Articles | Volume 18, issue 18
Biogeosciences, 18, 5185–5202, 2021
https://doi.org/10.5194/bg-18-5185-2021
Biogeosciences, 18, 5185–5202, 2021
https://doi.org/10.5194/bg-18-5185-2021

Research article 22 Sep 2021

Research article | 22 Sep 2021

Assessing the response of soil carbon in Australia to changing inputs and climate using a consistent modelling framework

Juhwan Lee et al.

Related authors

Estimation of soil properties with mid-infrared soil spectroscopy across yam production landscapes in West Africa
Philipp Baumann, Juhwan Lee, Emmanuel Frossard, Laurie Paule Schönholzer, Lucien Diby, Valérie Kouamé Hgaza, Delwende Innocent Kiba, Andrew Sila, Keith Sheperd, and Johan Six
SOIL, 7, 717–731, https://doi.org/10.5194/soil-7-717-2021,https://doi.org/10.5194/soil-7-717-2021, 2021
Short summary
Developing the Swiss mid-infrared soil spectral library for local estimation and monitoring
Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Armin Keller, Reto Giulio Meuli, Daniel Wächter, Juhwan Lee, Raphael Viscarra Rossel, and Johan Six
SOIL, 7, 525–546, https://doi.org/10.5194/soil-7-525-2021,https://doi.org/10.5194/soil-7-525-2021, 2021
Short summary
Mitigating N2O emissions from soil: from patching leaks to transformative action
C. Decock, J. Lee, M. Necpalova, E. I. P. Pereira, D. M. Tendall, and J. Six
SOIL, 1, 687–694, https://doi.org/10.5194/soil-1-687-2015,https://doi.org/10.5194/soil-1-687-2015, 2015
Short summary

Related subject area

Biogeochemistry: Land
Assessing the representation of the Australian carbon cycle in global vegetation models
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021,https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021,https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021,https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments
Gustaf Granath, Christopher D. Evans, Joachim Strengbom, Jens Fölster, Achim Grelle, Johan Strömqvist, and Stephan J. Köhler
Biogeosciences, 18, 3243–3261, https://doi.org/10.5194/bg-18-3243-2021,https://doi.org/10.5194/bg-18-3243-2021, 2021
Short summary
Examining the sensitivity of the terrestrial carbon cycle to the expression of El Niño
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, and Benjamin Smith
Biogeosciences, 18, 2181–2203, https://doi.org/10.5194/bg-18-2181-2021,https://doi.org/10.5194/bg-18-2181-2021, 2021
Short summary

Cited articles

ABARES: Land Use of Australia 2010–11, australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), Canberra, available at: https://www.agriculture.gov.au/abares/data (last access: 1 June 2019), 2016. a, b
Aber, J. D.: Why don't we believe the models?, Bull. Ecol. Soc. Am., 78, 232–233, 1997. a
Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., and Mayes, M. A.: The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, 137, 51–71, https://doi.org/10.1007/s10533-017-0409-7, 2018. a
ABS: Statistical Area Level 2 (SA2), australian Bureau of Statistics (ABS), Statistical Geography, available at: https://www.abs.gov.au/websitedbs/D3310114.nsf/home/geography (last access: 1 June 2019), 2016. a, b
Baldock, J. A., Wheeler, I., McKenzie, N., and McBrateny, A.: Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture, Crop Past. Sci., 63, 269–283, https://doi.org/10.1071/cp11170, 2012. a
Download
Short summary
We performed Roth C simulations across Australia and assessed the response of soil carbon to changing inputs and future climate change using a consistent modelling framework. Site-specific initialisation of the C pools with measurements of the C fractions is essential for accurate simulations of soil organic C stocks and composition at a large scale. With further warming, Australian soils will become more vulnerable to C loss: natural environments > native grazing > cropping > modified grazing.
Altmetrics
Final-revised paper
Preprint