo V. Noto
Biogeosciences, 19, 3877–3896, https://doi.org/10.5194/bg-19-3877-2022, https://doi.org/10.5194/bg-19-3877-2022, 2022
Short summary
Short summary
Enhanced weathering (EW) is a promising strategy for carbon sequestration. Since models may help to characterize field EW, the present work applies a hydro-biogeochemical model to four case studies characterized by different rainfall seasonality, vegetation and soil type. Rainfall seasonality strongly affects EW dynamics, but low carbon sequestration suggests that an in-depth analysis at the global scale is required to see if EW may be effective to mitigate climate change.
Vao Fenotiana Razanamahandry, Marjolein Dewaele, Gerard Govers, Liesa Brosens, Benjamin Campforts, Liesbet Jacobs, Tantely Razafimbelo, Tovonarivo Rafolisy, and Steven Bouillon
Biogeosciences, 19, 3825–3841, https://doi.org/10.5194/bg-19-3825-2022, https://doi.org/10.5194/bg-19-3825-2022, 2022
Short summary
Short summary
In order to shed light on possible past vegetation shifts in the Central Highlands of Madagascar, we measured stable isotope ratios of organic carbon in soil profiles along both forested and grassland hillslope transects in the Lake Alaotra region. Our results show that the landscape of this region was more forested in the past: soils in the C4-dominated grasslands contained a substantial fraction of C3-derived carbon, increasing with depth.
Katherine E. O. Todd-Brown, Rose Z. Abramoff, Jeffrey Beem-Miller, Hava K. Blair, Stevan Earl, Kristen J. Frederick, Daniel R. Fuka, Mario Guevara Santamaria, Jennifer W. Harden, Katherine Heckman, Lillian J. Heran, James R. Holmquist, Alison M. Hoyt, David H. Klinges, David S. LeBauer, Avni Malhotra, Shelby C. McClelland, Lucas E. Nave, Katherine S. Rocci, Sean M. Schaeffer, Shane Stoner, Natasja van Gestel, Sophie F. von Fromm, and Marisa L. Younger
Biogeosciences, 19, 3505–3522, https://doi.org/10.5194/bg-19-3505-2022, https://doi.org/10.5194/bg-19-3505-2022, 2022
Short summary
Short summary
Research data are becoming increasingly available online with tantalizing possibilities for reanalysis. However harmonizing data from different sources remains challenging. Using the soils community as an example, we walked through the various strategies that researchers currently use to integrate datasets for reanalysis. We find that manual data transcription is still extremely common and that there is a critical need for community-supported informatics tools like vocabularies and ontologies.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Laura Sereni, Bertrand Guenet, Charlotte Blasi, Olivier Crouzet, Jean-Christophe Lata, and Isabelle Lamy
Biogeosciences, 19, 2953–2968, https://doi.org/10.5194/bg-19-2953-2022, https://doi.org/10.5194/bg-19-2953-2022, 2022
Short summary
Short summary
This study focused on the modellisation of two important drivers of soil greenhouse gas emissions: soil contamination and soil moisture change. The aim was to include a Cu function in the soil biogeochemical model DNDC for different soil moisture conditions and then to estimate variation in N2O, NO2 or NOx emissions. Our results show a larger effect of Cu on N2 and N2O emissions than on the other nitrogen species and a higher effect for the soils incubated under constant constant moisture.
Marie Spohn and Johan Stendahl
Biogeosciences, 19, 2171–2186, https://doi.org/10.5194/bg-19-2171-2022, https://doi.org/10.5194/bg-19-2171-2022, 2022
Short summary
Short summary
We explored the ratios of carbon (C), nitrogen (N), and phosphorus (P) of organic matter in Swedish forest soils. The N : P ratio of the organic layer was most strongly related to the mean annual temperature, while the C : N ratios of the organic layer and mineral soil were strongly related to tree species even in the subsoil. The organic P concentration in the mineral soil was strongly affected by soil texture, which diminished the effect of tree species on the C to organic P (C : OP) ratio.
Moritz Mainka, Laura Summerauer, Daniel Wasner, Gina Garland, Marco Griepentrog, Asmeret Asefaw Berhe, and Sebastian Doetterl
Biogeosciences, 19, 1675–1689, https://doi.org/10.5194/bg-19-1675-2022, https://doi.org/10.5194/bg-19-1675-2022, 2022
Short summary
Short summary
The largest share of terrestrial carbon is stored in soils, making them highly relevant as regards global change. Yet, the mechanisms governing soil carbon stabilization are not well understood. The present study contributes to a better understanding of these processes. We show that qualitative changes in soil organic matter (SOM) co-vary with alterations of the soil matrix following soil weathering. Hence, the type of SOM that is stabilized in soils might change as soils develop.
Jasmin Fetzer, Emmanuel Frossard, Klaus Kaiser, and Frank Hagedorn
Biogeosciences, 19, 1527–1546, https://doi.org/10.5194/bg-19-1527-2022, https://doi.org/10.5194/bg-19-1527-2022, 2022
Short summary
Short summary
As leaching is a major pathway of nitrogen and phosphorus loss in forest soils, we investigated several potential drivers in two contrasting beech forests. The composition of leachates, obtained by zero-tension lysimeters, varied by season, and climatic extremes influenced the magnitude of leaching. Effects of nitrogen and phosphorus fertilization varied with soil nutrient status and sorption properties, and leaching from the low-nutrient soil was more sensitive to environmental factors.
Karis J. McFarlane, Heather M. Throckmorton, Jeffrey M. Heikoop, Brent D. Newman, Alexandra L. Hedgpeth, Marisa N. Repasch, Thomas P. Guilderson, and Cathy J. Wilson
Biogeosciences, 19, 1211–1223, https://doi.org/10.5194/bg-19-1211-2022, https://doi.org/10.5194/bg-19-1211-2022, 2022
Short summary
Short summary
Planetary warming is increasing seasonal thaw of permafrost, making this extensive old carbon stock vulnerable. In northern Alaska, we found more and older dissolved organic carbon in small drainages later in summer as more permafrost was exposed by deepening thaw. Younger and older carbon did not differ in chemical indicators related to biological lability suggesting this carbon can cycle through aquatic systems and contribute to greenhouse gas emissions as warming increases permafrost thaw.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
Heleen Deroo, Masuda Akter, Samuel Bodé, Orly Mendoza, Haichao Li, Pascal Boeckx, and Steven Sleutel
Biogeosciences, 18, 5035–5051, https://doi.org/10.5194/bg-18-5035-2021, https://doi.org/10.5194/bg-18-5035-2021, 2021
Short summary
Short summary
We assessed if and how incorporation of exogenous organic carbon (OC) such as straw could affect decomposition of native soil organic carbon (SOC) under different irrigation regimes. Addition of exogenous OC promoted dissolution of native SOC, partly because of increased Fe reduction, leading to more net release of Fe-bound SOC. Yet, there was no proportionate priming of SOC-derived DOC mineralisation. Water-saving irrigation can retard both priming of SOC dissolution and mineralisation.
Elisa Bruni, Bertrand Guenet, Yuanyuan Huang, Hugues Clivot, Iñigo Virto, Roberta Farina, Thomas Kätterer, Philippe Ciais, Manuel Martin, and Claire Chenu
Biogeosciences, 18, 3981–4004, https://doi.org/10.5194/bg-18-3981-2021, https://doi.org/10.5194/bg-18-3981-2021, 2021
Short summary
Short summary
Increasing soil organic carbon (SOC) stocks is beneficial for climate change mitigation and food security. One way to enhance SOC stocks is to increase carbon input to the soil. We estimate the amount of carbon input required to reach a 4 % annual increase in SOC stocks in 14 long-term agricultural experiments around Europe. We found that annual carbon input should increase by 43 % under current temperature conditions, by 54 % for a 1 °C warming scenario and by 120 % for a 5 °C warming scenario.
Rainer Brumme, Bernd Ahrends, Joachim Block, Christoph Schulz, Henning Meesenburg, Uwe Klinck, Markus Wagner, and Partap K. Khanna
Biogeosciences, 18, 3763–3779, https://doi.org/10.5194/bg-18-3763-2021, https://doi.org/10.5194/bg-18-3763-2021, 2021
Short summary
Short summary
In order to study the fate of litter nitrogen in forest soils, we combined a leaf litterfall exchange experiment using 15N-labeled leaf litter with long-term element budgets at seven European beech sites in Germany. It appears that fructification intensity, which has increased in recent decades, has a distinct impact on N retention in forest soils. Despite reduced nitrogen deposition, about 6 and 10 kg ha−1 of nitrogen were retained annually in the soils and in the forest stands, respectively.
Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera I. Slaveykova, and Adrien Mestrot
Biogeosciences, 18, 3445–3465, https://doi.org/10.5194/bg-18-3445-2021, https://doi.org/10.5194/bg-18-3445-2021, 2021
Short summary
Short summary
Our incubation experiment shows that flooding of polluted floodplain soils may induce pulses of both mercury (Hg) and methylmercury to the soil solution and threaten downstream ecosystems. We demonstrate that mobilization of Hg bound to manganese oxides is a relevant process in organic-matter-poor soils. Addition of organic amendments accelerates this mobilization but also facilitates the formation of nanoparticulate Hg and the subsequent fixation of Hg from soil solution to the soil.
Yao Zhang, Jocelyn M. Lavallee, Andy D. Robertson, Rebecca Even, Stephen M. Ogle, Keith Paustian, and M. Francesca Cotrufo
Biogeosciences, 18, 3147–3171, https://doi.org/10.5194/bg-18-3147-2021, https://doi.org/10.5194/bg-18-3147-2021, 2021
Short summary
Short summary
Soil organic matter (SOM) is essential for the health of soils, and the accumulation of SOM helps removal of CO2 from the atmosphere. Here we present the result of the continued development of a mathematical model that simulates SOM and its measurable fractions. In this study, we simulated several grassland sites in the US, and the model generally captured the carbon and nitrogen amounts in SOM and their distribution between the measurable fractions throughout the entire soil profile.
Zhongkui Luo, Raphael A. Viscarra-Rossel, and Tian Qian
Biogeosciences, 18, 2063–2073, https://doi.org/10.5194/bg-18-2063-2021, https://doi.org/10.5194/bg-18-2063-2021, 2021
Short summary
Short summary
Using the data from 141 584 whole-soil profiles across the globe, we disentangled the relative importance of biotic, climatic and edaphic variables in controlling global SOC stocks. The results suggested that soil properties and climate contributed similarly to the explained global variance of SOC in four sequential soil layers down to 2 m. However, the most important individual controls are consistently soil-related, challenging current climate-driven framework of SOC dynamics.
Debjani Sihi, Xiaofeng Xu, Mónica Salazar Ortiz, Christine S. O'Connell, Whendee L. Silver, Carla López-Lloreda, Julia M. Brenner, Ryan K. Quinn, Jana R. Phillips, Brent D. Newman, and Melanie A. Mayes
Biogeosciences, 18, 1769–1786, https://doi.org/10.5194/bg-18-1769-2021, https://doi.org/10.5194/bg-18-1769-2021, 2021
Short summary
Short summary
Humid tropical soils are important sources and sinks of methane. We used model simulation to understand how different kinds of microbes and observed soil moisture and oxygen dynamics contribute to production and consumption of methane along a wet tropical hillslope during normal and drought conditions. Drought alters the diffusion of oxygen and microbial substrates into and out of soil microsites, resulting in enhanced methane release from the entire hillslope during drought recovery.
Mathieu Chassé, Suzanne Lutfalla, Lauric Cécillon, François Baudin, Samuel Abiven, Claire Chenu, and Pierre Barré
Biogeosciences, 18, 1703–1718, https://doi.org/10.5194/bg-18-1703-2021, https://doi.org/10.5194/bg-18-1703-2021, 2021
Short summary
Short summary
Evolution of organic carbon content in soils could be a major driver of atmospheric greenhouse gas concentrations over the next century. Understanding factors controlling carbon persistence in soil is a challenge. Our study of unique long-term bare-fallow samples, depleted in labile organic carbon, helps improve the separation, evaluation and characterization of carbon pools with distinct residence time in soils and gives insight into the mechanisms explaining soil organic carbon persistence.
Melisa A. Diaz, Christopher B. Gardner, Susan A. Welch, W. Andrew Jackson, Byron J. Adams, Diana H. Wall, Ian D. Hogg, Noah Fierer, and W. Berry Lyons
Biogeosciences, 18, 1629–1644, https://doi.org/10.5194/bg-18-1629-2021, https://doi.org/10.5194/bg-18-1629-2021, 2021
Short summary
Short summary
Water-soluble salt and nutrient concentrations of soils collected along the Shackleton Glacier, Antarctica, show distinct geochemical gradients related to latitude, longitude, elevation, soil moisture, and distance from coast and glacier. Machine learning algorithms were used to estimate geochemical gradients for the region given the relationship with geography. Geography and surface exposure age drive salt and nutrient abundances, influencing invertebrate habitat suitability and biogeography.
Marion Schrumpf, Klaus Kaiser, Allegra Mayer, Günter Hempel, and Susan Trumbore
Biogeosciences, 18, 1241–1257, https://doi.org/10.5194/bg-18-1241-2021, https://doi.org/10.5194/bg-18-1241-2021, 2021
Short summary
Short summary
A large amount of organic carbon (OC) in soil is protected against decay by bonding to minerals. We studied the release of mineral-bonded OC by NaF–NaOH extraction and H2O2 oxidation. Unexpectedly, extraction and oxidation removed mineral-bonded OC at roughly constant portions and of similar age distributions, irrespective of mineral composition, land use, and soil depth. The results suggest uniform modes of interactions between OC and minerals across soils in quasi-steady state with inputs.
Lena Rohe, Bernd Apelt, Hans-Jörg Vogel, Reinhard Well, Gi-Mick Wu, and Steffen Schlüter
Biogeosciences, 18, 1185–1201, https://doi.org/10.5194/bg-18-1185-2021, https://doi.org/10.5194/bg-18-1185-2021, 2021
Short summary
Short summary
Total denitrification, i.e. N2O and (N2O + N2) fluxes, of repacked soil cores were analysed for different combinations of soils and water contents. Prediction accuracy of (N2O + N2) fluxes was highest with combined proxies for oxygen demand (CO2 flux) and oxygen supply (anaerobic soil volume fraction). Knowledge of denitrification completeness (product ratio) improved N2O predictions. Substitutions with cheaper proxies (soil organic matter, empirical diffusivity) reduced prediction accuracy.
Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Cristina Santin, Marcus Schiedung, Ilja van Meerveld, and Samuel Abiven
Biogeosciences, 18, 1105–1126, https://doi.org/10.5194/bg-18-1105-2021, https://doi.org/10.5194/bg-18-1105-2021, 2021
Short summary
Short summary
Controls of pyrogenic carbon (PyC) redistribution under rainfall are largely unknown. However, PyC mobility can be substantial after initial rain in post-fire landscapes. We conducted a controlled simulation experiment on plots where PyC was applied on the soil surface. We identified redistribution of PyC by runoff and splash and vertical movement in the soil depending on soil texture and PyC characteristics (material and size). PyC also induced changes in exports of native soil organic carbon.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Cited articles
Alster, C. J., Fischer, von, J. C., Allison, S. D., and Treseder, K. K.:
Embracing a new paradigm for temperature sensitivity of soil microbes, Glob.
Change Biol., 26, 3221–3229, https://doi.org/10.1111/gcb.15053, 2020.
Basler, A., Dippold, M., Helfrich, M., and Dyckmans, J.: Microbial carbon
recycling – An underestimated process controlling soil carbon dynamics –
Part 1: A long-term laboratory incubation experiment, Biogeosciences,
12, 5929–5940, https://doi.org/10.5194/bg-12-5929-2015, 2015.
Benner, R., Fogel, M., Spargue, K., and Hodson, R.: Depletion of 13C in
lignin and its implications for stable carbon isotope studies, Nature,
329, 708–710, https://doi.org/10.1038/329708a0, 1987.
Billings, S. A. and Ballantyne, F.: How interactions between microbial
resource demands, soil organic matter stoichiometry, and substrate
reactivity determine the direction and magnitude of soil respiratory
responses to warming, Glob. Change Biol., 19, 90–102,
https://doi.org/10.1111/gcb.12029, 2013.
Bingeman, C. W., Varner, J. E., and Martin, W. P.: The Effect of the Addition
of Organic Materials on the Decomposition of an Organic Soil, Soil Sci.
Soc. Am. J., 17, 34–38,
https://doi.org/10.2136/sssaj1953.03615995001700010008x, 1953.
Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., and Kuzyakov, Y.:
Three-source-partitioning of microbial biomass and of CO2 efflux from soil
to evaluate mechanisms of priming effects, Soil Biol. Biochem.,
43, 778–786, https://doi.org/10.1016/j.soilbio.2010.12.011, 2011.
Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H., and Kuzyakov, Y.:
Microbial growth and carbon use efficiency in the rhizosphere and root-free
soil, PLoS ONE, 9, e93282, https://doi.org/10.1371/journal.pone.0093282, 2014.
Bond-Lamberty, B. and Thomson, A.: A global database of soil respiration
data, Biogeosciences, 7, 1915–1926, https://doi.org/10.5194/bg-7-1915-2010, 2010.
Bölscher, T., Wadso, L., Borjesson, G., and Herrmann, A. M.: Differences
in substrate use efficiency: impacts of microbial community composition,
land use management, and substrate complexity, Biol. Fert.
Soils, 52, 547–559, https://doi.org/10.1007/s00374-016-1097-5, 2016.
Bölscher, T., Paterson, E., Freitag, T., Thornton, B., and Herrmann, A.
M.: Temperature sensitivity of substrate-use efficiency can result from
altered microbial physiology without change to community composition, Soil
Biol. Biochem., 109, 59–69, https://doi.org/10.1016/j.soilbio.2017.02.005,
2017.
Breecker, D. O., Bergel, S., Nadel, M., Tremblay, M. M., Osuna-Orozco, R.,
Larson, T. E., and Sharp, Z. D.: Minor stable carbon isotope fractionation
between respired carbon dioxide and bulk soil organic matter during
laboratory incubation of topsoil, Biogeochemistry, 123, 83–98,
https://doi.org/10.1007/s10533-014-0054-3, 2015.
Briones, M. J. I., McNamara, N. P., Poskitt, J., Crow, S. E., and Ostle, N.
J.: Interactive biotic and abiotic regulators of soil carbon cycling:
evidence from controlled climate experiments on peatland and boreal soils,
Glob. Change Biol., 20, 2971–2982, https://doi.org/10.1111/gcb.12585, 2014.
Buckeridge, K. M., Banerjee, S., Siciliano, S. D., and Grogan, P.: The
seasonal pattern of soil microbial community structure in mesic low arctic
tundra, Soil Biol. Biochem., 65, 338–347,
https://doi.org/10.1016/j.soilbio.2013.06.012, 2013.
Butnor, J. R., Johnsen, K. H., Oren, R., and Katul, G. G: Reduction of forest floor respiration by fertilization on both carbon dioxide‐enriched and reference 17‐year‐old loblolly pine stands, Glob. Change Biol., 9, 849–861, https://doi.org/10.1046/j.1365-2486.2003.00630.x, 2003.
Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W.,
Burton, A. J., Dukes, J. S., Emmett, B., Frey, S. D., Heskel, M. A., Jiang,
L., Machmuller, M. B., Mohan, J., Panetta, A. M., Reich, P. B., Reinsch, S.,
Wang, X., Allison, S. D., Bamminger, C., Bridgham, S., Collins, S. L., de
Dato, G., Eddy, W. C., Enquist, B. J., Estiarte, M., Harte, J., Henderson,
A., Johnson, B. R., Larsen, K. S., Luo, Y., Marhan, S., Melillo, J. M.,
Peuelas, J., Pfeifer-Meister, L., Poll, C., Rastetter, E., Reinmann, A. B.,
Reynolds, L. L., Schmidt, I. K., Shaver, G. R., Strong, A. L., Suseela, V.,
and Tietema, A.: Temperature response of soil respiration largely unaltered
with experimental warming, P. Natl. Acad. Sci. USA,
113, 13797–13802, 2016.
Cheng, W., Parton, W. J., Gonzalez-Meler, M. A., Phillips, R., Asao, S.,
McNickle, G. G., Brzostek, E., and Jastrow, J. D.: Synthesis and modeling
perspectives of rhizosphere priming, New Phytol., 201, 31–44,
https://doi.org/10.1111/nph.12440, 2014.
Conant, R. T., Steinweg, J. M., Haddix, M. L., Paul, E. A., Plante, A. F.,
and Six, J.: Experimental warming shows that decomposition temperature
sensitivity increases with soil organic matter recalcitrance, Ecology,
89, 2384–2391, https://doi.org/10.1890/08-0137.1, 2008.
Curiel Yuste, J., Janssens, I. A., Carrara, A., and Ceulemans, R.: Annual
Q10 of soil respiration reflects plant phenological patterns as well as
temperature sensitivity, Glob. Change Biol., 10, 161–169,
https://doi.org/10.1111/j.1529-8817.2003.00727.x, 2004.
Czimczik, C. I. and Trumbore, S. E.: Short-term controls on the age of
microbial carbon sources in boreal forest soils, J. Geophys. Res.-Biogeo.,
112, JG000389, https://doi.org/10.1029/2006JG000389, 2007.
Dauwe, B. and Middelburg, J. J.: Amino acids and hexosamines as indicators
of organic matter degradation state in North Sea sediments, Limnol.
Oceangr., 43, 782–798, https://doi.org/10.4319/lo.1998.43.5.0782, 1998.
Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change, Nature, 440, 165–173,
https://doi.org/10.1038/nature04514, 2006.
Di Lonardo, D. P., de Boer, W., Zweers, H., and van der Wal, A.: Effect of
the amount of organic trigger compounds, nitrogen and soil microbial biomass
on the magnitude of priming of soil organic matter, edited by: Wu, F., PLoS
ONE, 14, e0216730, https://doi.org/10.1371/journal.pone.0216730, 2019.
Dijkstra, F. A., Carrillo, Y., Pendall, E., and Morgan, J. A.: Rhizosphere
priming: a nutrient perspective, Front. Microbiol., 4, 00216,
https://doi.org/10.3389/fmicb.2013.00216, 2013.
Dijkstra, P., Ishizu, A., Doucett, R., Hart, S. C., Schwartz, E., Menyailo,
O. V., and Hungate, B. A.: 13C and 15N natural abundance of the soil
microbial biomass, Soil Biol. Biochem., 38, 3257–3266,
https://doi.org/10.1016/j.soilbio.2006.04.005, 2006.
Fang, C. M., Smith, P., Moncrieff, J. B., and Smith, J. U.: Similar response
of labile and resistant soil organic matter pools to changes in temperature, Nature, 436, 881–881,
https://doi.org/10.1038/nature04044, 2005.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B.
A., Kramer, M. A., and Phillips, R. P.: Rhizosphere processes are
quantitatively important components of terrestrial carbon and nutrient
cycles, Glob. Change Biol., 21, 2082–2094, https://doi.org/10.1111/gcb.12816, 2015.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.:
Stability of organic carbon in deep soil layers controlled by fresh carbon
supply, Nature, 450, 277–280, https://doi.org/10.1038/nature06275, 2007.
Fontaine, S., Henault, C., Aamor, A., Bdioui, N., Bloor, J. M. G., Maire,
V., Mary, B., Revaillot, S., and Maron, P. A.: Fungi mediate long term
sequestration of carbon and nitrogen in soil through their priming effect,
Soil Biol. Biochem., 43, 86–96,
https://doi.org/10.1016/j.soilbio.2010.09.017, 2011.
Frey, S. D., Lee, J., Melillo, J. M., and Six, J.: The temperature response
of soil microbial efficiency and its feedback to climate, Nat. Clim.
Change, 3, 1–4, https://doi.org/10.1038/nclimate1796, 2013.
Glaser, B. and Amelung, W.: Determination of 13C natural abundance of amino
acid enantiomers in soil: methodological considerations and first results,
Rapid Commun. Mass Spectrom., 16, 891–898, https://doi.org/10.1002/rcm.650, 2002.
Hájek, T., Ballance, S., Limpens, J., Zijlstra, M., and Verhoeven, J. T.
A.: Cell-wall polysaccharides play an important role in decay resistance of
Sphagnum and actively depressed decomposition in vitro, Biogeochemistry,
103, 45–57, https://doi.org/10.1007/s10533-010-9444-3, 2011.
Hedges, J. I., Cowie, G. L., Richey, J. E., Quay, P. D., Benner, R., Strom,
M., and Forsberg, B. R.: Origins and processing of organic matter in the
Amazon River as indicated by carbohydrates and amino acids, Limnol.
Oceangr., 39, 743–761, https://doi.org/10.4319/lo.1994.39.4.0743, 1994.
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355,
1420–1423, https://doi.org/10.1126/science.aal1319, 2017.
Hobbie, E. and Werner, R.: Intramolecular, compound-specific, and bulk
carbon isotope patterns in C3 and C4 plants: a review and synthesis, New
Phytol., 161, 371–385, doi.org/10.1046/j.1469-8137.2004.00970.x, 2004.
Hogberg, M. N. and Hogberg, P.: Extramatrical ectomycorrhizal mycelium
contributes one-third of microbial biomass and produces, together with
associated roots, half the dissolved organic carbon in a forest soil, New
Phytol., 154, 791–795, 2002.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter in
soils, Soil Biol. Biochem., 52, 29–32,
https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K. and Kaiser, K.: Contribution of dissolved organic matter to
carbon storage in forest mineral soils, J. Plant Nutr. Soil Sci., 171,
52–60, https://doi.org/10.1002/jpln.200700043, 2008.
Kallenbach, C. M., Frey, S. D., and Grandy, A. S.: Direct evidence for
microbial-derived soil organic matter formation and its ecophysiological
controls, Nat. Commun., 7, 13630, https://doi.org/10.1038/ncomms13630, 2016.
Kane, E. S., Hockaday, W. C., Turetsky, M. R., Masiello, C. A., Valentine,
D. W., Finney, B. P., and Baldock, J. A.: Topographic controls on black
carbon accumulation in Alaskan black spruce forest soils: implications for
organic matter dynamics, Biogeochemistry, 100, 39–56,
https://doi.org/10.1007/s10533-009-9403-z, 2010.
Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J.
I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. I.,
Sebastià, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A.
T., Salinas, N., and Hartley, I. P.: Temperature sensitivity of soil
respiration rates enhanced by microbial community response, Nature,
513, 81–84, https://doi.org/10.1038/nature13604, 2014.
Kohl, L., Laganière, J., Edwards, K. A., Billings, S. A., Morrill, P.
L., Van Biesen, G., and Ziegler, S. E.: Distinct fungal and bacterial δ13C signatures as potential drivers of increasing δ13C of soil
organic matter with depth, Biogeochemistry, 124, 13–26,
https://doi.org/10.1007/s10533-015-0107-2, 2015.
Kohl, L., Philben, M., Edwards, K. A., Podrebarac, F. A., Warren, J., and
Ziegler, S. E.: The origin of soil organic matter controls its composition
and bioreactivity across a mesic boreal forest latitudinal gradient, Glob.
Change Biol., 24, e458–e473, https://doi.org/10.1111/gcb.13887, 2018.
Laganière, J., Podrebarac, F., Billings, S. A., Edwards, K. A., and
Ziegler, S. E.: A warmer climate reduces the bioreactivity of isolated
boreal forest soil horizons without increasing the temperature sensitivity
of respiratory CO2 loss, Soil Biol. Biochem., 84, 177–188,
https://doi.org/10.1016/j.soilbio.2015.02.025, 2015.
Lefevre, R., Barré, P., Moyano, F. E., Christensen, B. T., Bardoux, G.,
Eglin, T., Girardin, C., Houot, S., Kätterer, T., van Oort, F., and
Chenu, C.: Higher temperature sensitivity for stable than for labile soil
organic carbon – Evidence from incubations of long-term bare fallow soils,
Glob. Change Biol., 20, 633–640, https://doi.org/10.1111/gcb.12402, 2014.
Leifeld, J. and Fuhrer, J.: The Temperature Response of CO2 Production
from Bulk Soils and Soil Fractions is Related to Soil Organic Matter
Quality, Biogeochemistry, 75, 433–453, https://doi.org/10.1007/s10533-005-2237-4,
2005.
Li, Q., Tian, Y., Zhang, X., Xu, X., Wang, H., and Kuzyakov, Y.: Labile
carbon and nitrogen additions affect soil organic matter decomposition more
strongly than temperature, Appl. Soil Ecol., 114, 152–160,
https://doi.org/10.1016/j.apsoil.2017.01.009, 2017.
Liski, J., Ilvesniemi, H., Mäkelä, A., and Westman, C. J.: CO2
emissions from soil in response to climatic warming are overestimated – The
decomposition of old soil organic matter is tolerant of temperature, AMBIO, 28, 171–174, 1999.
Maier, C. A. and Kress, L. W.: Soil CO2 evolution and root respiration
in 11 year-old loblolly pine (Pinus taeda) plantations as affected by
moisture and nutrient availability, Can. J. Forest Res.,
30, 347–359, https://doi.org/10.1139/x99-218, 2000
Malik, A. A., Chowdhury, S., Schlager, V., Oliver, A., Puissant, J.,
Vazquez, P. G. M., Jehmlich, N., Bergen, von, M., Griffiths, R. I., and
Gleixner, G.: Soil Fungal : Bacterial Ratios Are Linked to Altered Carbon
Cycling, Front. Microbiol., 7, 1247,
https://doi.org/10.3389/fmicb.2016.01247, 2016.
Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B.,
Durand, J. O., Bujoli, B., Gan, Z. H., and Hoatson, G.: Modelling one- and
two-dimensional solid-state NMR spectra, Magn. Reson. Chem.,
40, 70–76, https://doi.org/10.1002/mrc.984, 2002.
Min, K., Buckeridge, K., Ziegler, S. E., Edwards, K. A., Bagchi, S., and
Billings, S. A.: Temperature sensitivity of biomass-specific microbial
exo-enzyme activities and CO2 efflux is resistant to change across
short- and long-term timescales, Glob. Change Biol., 25, 1793–1807,
https://doi.org/10.1111/gcb.14605, 2019.
Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F.,
Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger,
K. M., Zechmeister-Boltenstern, S., and Richter, A.: Adjustment of microbial
nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil
nitrogen cycling, Nat. Commun., 5, 1–7, https://doi.org/10.1038/ncomms4694, 2014.
Paterson, E., Osler, G., Dawson, L. A., Gebbing, T., Sim, A., and Ord, B.:
Labile and recalcitrant plant fractions are utilised by distinct microbial
communities in soil: Independent of the presence of roots and mycorrhizal
fungi, Soil Biol. Biochem., 40, 1103–1113,
https://doi.org/10.1016/j.soilbio.2007.12.003, 2008.
Pawar, S., Dell, A. I., Savage, V. M., and Knies, J. L.: Real versus
Artificial Variation in the Thermal Sensitivity of Biological Traits, Am.
Nat., 187, E41–E52, https://doi.org/10.1086/684590, 2016.
Pennington, S. C., McDowell, N. G., Megonigal, J. P., Stegen, J. C., and Bond-Lamberty, B.: Localized basal area affects soil respiration temperature sensitivity in a coastal deciduous forest, Biogeosciences, 17, 771–780, https://doi.org/10.5194/bg-17-771-2020, 2020.
Philben, M., Ziegler, S. E., Edwards, K. A., Kahler III, R., and Benner, R.:
Soil organic nitrogen cycling increases with temperature and precipitation
along a boreal forest latitudinal transect, Biogeochemistry, 127,
397–410, https://doi.org/10.1007/s10533-016-0187-7, 2016.
Philben, M., Butler, S., Billings, S. A., Benner, R., Edwards, K. A., and
Ziegler, S. E.: Biochemical and structural controls on the decomposition
dynamics of boreal upland forest moss tissues, Biogeosciences, 15,
6731–6746, https://doi.org/10.5194/bg-15-6731-2018, 2018.
Pietikainen, J., Pettersson, M., and Baath, E.: Comparison of temperature
effects on soil respiration and bacterial and fungal growth rates, FEMS
Microbiol. Ecol., 52, 49–58, https://doi.org/10.1016/j.femsec.2004.10.002, 2005.
Podrebarac, F. A., Laganière, J., Billings, S. A., Edwards, K. A., and
Ziegler, S. E.: Soils isolated during incubation underestimate temperature
sensitivity of respiration and its response to climate history, Soil Biol.
Biochem., 93, 60–68, https://doi.org/10.1016/j.soilbio.2015.10.012, 2016.
Popper, Z. A. and Fry, S. C.: Primary cell wall composition of bryophytes
and charophytes, Ann. Bot., 91, 1–12, https://doi.org/10.1093/aob/mcg013,
2003.
Preston, C. M., Trofymow, J. T., and Working Group, T. C. I. D.: Variability
in litter quality and its relationship to litter decay in Canadian forests,
Can. J. Bot., 78, 1269–1287, https://doi.org/10.1139/b00-101, 2000.
Preston, C. M., Nault, J. R., and Trofymow, J. A.: Chemical Changes During 6
Years of Decomposition of 11 Litters in Some Canadian Forest Sites, Part 2.
13C Abundance, Solid-State 13C NMR Spectroscopy and the Meaning of
“Lignin”, Ecosystems, 12, 1078–1102, https://doi.org/10.1007/s10021-009-9267-z,
2009.
Pumpanen, J. S., Heinonsalo, J., Rasilo, T., Hurme, K.-R., and Ilvesniemi,
H.: Carbon balance and allocation of assimilated CO2 in Scots pine,
Norway spruce, and Silver birch seedlings determined with gas exchange
measurements and 14C pulse labelling, Trees-Struct. Funct.,
23, 611–621, https://doi.org/10.1007/s00468-008-0306-8, 2009.
R Core Team: A Language and Environment for Statistical Computing,
https://www.R-project.org/ (last access: 17 June 2018), 2017.
Rinnan, R. and Baath, E.: Differential Utilization of Carbon Substrates by
Bacteria and Fungi in Tundra Soil, Appl. Environ. Microb., 75, 3611–3620,
https://doi.org/10.1128/AEM.02865-08, 2009.
Robertson, G. P., Coleman, D. C., Sollins, P., and Bledsoe, C. S (Eds.): Standard soil methods for long-term ecological research, Oxford Press, London, 1999.
Rytioja, J., Hilden, K., Yuzon, J., Hatakka, A., de Vries, R. P., and Makela,
M. R.: Plant-polysaccharide-degrading enzymes from basidiomycetes,
Microbiol. Mol. Biol. Rev., 78, 614–649, https://doi.org/10.1128/MMBR.00035-14,
2014.
Schadt, C. W., Martin, A. P., Lipson, D. A., and Schmidt, S. K.: Seasonal
dynamics of previously unknown fungal lineages in tundra soils, Science,
301, 1359–1361, https://doi.org/10.1126/science.1086940, 2003.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity
on microbial carbon and nitrogen limitation in soil: a theoretical model,
Soil Biol. Biochem., 35, 549–563,
https://doi.org/10.1016/S0038-0717(03)00015-4, 2003.
Schipper, L. A., Hobbs, J. K., Rutledge, S., and Arcus, V. L.: Thermodynamic
theory explains the temperature optima of soil microbial processes and high
Q10 values at low temperatures, Glob. Change Biol., 20, 3578–3586,
https://doi.org/10.1111/gcb.12596, 2014.
Sierra, C. A.: Temperature sensitivity of organic matter decomposition in
the Arrhenius equation: some theoretical considerations, Biogeochemistry,
108, 1–15, https://doi.org/10.1007/s10533-011-9596-9, 2012.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. B., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
change 2013 the physical science basis: Working Group I contribution to the
fifth assessment report of the intergovernmental panel on climate change,
edited by: Intergovernmental Panel on Climate Change, Cambridge University
Press, Cambridge, 2013.
Streit, K., Hagedorn, F., Hiltbrunner, D., Portmann, M., Saurer, M.,
Buchmann, N., Wild, B., Richter, A., Wipf, S., and Siegwolf, R. T. W.: Soil
warming alters microbial substrate use in alpine soils, Glob. Change Biol.,
20, 1327–1338, https://doi.org/10.1111/gcb.12396, 2014.
Turetsky, M. R., Crow, S. E., Evans, R. J., Vitt, D. H., and Wieder, R. K.:
Trade-offs in resource allocation among moss species control decomposition
in boreal peatlands, J. Ecol., 96, 1297–1305,
https://doi.org/10.1111/j.1365-2745.2008.01438.x, 2008.
Wallenstein, M. D. and Weintraub, M. N.: Emerging tools for measuring and
modeling the in situ activity of soil extracellular enzymes, Soil Biol. Biochem., 40, 2098–2106, https://doi.org/10.1016/j.soilbio.2008.01.024,
2008.
Wang, Q., He, N., Yu, G., Gao, Y., Wen, X., Wang, R., Koerner, S. E., and Yu,
Q.: Soil microbial respiration rate and temperature sensitivity along a
north-south forest transect in eastern China: Patterns and influencing
factors, J. Geophys. Res.-Biogeo., 121, 399–410, https://doi.org/10.1002/2015JG003217,
2016.
Wild, B., Gentsch, N., Čapek, P., Diáková, K., Alves, R. J. E.,
Bárta, J., Gittel, A., Hugelius, G., Knoltsch, A., Kuhry, P.,
Lashchinskiy, N., Mikutta, R., Palmtag, J., Schleper, C., Schnecker, J.,
Shibistova, O., Takriti, M., Torsvik, V. L., Urich, T., Watzka, M.,
Šantrůčková, H., Guggenberger, G., and Richter, A.:
Plant-derived compounds stimulate the decomposition of organic matter in
arctic permafrost soils, Sci. Rep., 6, 25607, https://doi.org/10.1038/srep25607, 2016.
Wilson, M. A., Vassallo, A. M., Perdue, E. M.. and Reuter, J. H.:
Compositional and Solid-State Nuclear Magnetic Resonance Study of Humic and
Fulvic Acid Fractions of Soil Organic Matter, Anal. Chem., 59, 551–558,
https://doi.org/10.1021/ac00131a004, 1987.
Zhu, B. and Cheng, W.: Rhizosphere priming effect increases the temperature
sensitivity of soil organic matter decomposition, Glob. Change Biol., 17,
2172–2183, https://doi.org/10.1111/j.1365-2486.2010.02354.x, 2011.
Zar, J. H.: Biostatistical Analysis, Prentice Hall, New York, USA, 1999.
Ziegler, S. E. and Billings, S. A.: Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2, J. Geophys. Res., 116, G01011, https://doi.org/10.1029/2010JG001434, 2011.
Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., and Fogel, M. L.:
Warming alters routing of labile and slower-turnover carbon through distinct
microbial groups in boreal forest organic soils, Soil Biol.
Biochem., 60, 23–32, https://doi.org/10.1016/j.soilbio.2013.01.001, 2013.
Ziegler, S. E., Benner, R., Billings, S. A., Edwards, K. A., Philben, M.,
Zhu, X., and Laganière, J.: Climate Warming Can Accelerate Carbon Fluxes
without Changing Soil Carbon Stocks, Front. Earth Sci., 5, 2,
https://doi.org/10.3389/feart.2017.00002, 2017.
Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W.,
and Pregitzer, K. S.: Compositional and Functional Shifts in Microbial
Communities Due to Soil Warming, Soil Sci. Soc. Am. J.,
61, 475–481, https://doi.org/10.2136/sssaj1997.03615995006100020015x, 1997.
Short summary
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found increases in microbial use of easy to degrade substrates enhanced the temperature response of respiration in soils layered as they are in situ. This enhanced response is consistent with soil composition differences in warm relative to cold climate forests. These results highlight the importance of the intact nature of soils rarely studied in regulating responses of CO2 fluxes to changing temperature.
Soil respiration is a large and temperature-responsive flux in the global carbon cycle. We found...
Altmetrics
Final-revised paper
Preprint