Articles | Volume 18, issue 2
https://doi.org/10.5194/bg-18-707-2021
https://doi.org/10.5194/bg-18-707-2021
Research article
 | 
29 Jan 2021
Research article |  | 29 Jan 2021

The patterns of elemental concentration (Ca, Na, Sr, Mg, Mn, Ba, Cu, Pb, V, Y, U and Cd) in shells of invertebrates representing different CaCO3 polymorphs: a case study from the brackish Gulf of Gdańsk (the Baltic Sea)

Anna Piwoni-Piórewicz, Stanislav Strekopytov, Emma Humphreys-Williams, and Piotr Kukliński

Related subject area

Biogeochemistry: Biomineralization
Upper-ocean flux of biogenic calcite produced by the Arctic planktonic foraminifera Neogloboquadrina pachyderma
Franziska Tell, Lukas Jonkers, Julie Meilland, and Michal Kucera
Biogeosciences, 19, 4903–4927, https://doi.org/10.5194/bg-19-4903-2022,https://doi.org/10.5194/bg-19-4903-2022, 2022
Short summary
Do bacterial viruses affect framboid-like mineral formation?
Paweł Działak, Marcin D. Syczewski, Kamil Kornaus, Mirosław Słowakiewicz, Łukasz Zych, and Andrzej Borkowski
Biogeosciences, 19, 4533–4550, https://doi.org/10.5194/bg-19-4533-2022,https://doi.org/10.5194/bg-19-4533-2022, 2022
Short summary
Calcification response of reef corals to seasonal upwelling in the northern Arabian Sea (Masirah Island, Oman)
Philipp M. Spreter, Markus Reuter, Regina Mertz-Kraus, Oliver Taylor, and Thomas C. Brachert
Biogeosciences, 19, 3559–3573, https://doi.org/10.5194/bg-19-3559-2022,https://doi.org/10.5194/bg-19-3559-2022, 2022
Short summary
Growth rate rather than temperature affects the B∕Ca ratio in the calcareous red alga Lithothamnion corallioides
Giulia Piazza, Valentina A. Bracchi, Antonio Langone, Agostino N. Meroni, and Daniela Basso
Biogeosciences, 19, 1047–1065, https://doi.org/10.5194/bg-19-1047-2022,https://doi.org/10.5194/bg-19-1047-2022, 2022
Short summary
Heavy metal uptake of nearshore benthic foraminifera during multi-metal culturing experiments
Sarina Schmidt, Ed C. Hathorne, Joachim Schönfeld, and Dieter Garbe-Schönberg
Biogeosciences, 19, 629–664, https://doi.org/10.5194/bg-19-629-2022,https://doi.org/10.5194/bg-19-629-2022, 2022
Short summary

Cited articles

Allison, N., Finch, A. A., Sutton, S. R., and Newville, M.: Strontium heterogeneity and speciation in coral aragonite: implications for the strontium paleothermometer, Geochim. Cosmochim. Ac., 65, 2669–2676, https://doi.org/10.1016/S0016-7037(01)00628-7, 2001. 
Ashraf, M. P., Meenakumari, B., and Thomas, S. N.: Seasonal variation of metal concentration in barnacles (Balanus spp.) of Cochin estuary, south-west coast of India, Fish. Technol., 44, 73–84, 2007. 
Azizi, G., Akodad, M., Baghour, M., Layachi, M., and Moumen, A.: The use of Mytilus spp. mussels as bioindicators of heavy metal pollution in the coastal environment, a review, J. Mater. Environ. Sci., 9, 1170–1181, 2018. 
Balthasar, U. and Cusack, M.: Aragonite-calcite seas – quantifying the gray area, Geology, 43, 99–102, https://doi.org/10.1130/G36293.1, 2015. 
Barker, S., Greaves, M., and Elderfield, H.: A study of cleaning procedures used for foraminiferal Mg∕Ca paleothermometry, Geochem. Geophy. Geosys., 4, 8407, https://doi.org/10.1029/2003GC000559, 2003. 
Download
Short summary
Calcifying organisms occur globally in almost every environment, and the process of biomineralization is of great importance in the global carbon cycle and use of skeletons as environmental data archives. The composition of skeletons is very complex. It is determined by the mechanisms of biological control on biomineralization and the response of calcifying organisms to varying environmental drivers. Yet for trace elements, such as Cu, Pb and Cd, an impact of environmental factors is pronounced.
Altmetrics
Final-revised paper
Preprint