Articles | Volume 18, issue 22
https://doi.org/10.5194/bg-18-6061-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-6061-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A stable ultrastructural pattern despite variable cell size in Lithothamnion corallioides
Valentina Alice Bracchi
CORRESPONDING AUTHOR
Department of Earth and Environmental Sciences, University of
Milano-Bicocca, Milan, 20126, Italy
Giulia Piazza
Department of Earth and Environmental Sciences, University of
Milano-Bicocca, Milan, 20126, Italy
Daniela Basso
Department of Earth and Environmental Sciences, University of
Milano-Bicocca, Milan, 20126, Italy
Related authors
Giuseppe Maruca, Mara Cipriani, Rocco Dominici, Gianpietro Imbrogno, Giovanni Vespasiano, Carmine Apollaro, Francesco Perri, Fabio Bruno, Antonio Lagudi, Umberto Severino, Valentina A. Bracchi, Daniela Basso, Emilio Cellini, Fabrizio Mauri, Antonietta Rosso, Rossana Sanfilippo, and Adriano Guido
Ocean Sci., 21, 1967–1986, https://doi.org/10.5194/os-21-1967-2025, https://doi.org/10.5194/os-21-1967-2025, 2025
Short summary
Short summary
This study shows a new method for mapping coralligenous bioconstructions using high-resolution acoustic data. The protocol integrates bathymetry, backscatter, and geomorphological indices, providing detailed information on the spatial and volumetric distribution of benthic habitats. This approach offers valuable insights for monitoring and conserving Mediterranean ecosystems, with potential applications in understanding habitat structure and guiding future conservation actions.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022, https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
Giuseppe Maruca, Mara Cipriani, Rocco Dominici, Gianpietro Imbrogno, Giovanni Vespasiano, Carmine Apollaro, Francesco Perri, Fabio Bruno, Antonio Lagudi, Umberto Severino, Valentina A. Bracchi, Daniela Basso, Emilio Cellini, Fabrizio Mauri, Antonietta Rosso, Rossana Sanfilippo, and Adriano Guido
Ocean Sci., 21, 1967–1986, https://doi.org/10.5194/os-21-1967-2025, https://doi.org/10.5194/os-21-1967-2025, 2025
Short summary
Short summary
This study shows a new method for mapping coralligenous bioconstructions using high-resolution acoustic data. The protocol integrates bathymetry, backscatter, and geomorphological indices, providing detailed information on the spatial and volumetric distribution of benthic habitats. This approach offers valuable insights for monitoring and conserving Mediterranean ecosystems, with potential applications in understanding habitat structure and guiding future conservation actions.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Mara Cipriani, Carmine Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, Valentina Alice Bracchi, Fabio Bruno, Gabriele Costa, Rocco Dominici, Alessandro Gallo, Maurizio Muzzupappa, Antonietta Rosso, Rossana Sanfilippo, Francesco Sciuto, Giovanni Vespasiano, and Adriano Guido
Biogeosciences, 21, 49–72, https://doi.org/10.5194/bg-21-49-2024, https://doi.org/10.5194/bg-21-49-2024, 2024
Short summary
Short summary
Who constructs the build-ups of the Mediterranean Sea? What is the role of skeletal and soft-bodied organisms in these bioconstructions? Do bacteria play a role in their formation? In this research, for the first time, the coralligenous of the Mediterranean shelf is studied from a geobiological point of view with an interdisciplinary biological and geological approach, highlighting important biotic relationships that can be used in interpreting the fossil build-up systems.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Ulf Riebesell, Daniela Basso, Sonja Geilert, Andrew W. Dale, and Matthias Kreuzburg
State Planet, 2-oae2023, 6, https://doi.org/10.5194/sp-2-oae2023-6-2023, https://doi.org/10.5194/sp-2-oae2023-6-2023, 2023
Short summary
Short summary
Mesocosm experiments represent a highly valuable tool in determining the safe operating space of ocean alkalinity enhancement (OAE) applications. By combining realism and biological complexity with controllability and replication, they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications.
Valentina Beccari, Ahuva Almogi-Labin, Daniela Basso, Giuliana Panieri, Yizhaq Makovsky, Irka Hajdas, and Silvia Spezzaferri
J. Micropalaeontol., 42, 13–29, https://doi.org/10.5194/jm-42-13-2023, https://doi.org/10.5194/jm-42-13-2023, 2023
Short summary
Short summary
Planktonic gastropods (pteropods and heteropods) have been investigated in cores collected in the eastern Mediterranean along the Israeli coast in coral, pockmark, and channel areas. The sediment spans the last 5300 years. Our study reveals that neglecting the smaller fraction (> 63 µm) may result in a misinterpretation of the palaeoceanography. The presence of tropical and subtropical species reveals that the eastern Mediterranean acted as a refugium for these organisms.
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022, https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Short summary
The coralline alga Lithothamnion corallioides is widely distributed in the Mediterranean Sea and NE Atlantic Ocean, where it constitutes rhodolith beds, which are diversity-rich ecosystems on the seabed. The boron incorporated in the calcified thallus of coralline algae (B/Ca) can be used to trace past changes in seawater carbonate and pH. This paper suggests a non-negligible effect of algal growth rate on B/Ca, recommending caution in adopting this proxy for paleoenvironmental reconstructions.
Cited articles
Adey, W. H.: Coralline algae as indicators of sea-level, in: Sea-Level Research, edited by: van de Plassche,
O., Springer, Dordrecht, https://doi.org/10.1007/978-94-009-4215-8_9, 1986.
Adey, W. H.: Review-coral reefs: algal structured and mediated ecosystems in
shallow, turbulent, alkaline waters, J. Phycol., 34, 393–406, https://doi.org/10.1046/j.1529-8817.1998.340393.x, 1998.
Adey, W. H. and McKibbin, D. L.: Studies on the Maerl Species Phymatolithon calcareum (Pallas) nov.
comb. and Lithothamnium corallioides Crouan in the Ria de Vigo, Bot. Mar., 13, 100–106, https://doi.org/10.1515/botm.1970.13.2.100, 1970.
Agnesi, S., Babbini, L., Bressan, G., Cassese, M. L., Mo, G., and Tunesi, L.:
Distribuzione della Facies del Maerl e delle associazioni a rodoliti nei
mari italiani: attuale stato delle conoscenze, Biol. Mar. Medit., 18,
50–51, 2011.
Aguirre, J., Riding, R., and Braga, J.: Diversity of coralline red algae:
Origination and extinction patterns from the Early Cretaceous to the
Pleistocene, Paleobiology, 26, 651–667, https://doi.org/10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2,
2000.
Aguirre, J., Braga, J. C., Martín J. M., and Betzler C.: Paleooenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain), in: Calcareous algae and global change: from identification to quantification, edited by: Basso, D. and Granier, B., Geodiversitas, 34, 115–136, https://doi.org/10.5252/g2012n1a7, 2012.
Auer, G. and Piller, W. E.: Nanocrystals as phenotypic expression of genotypes
– An example in coralline red algae, Sci. Adv., 6, eaay2126, https://doi.org/10.1126/sciadv.aay2126, 2020.
Basso, D.: Living calcareous algae by a paleontological approach: the genus
Lithothamnion Heydrich nom. cons. from the soft bottoms of the Tyrrhenian Sea
(Mediterranean), Riv. It. Pal. Strat., 101, 349–366, doi10.13130/2039-4942/8592, 1995.
Basso, D.: Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea,
Palaeogeogr. Palaeocl., 137, 173–187, 1998.
Basso, D., Fravega, P., and Vannuci, G.: The taxonomy of Lithothamnium ramosissimum (Gümbel non
Reuss) Conti and Lithothamnium operculatum (Conti) Conti (Rhodophyta, Corallinaceae), Facies, 37,
167–181, https://doi.org/10.1007/BF02537377, 1997.
Basso D., Nalin R., and Massari F.: Genesis and composition of the
Pleistocene Coralligène de plateau of the Cutro Terrace (Calabria,
southern Italy), Neues Jahrb. Geol. P.-A., 244, 173–182, https://doi.org/10.1127/0077-7749/2007/0244-0173, 2007.
Basso, D., Caragnano, A., Le Gal, L., and Rodondi, G.: The genus Lithophyllum in the north-western Indian Ocean, with description of L. yemenense sp. nov., L. socotraense sp. nov., L. subplicatum comb. et stat. nov., and the resumed L. affine, L. kaiseri, and L. subreduncum (Rhodophyta, Corallinales), Phytotaxa, 208, 183–200, https://doi.org/10.11646/phytotaxa.208.3.1, 2015.
Basso, D., Babbini, L., Kaleb, S., Bracchi, V. A., and Falace, A.: Monitoring deep Mediterranean rhodolith beds, Aquatic Conserv: Mar. Freshw. Ecosyst., 26, 549–561, https://doi.org/10.1002/aqc.2586, 2016.
Basso, D., Babbini, L., Ramos-Esplá, A. A., and Salomidi, M.:
Mediterranean rhodolith beds, in: Rhodolith/maërl beds: A global
perspective, Springer, Cham, Coas. Res. Lib., 15, 281–298, 2017.
Birkett, D. A., Maggs, C. A., and Dring, M. J.: An Overview of Dynamic and
Sensitivity Characteristics for Conservation Management of Marine SACs, Vol.
5, Maerl, Scottish Association for Marine Science, Scotland, 116 pp., 1998.
Blake, C. and Maggs, C. A.: Comparative growth rates and internal banding
periodicity of maerl species (Corallinales, Rhodophyta) from northern
Europe, Phycologia, 42, 606–612, https://doi.org/10.2216/i0031-8884-42-6-606.1, 2003.
Borowitzka, M. A.: Morphological and Cytological Aspects of Algal
Calcification, Int. Rev. Cytol., 74, 127–162, 1982.
Borowitzka, M. A.: Calcification in aquatic plants, Plant Cell
Environ., 7, 457–466, https://doi.org/10.1111/j.1365-3040.1984.tb01436.x, 1984.
Borowitzka, M. A.: Carbonate calcification in algae – initiation and control,
in: Biomineralization, edited by: Mann, S., Webb, J., and Williams, R. J. P., Chemical and
biochemical perspectives, VCH Verlagsgesellschaft, Weinheim, 63–95,
1989.
Bracchi, V. A., Nalin, R., and Basso, D.: Morpho-structural heterogeneity of
shallow-water coralligenous in a Pleistocene marine terrace (Le Castella,
Italy), Pal. Pal. Pal., 454, 101–112, https://doi.org/10.1016/j.palaeo.2016.04.014, 2014.
Bracchi, V. A., Nalin, R., and Basso, D.: Paleoecology and dynamics of
coralline dominated facies during a Pleistocene transgressive–regressive
cycle (Capo Colonna marine terrace, Southern Italy), Pal. Pal. Pal., 414,
296–309, https://doi.org/10.1016/j.palaeo.2014.09.016, 2016.
Burdett, H., Kamenos, N. A., and Law, A.: Using coralline algae to understand
historic marine cloud cover, Palaeogeogr. Palaeocl., 302, 65–70, https://doi.org/10.1016/j.palaeo.2010.07.027, 2011.
Cabioch, J. and Giraud, G.: Structural aspects of biomineralization in the
coralline algae (calcified Rhodophyceae), in:
Biomineralization in lower plants and animals, edited by: Leadbeater, B. S. C. and Riding, R., Clarendon Press, Oxford,
141–156, 1986.
Caragnano, A., Colombo, F., Rodondi, G., and Basso, D.: 3-D distribution of
nongeniculate corallinales: a case study from a reef crest of South Sinai
(Red Sea, Egypt), Coral Reefs, 28, 881–891, https://doi.org/10.1007/s00338-009-0524-6, 2009.
Caragnano, A., Foetisch, A., Maneveldt, G. W., Millet, L., Liu, L. C., Lin, S. M., Rodondi, G., and Payri, C. E.: Revision of Corallinaceae (Corallinales, Rhodophyta): recognizing Dawsoniolithon gen. nov., Parvicellularium gen. nov. and Chamberlainoideae subfam. nov. containing Chamberlainium gen. nov. and Pneophyllum, J. Phycol., 54, 391–409, https://doi.org/10.1111/jpy.12644, 2018.
Carro, B., Lopez, L., Peña, V., Bárbara, I., and Barreiro, R.: DNA
barcoding allows the accurate assessment of European maerl diversity: a
Proof-of-Concept study, Phytotaxa, 190, 176–189, https://doi.org/10.11646/phytotaxa.190.1.12, 2014.
Costa, I. O., Jesus, P. B. D., de Jesus, T. D. S., Souza, P. D. S., Horta, P. A., and Nunes, J. M. D. C.: Reef‐building coralline algae from the Southwest Atlantic: filling gaps with the recognition of Harveylithon (Corallinaceae, Rhodophyta) on the Brazilian coast, J. Phycol., 55, 1370–1385, https://doi.org/10.1111/jpy.12917, 2019.
Crouan, P. L. and Crouan, H. M.: Florule du Finistère, 151, pl. 20, figs 8-10, Paris and Brest, 1867.
de Carvalho, R. T., Salgado, L. T., Amado Filho, G. M., Leal, R. N., Werckmann,
J., Linhares Rossi, A., Porto Carreiro Campos, A., Santiago Karez, C., and Farina, M.: Biomineralization of calcium carbonate in the cell wall of
Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the
mineral phase, J. Phycol., 53, 642–651, https://doi.org/10.1111/jpy.12526,
2017.
Flajs, G.: Skeletal structures of some calcifying algae, edited by: Flügel, E., Fossil Algae: Recent Results and Developments, Springer Berlin
Heidelberg, 225–231, 1977.
Foslie, M.: Algologiske notiser VI. Kongelige Norske Videnskabers Selskabs Skrifter, 1909, 1–63, 1909.
Foster, M.: Rhodoliths: between rocks and soft places, J. Phycol., 37,
659–667, https://doi.org/10.1046/j.1529-8817.2001.00195.x, 2001.
Gambi, M. C., Buia, M. C., Massa-Gallucci, A., Cigliano, M., Lattanzi, L., and
Patti, F. P.: The “pink mile”: benthic assemblages of rhodolith and
maërl beds (Corallinales) off the Island of Ischia (Tyrrhenian Sea), in:
UNEP-MAP-RAC/SPA, Proceedings of
the 1st Mediterranean Symposium on the Conservation of the Coralligenous and
Other Calcareous Bio-concretions (Tabarka, 15-16/1/2009), edited by: Pergent-Martini, C. and Brichet, M., 198–201, 2009.
Giraud, G. and Cabioch, J.: Aspects ultrastructuraux de la calcification
chez les Corallinacées (Rhodophycées), J. Microscopie, 26, 14a–14a, 1976.
Giraud, G. and Cabioch, J.: Ultrastructure and elaboration of calcified
cell-walls in the coralline algae (Rhodophyta, Cryptonemiales), Biologie
Cell, 36, 81–86, 1979
Halfar, J., Zack, T., Kronz, A., and Zachos, J.C.: Growth and high-resolution
paleoenvironmental signals of rhodoliths (coralline red algae): A new
biogenic archive, J. Geophys. Res.-Ocean., 105, 22107–22116, https://doi.org/10.1029/1999jc000128, 2000.
Henrich, R., Freiwald, A., Betzler, C., Bader, B., and Schäfer, P.:
Controls on modern carbonate sedimentation on warm-temperate to arctic
coasts, shelves, and seamounts in the Northern Hemisphere: Implications for
fossil counterparts, Facies, 32, 71–108, https://doi.org/10.1007/BF02536865, 1995.
Hernandez-Kantun, J. J., Hall-Spencer, J. M., Grall, J., Adey, W., Rindi, F., Maggs, C. A., Bárbara, I., and Peña, V.: North Atlantic Rhodolith Beds, in: Rhodolith/Maërl Beds: A Global Perspective, edited by: Riosmena-Rodríguez, R., Nelson,
W., and Aguirre, J., Coastal
Research Library, Vol. 15, Springer, Cham, https://doi.org/10.1007/978-3-319-29315-8_10, 2017.
Huvé, H.: Contribution à l'étude des fonds à Lithothamnium (?) solutum Foslie
(= Lithophyllum solutum (Foslie) Lemoine) de la région de Marseille, Recueil des Travaux de
la Station Marine d'Endoume, 18, 105–133, 1956.
Irvine, L. M. and Chamberlain, Y. M.: Seaweeds of the British Isles, Vol. 1,
Rhodophyta Part 2B Corallinales, Hildenbrandiales, HMSO, London, 1994.
Jacquotte, R.: Étude des fonds de maërl de Méditerranée,
Recueil des Travaux de la Station Marine d'Endoume, Recueil de Travaux de la Station Marine d'Endoume, 26, 141–235, 1962.
Kamenos, N. A. and Law, A.: Temperature controls on coralline algal skeletal
growth, J. Phycol., 46, 331–335, https://doi.org/10.1111/j.1529-8817.2009.00780.x, 2010.
Lowenstam, H. A.: Mineral formed by organism, Science, 211, 1126–1131, https://doi.org/10.1126/science.7008198, 1981.
Marchese, F., Bracchi, V.A., Lisi, G., Basso, D., Corselli, C., and Savini,
A.: Assessing Fine-Scale Distribution and Volume of Mediterranean Algal
Reefs through Terrain Analysis of Multibeam Bathymetric Data. A Case Study
in the Southern Adriatic Continental Shelf, Water, 12, 157, https://doi.org/10.3390/w12010157, 2020.
Martin, S., Castets, M. D., and Clavier, J.: Primary production, respiration and calcification of the temperate free-living coralline alga, Aquat. Bot., 85, 121–128, 2006.
Melbourne, L. A., Hernández-Kantún, J. J., Russell, S., and Brodie,
J.: There is more to maerl than meets the eye: DNA barcoding reveals a new
species in Britain, Lithothamnion erinaceum sp. nov. (Hapalidiales, Rhodophyta), Eur. J. Phycol.,
52, 166–178, https://doi.org/10.1080/09670262.2016.1269953, 2017.
Nash, M. C. and Adey, W.: Multiple phases of mg-calcite in crustose
coralline algae suggest caution for temperature proxy and ocean
acidification assessment: lessons from the ultrastructure and
biomineralization in Phymatolithon (Rhodophyta, Corallinales), J. Phycol.,
53, 970–984, https://doi.org/10.1111/jpy.12559, 2017.
Nash, M. C., Opdyke, B. N., Troitzsch, U., Russell, B. D., Adey, W. H., Kato, A., Diaz-Pulido, G., Brent, C., Gardner, M., Prichard, J., and Kline D. I.:
Dolomite-rich coralline algae in reefs resist dissolution in acidified
conditions, Nat. Clim. Change, 3, 268–272, 2013.
Nash, M. C., Russell, B. D., Dixon, K. R. Liu, M., and Xu, H.: Discovery of the
mineral brucite (magnesium hydroxide) in the tropical calcifying alga
Polystrata dura (Peyssonneliales, Rhodophyta), J. Phycol., 51, 403–4077, https://doi.org/10.1111/jpy.12299, 2015.
Nash, M. C., Diaz-Pulido, G., Harvey, A. S., and Adey, W.: Coralline algal
calcification: A morphological and process-based understanding, PLoS ONE,
14, e0221396, https://doi.org/10.1371/journal.pone.0221396, 2019.
Nothdurft, L. K. and Webb, H. E.: Earliest diagenesis in scleractinian coral
skeletons: implications for palaeoclimate-sensitive geochemical archives,
Facies, 55, 161–201, https://doi.org/10.1007/s10347-008-0167-z, 2008.
Peña, V. and Bárbara, I.: Maerl community in the north-western
Iberian Peninsula: a review of floristic studies and long-term changes, Aq.
Cons.-Mar. Freshw. Ecos., 18, 339–366, https://doi.org/10.1002/aqc.847,
2008.
Peña, V. and Bárbara, I.: Distribution of the Galician maerl beds
and their shape classes (Atlantic Iberian Peninsula): proposal of areas in
future conservation actions, Cahier Biol. Mar., 50, 353–368, 2009.
Peña, V., Bárbara, I., Grall, J., Maggs, C. A., and Hall-Spencer,
J. M.: The diversity of seaweeds on maerl in the NE Atlantic, Mar. Biodiv.,
44, 533–551, https://doi.org/10.1007/s12526-014-0214-7, 2014.
Potin, P., Floch, J. Y., Augris, C., and Cabioch, J.: Annual growth rate of
the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest,
France, Hydrobiologia, 204, 263–267, https://doi.org/10.1007/BF00040243,
1990.
Quaranta, F., Vannucci, G., and Basso, D.: Neogoniolithon contii comb. nov. based on the
taxonomic re-assessment of Mastrorilli's original collections from the
Oligocene of NW Italy (Tertiary Piedmont Basin), Riv. It. Paleont. Strat.,
113, 43–55, https://doi.org/10.13130/2039-4942/6357, 2007.
Ragazzola, F., Foster, L. C., Jones, C. J., Scott, T. B., Fietzke, J., Kilburn, M. R., and Schmidt, D. N.:
Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale, Sci.
Rep., 6, 20572, https://doi.org/10.1038/srep20572, 2016.
Ragazzola, F., Caragnano, A., Basso, D., Schmidt, D. N., and Fietzke, J.:
Establishing temperate crustose early Holocene coralline algae as archives
for paleoenvironmental reconstructions of the shallow water habitats of the
Mediterranean Sea, Palaeontology, 63, 155–170, https://doi.org/10.1111/pala.12447, 2020.
Rashid, R., Eisenhauer, A., Liebetrau, V., Fietzke, J., Böhm, F., Wall, M., Krause, S., Rüggeberg, A., Dullo, W.C., Jurikova, H., Samankassou, E., and Lazar, B.:
Early Diagenetic Imprint on Temperature Proxies in Holocene Corals: A Case
Study from French Polynesia, Front. Earth Sci., 8, 301, https://doi.org/10.3389/feart.2020.00301, 2020.
Ries, J. B.: Mg fractionation in crustose coralline algae: Geochemical,
biological, and sedimentological implications of secular variation in the
Mg/Ca ratio of seawater, Geoc. Cosmoch. Ac., 70, 891–900, https://doi.org/10.1016/j.gca.2005.10.025, 2006.
Savini, A., Basso, D., Bracchi, V. A., Corselli, C., and Pennetta, M.:
Maerl-bed mapping and carbonate quantification on submerged terraces
offshores the Cilento peninsula (Tyrrhenian Sea, Italy), Geodiversitas, 34, 77–98, https://doi.org/10.5252/g2012n1a5, 2012.
Steller, D. L., Hernández-Ayón, J. M., Riosmena-Rodríguez, R.,
and Cabello-Pasini, A.: Effect of temperature on photosynthesis, growth, and
calcification rates of the free-living coralline alga Lithophyllum margaritae, Cienc. Mar.,
33, 441–456, https://doi.org/10.7773/cm.v33i4.1255, 2007.
Vásquez-Elizondo, R. M. and Enríquez, S.: Light Absorption in
Coralline Algae (Rhodophyta): A Morphological and Functional Approach to
Understanding Species Distribution in a Coral Reef Lagoon, Front. Mar. Sci.,
4, 297, https://doi.org/10.3389/fmars.2017.00297, 2017.
Wilson, S., Blake, C., Berges, J. A., and Maggs, C. A.: Environmental
tolerances of free-living coralline algae (maerl): implications for European
marine conservation, Biol. Cons., 120, 279–289, https://doi.org/10.1016/j.biocon.2004.03.001, 2004.
Woelkerling, W. J. and Irvine, L. M.: The typification and status of Phymatolithon (Corallinaceae, Rhodophyta), British Phycol. J., 21, 55–80, 1886.
Woelkerling, W. J.: The coralline red algae: an analysis of the genera and
subfamilies of non-geniculate Corallinaceae, British Museum (Natural
History) and Oxford University Press, London, UK, 268 pp., 1988.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The
ECMWF operational ensemble reanalysis–analysis system for ocean and sea
ice: a description of the system and assessment, Ocean Sci., 15, 779–808,
https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the Atlantic and Mediterranean Sea at different depths, show high-Mg-calcite cell walls formed by crystals with a specific shape and orientation that are unaffected by different environmental conditions of the living sites. This suggests that the biomineralization process is biologically controlled in coralline algae and can have interesting applications in paleontology.
Ultrastructures of Lithothamnion corallioides, a crustose coralline alga collected from the...
Altmetrics
Final-revised paper
Preprint