Articles | Volume 18, issue 3
https://doi.org/10.5194/bg-18-897-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-18-897-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cross-basin differences in the nutrient assimilation characteristics of induced phytoplankton blooms in the subtropical Pacific waters
Fuminori Hashihama
CORRESPONDING AUTHOR
Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart TAS 7004, Australia
Hiroaki Saito
Atmosphere and Ocean Research Institute, The University of Tokyo,
Chiba 277-8564, Japan
Taketoshi Kodama
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Kanagawa 236-8648, Japan
Saori Yasui-Tamura
Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
Jota Kanda
Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
Iwao Tanita
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Okinawa 907-0451, Japan
Hiroshi Ogawa
Atmosphere and Ocean Research Institute, The University of Tokyo,
Chiba 277-8564, Japan
E. Malcolm S. Woodward
Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth PL1 3DH, UK
Philip W. Boyd
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart TAS 7004, Australia
Ken Furuya
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
Graduate School of Science and Engineering, Soka University, Tokyo
192-8577, Japan
Related authors
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Brandon M. Stephens, Montserrat Roca-Martí, Amy E. Maas, Vinícius J. Amaral, Samantha Clevenger, Shawnee Traylor, Claudia R. Benitez-Nelson, Philip W. Boyd, Ken O. Buesseler, Craig A. Carlson, Nicolas Cassar, Margaret Estapa, Andrea J. Fassbender, Yibin Huang, Phoebe J. Lam, Olivier Marchal, Susanne Menden-Deuer, Nicola L. Paul, Alyson E. Santoro, David A. Siegel, and David P. Nicholson
Biogeosciences, 22, 3301–3328, https://doi.org/10.5194/bg-22-3301-2025, https://doi.org/10.5194/bg-22-3301-2025, 2025
Short summary
Short summary
The ocean’s mesopelagic zone (MZ) plays a crucial role in the global carbon cycle. This study combines new and previously published measurements of organic carbon supply and demand collected in August 2018 in the MZ of the subarctic North Pacific Ocean. Supply was insufficient to meet demand in August, but supply entering into the MZ in the spring of 2018 could have met the August demand. Results suggest observations over seasonal timescales may help to close MZ carbon budgets.
Huailin Deng, Koji Suzuki, Ichiro Yasuda, Hiroshi Ogawa, and Jun Nishioka
Biogeosciences, 22, 1495–1508, https://doi.org/10.5194/bg-22-1495-2025, https://doi.org/10.5194/bg-22-1495-2025, 2025
Short summary
Short summary
Iron (Fe) and nitrate are vital for primary production in the North Pacific. Sedimentary Fe is carried by North Pacific Intermediate Water to the North Pacific, but the nutrient return path and its effect on phytoplankton are unclear. By combining Fe and macronutrient fluxes with phytoplankton composition, this study firstly revealed that Fe supply from the subsurface greatly controls diatom abundance and identified the nutrient return path in the subarctic gyre and Kuroshio–Oyashio transition area.
Noelle A. Held, Korrina Kunde, Clare E. Davis, Neil J. Wyatt, Elizabeth L. Mann, E. Malcolm S. Woodward, Matthew McIlvin, Alessandro Tagliabue, Benjamin S. Twining, Claire Mahaffey, Mak A. Saito, and Maeve C. Lohan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3996, https://doi.org/10.5194/egusphere-2024-3996, 2025
Short summary
Short summary
Microbial enzymes are critical to marine biogeochemical cycles, but which microbes are producing those enzymes? We used a targeted proteomics method to quantify how much Prochlorococcus and Synechococcus contribute to surface ocean alkaline phosphatase activity. We find that alkaline phosphatase abundance is limited by the availability of iron, zinc and cobalt (which may substitute for zinc).
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
Biogeosciences, 22, 1057–1076, https://doi.org/10.5194/bg-22-1057-2025, https://doi.org/10.5194/bg-22-1057-2025, 2025
Short summary
Short summary
This article presents data on iron and manganese, essential micronutrients for primary producers in the Arctic Laptev and East Siberian seas (LESS). There, observations were made through international cooperation with the Nansen and Amundsen Basin Observational System expedition during the late summer of 2021. The results from this study indicate that the major sources controlling the iron and manganese distributions on the LESS continental margins are river discharge and shelf sediment input.
Claire Mahaffey, Noelle Held, Korinne Kunde, Clare Davis, Neil Wyatt, Matthew McIlvin, Malcolm Woodward, Lewis Wrightson, Alessandro Tagliabue, Maeve Lohan, and Mak Saito
EGUsphere, https://doi.org/10.5194/egusphere-2024-3987, https://doi.org/10.5194/egusphere-2024-3987, 2025
Short summary
Short summary
Picocyanobacteria fix over 50 % of carbon in the subtropical ocean, but which nutrients control their growth and activity? Using a states, rates and metaproteomic approach alongside targeted proteomics in experiments, we reveal picocyanobacteria are phosphorus stressed in the west Atlantic and nitrogen stressed in east Atlantic. We find evidence for trace metal and organic phosphorus control on alkaline phosphatase activity.
Takuya Sato, Tamaha Yamaguchi, Kiyotaka Hidaka, Sayaka Sogawa, Takashi Setou, Taketoshi Kodama, Takuhei Shiozaki, and Kazutaka Takahashi
Biogeosciences, 22, 625–639, https://doi.org/10.5194/bg-22-625-2025, https://doi.org/10.5194/bg-22-625-2025, 2025
Short summary
Short summary
Gamma A is a widespread non-cyanobacterial diazotroph that plays a crucial role in marine ecosystems, but its controlling factors are still largely unknown. This study, for the first time, quantified microzooplankton grazing on Gamma A and revealed the significance of grazing pressure on Gamma A distribution around the Kuroshio region. It highlights the importance of top-down controls on Gamma A abundance and the associated nitrogen cycle.
Pearse J. Buchanan, Juan J. Pierella Karlusich, Robyn E. Tuerena, Roxana Shafiee, E. Malcolm S. Woodward, Chris Bowler, and Alessandro Tagliabue
EGUsphere, https://doi.org/10.5194/egusphere-2024-3639, https://doi.org/10.5194/egusphere-2024-3639, 2025
Short summary
Short summary
Ammonium is a form of nitrogen that may become more important for growth of marine primary producers (i.e., phytoplankton) in the future. Because some phytoplankton taxa have a greater affinity for ammonium than others, the relative increase in ammonium could cause shifts in community composition. We quantify ammonium enrichment, identify its drivers, and isolate the possible effect on phytoplankton community composition under a high emissions scenario.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
David T. Ho, Laurent Bopp, Jaime B. Palter, Matthew C. Long, Philip W. Boyd, Griet Neukermans, and Lennart T. Bach
State Planet, 2-oae2023, 12, https://doi.org/10.5194/sp-2-oae2023-12-2023, https://doi.org/10.5194/sp-2-oae2023-12-2023, 2023
Short summary
Short summary
Monitoring, reporting, and verification (MRV) refers to the multistep process to quantify the amount of carbon dioxide removed by a carbon dioxide removal (CDR) activity. Here, we make recommendations for MRV for Ocean Alkalinity Enhancement (OAE) research, arguing that it has an obligation for comprehensiveness, reproducibility, and transparency, as it may become the foundation for assessing large-scale deployment. Both observations and numerical simulations will be needed for MRV.
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, and Yoichi Kogure
Biogeosciences, 20, 3667–3682, https://doi.org/10.5194/bg-20-3667-2023, https://doi.org/10.5194/bg-20-3667-2023, 2023
Short summary
Short summary
Carbon and nitrogen are essential elements for organisms; their stable isotope ratios (13C : 12C, 15N : 14N) are useful tools for understanding turnover and movement in the ocean. In the Sea of Japan, the environment is rapidly being altered by human activities. The 13C : 12C of small organic particles is increased by active carbon fixation, and phytoplankton growth increases the values. The 15N : 14N variations suggest that nitrates from many sources contribute to organic production.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Tsukasa Dobashi, Yuzo Miyazaki, Eri Tachibana, Kazutaka Takahashi, Sachiko Horii, Fuminori Hashihama, Saori Yasui-Tamura, Yoko Iwamoto, Shu-Kuan Wong, and Koji Hamasaki
Biogeosciences, 20, 439–449, https://doi.org/10.5194/bg-20-439-2023, https://doi.org/10.5194/bg-20-439-2023, 2023
Short summary
Short summary
Water-soluble organic nitrogen (WSON) in marine aerosols is important for biogeochemical cycling of bioelements. Our shipboard measurements suggested that reactive nitrogen produced and exuded by nitrogen-fixing microorganisms in surface seawater likely contributed to the formation of WSON aerosols in the subtropical North Pacific. This study provides new implications for the role of marine microbial activity in the formation of WSON aerosols in the ocean surface.
Ken-ichi Nakamura, Atsushi Nishimoto, Saori Yasui-Tamura, Yoichi Kogure, Misato Nakae, Naoki Iguchi, Haruyuki Morimoto, and Taketoshi Kodama
Ocean Sci., 18, 295–305, https://doi.org/10.5194/os-18-295-2022, https://doi.org/10.5194/os-18-295-2022, 2022
Short summary
Short summary
The Sea of Japan, surrounding Russia, the Korean Peninsula, and the Japanese Archipelago, is one of the most rapidly changing seas in the world. We measured carbon and nitrogen isotope ratios of zooplankton. We determined that the carbon stable isotope ratio has been decreasing over 15 years, and this trend was comparable to or slightly more rapid than the Suess effect, which is a signal of anthropogenic disturbance. Therefore, carbon dynamics are changing in the shallow coastal waters.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Yu-Te Hsieh, Walter Geibert, E. Malcolm S. Woodward, Neil J. Wyatt, Maeve C. Lohan, Eric P. Achterberg, and Gideon M. Henderson
Biogeosciences, 18, 1645–1671, https://doi.org/10.5194/bg-18-1645-2021, https://doi.org/10.5194/bg-18-1645-2021, 2021
Short summary
Short summary
The South Atlantic near 40° S is one of the high-productivity and most dynamic nutrient regions in the oceans, but the sources and fluxes of trace elements (TEs) to this region remain unclear. This study investigates seawater Ra-228 and provides important constraints on ocean mixing and dissolved TE fluxes to this region. Vertical mixing is a more important source than aeolian or shelf inputs in this region, but particulate or winter deep-mixing inputs may be required to balance the TE budgets.
Cited articles
Benitez-Nelson, C. R., Bidigare, R. R., Dickey, T. D., Landry, M. R.,
Leonard, C. L., Brown, S. L., Nencioli, F., Rii, Y. M., Maiti, K., Becker,
J. W., Bibby, T. S., Black, W., Cai, W. J., Carlson, C. A., Chen, F.,
Kuwahara, V. S., Mahaffey, C., McAndrew, P. M., Quay, P. D., Rappé, M.
S., Selph, K. E., Simmons, M. P., and Yang, E. J.: Mesoscale eddies drive
increased silica export in the subtropical Pacific Ocean, Science, 316,
1017–1021, 2007.
Björkman, K. M., Duhamel, S., Church, M. J., and Karl, D. M.: Spatial
and temporal dynamics of inorganic phosphate and adenosine-5'-triphosphate in the North Pacific Ocean, Front. Mar. Sci., 5, 235, https://doi.org/10.3389/fmars.2018.00235, 2018.
Blain, S., Bonnet, S., and Guieu, C.: Dissolved iron distribution in the tropical and sub tropical South Eastern Pacific, Biogeosciences, 5, 269–280, https://doi.org/10.5194/bg-5-269-2008, 2008.
Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., Moutin, T., Grob, C., Gorbunov, M. Y., Zehr, J. P., Masquelier, S. M., Garczarek, L., and Claustre, H.: Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise), Biogeosciences, 5, 215–225, https://doi.org/10.5194/bg-5-215-2008, 2008.
Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hotspot of N2 fixation in the western tropical South Pacific pleads for a spatial
decoupling between N2 fixation and denitrification, P. Natl. Acad.
Sci. USA, 114, E2800–E2801, 2017.
Boyd, P. W., Strzepek, R., Takeda, S., Jackson, G., Wong, C. S., McKay, R.
M., Law, C., Kiyosawa, H., Saito H., Sherry, N., Johnson, K., Gower, J., and
Ramaiah, N.: The evolution and termination of an iron-induced mesoscale bloom
in the northeast subarctic Pacific, Limnol. Oceanogr., 50, 1872–1886, 2005.
Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific
variability and effect of some environmental variables, J. Phycol., 21,
347–357, 1985.
Brzezinski, M. A., Krause, J. W., Church, M. J., Karl, D. M., Li, B., Jones,
J. L., and Updyke, B.: The annual silica cycle of the North Pacific
subtropical gyre, Deep-Sea Res. Pt. I, 58, 988–1001, 2011.
Casey, J. R., Lomas, M. W., Michelou, V. K., Dyhrman, S. T., Orchard, E. D.,
Ammerman, J. W., and Sylvan, J. B.: Phytoplankton taxon-specific
orthophosphate (Pi) and ATP utilization in the western subtropical North
Atlantic, Aquat. Microb. Ecol., 58, 31–44, 2009.
Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J.
B., and Welschmeyer, N. A.: A novel free-living prochlorophyte abundant in
the oceanic euphotic zone, Nature, 334, 340–343, 1988.
Coleman, M. L. and Chisholm, S. W.: Ecosystem-specific selection pressures
revealed through comparative population genomics, P. Natl. Acad. Sci. USA, 107, 18634–18639, 2010.
Deutsch, C., Gruber, N., Key, R. M., and Sarmiento, J. L.: Denitrification
and N2 fixation in the Pacific Ocean, Global Biogeochem. Cy., 15,
485–506, 2001.
Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N., and Dunne, J. P.:
Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 445,
163–167, 2007.
Dore, J. E., Lukas, R., Sadler, D. W., and Karl, D. M.: Climate-driven
changes to the atmospheric CO2 sink in the subtropical North Pacific
Ocean, Nature, 424, 754–757, 2003.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., and Karl, D. M.:
Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical
Gyre: Historical perspective and recent observations, Prog. Oceanogr., 76,
2–38, 2008.
Dugdale, R. C. and Goering, J. J.: Uptake of new and regenerated forms of
nitrogen in primary productivity, Limnol. Oceanogr., 12, 196–206, 1967.
Dugdale, R. C. and Wilkerson, F. P.: Silicate regulation of new production
in the equatorial Pacific upwelling, Nature, 391, 270–273, 1998.
Ellwood, M. J., Bowie, A. R., Hassler, C., Law, C. S., Baker, A., Sander,
S., Stevens, C., Townsend, A., Woodward, E. M. S., Wuttig, K.,
Gault-Ringold, M., Maher, W. A., Marriner, A., Nodder, S., Merwe, P. v. d.,
and Boyd, P. W.: Insights into the biogeochemical cycling of iron, nitrate,
and phosphate across a 5,300 km South Pacific zonal section (153∘ E–150∘ W), Global Biogeochem. Cy., 32, 187–207, 2018.
Eppley, R. W. and Peterson, B. J.: Particulate organic matter flux and
planktonic new production in the deep ocean, Nature, 282, 677–680, 1979.
Eppley, R. W. and Renger, E. H.: Nanomolar increase in surface layer
nitrate concentration following a small wind event, Deep-Sea Res., 35,
1119–1125, 1988.
Eppley, R. W., Garside, C., Renger, E. H., and Orellana, E.: Variability of
nitrate concentration in nitrogen-depleted subtropical surface waters, Mar.
Biol., 107, 53–60, 1990.
Falkowski, P. G. and Raven, J. A.: Aquatic photosynthesis, 2nd edn.,
Princeton University Press, Princeton, 2007.
Fanning, K. A.: Nutrient provinces in the sea: concentration ratios,
reaction rate ratios, and ideal covariation, J. Geophys. Res., 97,
5693–5712, 1992.
Garside, C.: The vertical distribution of nitrate in open ocean surface
water, Deep-Sea Res. Pt. I, 32, 723–732, 1985.
Girault, M., Arakawa, H., Barani, A., Ceccaldi, H. J., Hashihama, F., Kinouchi, S., and Gregori, G.: Distribution of ultraphytoplankton in the western part of the North Pacific subtropical gyre during a strong La Niña condition: relationship with the hydrological conditions, Biogeosciences, 10, 5947–5965, https://doi.org/10.5194/bg-10-5947-2013, 2013.
Girault, M., Arakawa, H., Barani, A., Ceccaldi, H. J., Hashihama, F., and Gregori, G.: Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions, Biogeosciences, 12, 3607–3621, https://doi.org/10.5194/bg-12-3607-2015, 2015.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen
fixation and denitrification, Global Biogeochem. Cy., 11, 235–266, 1997.
Hansen, H. P. and Koroleff, F.: Determination of nutrients, in: Methods of
Seawater Analysis, 3rd edn., edited by: Grasshoff, K., Kremling, K., and
Ehrhardt, D., Wiley, Weinheim, 159–228, 1999.
Hashihama, F. and Kanda, J.: Automated colorimetric determination of trace
silicic acid in seawater by gas-segmented continuous flow analysis with a
liquid waveguide capillary cell, La mer, 47, 119–127, 2010.
Hashihama, F., Horimoto, N., Kanda, J., Furuya, K., Ishimaru, T., and Saino,
T.: Temporal variation in phytoplankton composition related to water mass
properties in the central part of Sagami Bay, J. Oceanogr., 64, 23–37, 2008.
Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., and
Kanda, J.: Macro-scale exhaustion of surface phosphate by dinitrogen
fixation in the western North Pacific, Geophys. Res. Lett., 36, L03610, https://doi.org/10.1029/2008GL036866, 2009.
Hashihama, F., Sato, M., Takeda, S., Kanda, J., and Furuya, K.: Mesoscale
decrease of surface phosphate and associated phytoplankton dynamics in the
vicinity of the subtropical South Pacific islands, Deep-Sea Res. Pt. I, 57,
338–350, 2010.
Hashihama, F., Kanda, J., Maeda, Y., Ogawa, H., and Furuya, K.: Selective
depressions of surface silicic acid within cyclonic mesoscale eddies in the
oligotrophic western North Pacific, Deep-Sea Res. Pt. I, 90, 115–124, 2014.
Hashihama, F., Kanda, J., Tauchi, A., Kodama, T., Saito, H., and Furuya, K.:
Liquid waveguide spectrophotometric measurement of nanomolar ammonium in
seawater based on the indophenol reaction with o-phenylphenol (OPP), Talanta, 143, 374–380, 2015.
Hashihama, F., Suwa, S., Kanda, J., Ehama, M., Sakuraba, R., Kinouchi, S.,
Sato, M., Yamaguchi, T., Saito, H., Ogura, Y., Hayashi, T., Mori, H.,
Kurokawa, K., Suzuki, S., and Hamasaki, K.: Arsenate and microbial dynamics
in different phosphorus regimes of the subtropical Pacific Ocean, Prog.
Oceanogr., 176, 102115, https://doi.org/10.1016/j.pocean.2019.05.007, 2019.
Hashihama, F., Saito, H., Shiozaki, T., Ehama, M., Suwa, S., Sugiyama, T.,
Kato, H., Kanda, J., Sato, M., Kodama, T., Yamaguchi, T., Horii, S., Tanita,
I., Takino, S., Takahashi, K., Ogawa, H., Boyd, P. W., and Furuya, K.:
Biogeochemical controls of particulate phosphorus distribution across the
oligotrophic subtropical Pacific Ocean, Global Biogeochem. Cy., 34,
e2020GB006669, https://doi.org/10.1029/2020GB006669, 2020.
Hill, P. G., Mary, I., Purdie, D. A., and Zubkov, M. V.: Similarity in
microbial amino acid uptake in surface waters of the North and South
Atlantic (sub-)tropical gyres, Prog. Oceanogr., 91, 437–446, 2011.
Horii, S., Takahashi, K., Shiozaki, T., Hashihama, F., and Furuya, K.:
Stable isotopic evidence for the differential contribution of diazotrophs to
the epipelagic grazing food chain in the mid-Pacific Ocean, Global Ecol.
Biogeogr., 27, 1467–1480, 2018.
Jiang, S., Hashihama, F., and Saito, H.: Phytoplankton growth and grazing
mortality through the oligotrophic subtropical North Pacific, J. Oceanogr., https://doi.org/10.1007/s10872-020-00580-4, online first, 2021.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron concentrations
between desert dust, ocean biogeochemistry, and climate, Science, 308,
67–71, 2005.
Johnson, K. S., Riser, S. C., and Karl, D. M.: Nitrate supply from deep to
near-surface waters of the North Pacific subtropical gyre, Nature, 465,
1062–1065, 2010.
Kanda, J., Saino, T., and Hattori, A.: Nitrogen uptake by natural
populations of phytoplankton and primary production in the Pacific Ocean:
Regional variability of uptake capacity, Limnol. Oceanogr., 30, 987–999,
1985.
Karl, D. M.: Nutrient dynamics in the deep blue sea, TRENDS Microbiol., 10,
410–418, 2002.
Karl, D. M. and Björkman, K. M.: Dynamics of dissolved organic
phosphorus, in: Biogeochemistry of Marine Dissolved Organic Matter, edited
by: Hansell, D. A. and Carlson, C. A., Academic Press, Burlington, 233–334,
2015.
Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., and Mahaffey, C.:
Predictable and efficient carbon sequestration in the North Pacific Ocean
supported by symbiotic nitrogen fixation, P. Natl. Acad. Sci. USA, 109,
1842–1849, 2012.
Kitajima, S., Furuya, K., Hashihama, F., Takeda, S., and Kanda, J.:
Latitudinal distribution of diazotrophs and their nitrogen fixation in the
tropical and subtropical western North Pacific, Limnol. Oceanogr., 54,
537–547, 2009.
Krause, J. W., Brzezinski, M. A., Villareal, T. A., and Wilson, C.: Biogenic
silica cycling during summer phytoplankton blooms in the North Pacific
subtropical gyre, Deep-Sea Res. Pt. I, 71, 49–60, 2013.
Lampe, R. H., Wang, S., Cassar, N., and Marchetti, A.: Strategies among
phytoplankton in response to alleviation of nutrient stress in a subtropical
gyre, The ISME journal, 13, 2984–2997, 2019.
Lomas, M. W. and Lipschultz, F.: Forming the primary nitrite maximum:
Nitrifiers or phytoplankton, Limnol. Oceanogr., 51, 2453–2467, 2006.
Lomas, M. W., Bonachela, J. A., Levin, S. A., and Martiny, A. C.: Impact of
ocean phytoplankton diversity on phosphate uptake, P. Natl. Acad. Sci. USA, 111, 17540–17545, 2014.
Mahaffey, C., Björkman, K. M., and Karl, D. M.: Phytoplankton response
to deep seawater nutrient addition in the North Pacific Subtropical Gyre,
Mar. Ecol. Prog. Ser., 460, 13–34, 2012.
Martin, P., Dyhrman, S. T., Lomas, M. W., Poulton, N. J., and Van Mooy, B.
A.: Accumulation and enhanced cycling of polyphosphate by Sargasso Sea
plankton in response to low phosphorus, P. Natl. Acad. Sci. USA, 111,
8089–8094, 2014.
Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K.,
Levin, S. A., and Lomas, M. W.: Strong latitudinal patterns in the elemental
ratios of marine plankton and organic matter, Nat. Geosci., 6, 279–283,
2013.
Martiny, A. C., Lomas, M. W., Fu, W., Boyd, P. W., Chen, Y.-l. L., Cutter,
G. A., Ellwood, M. J., Furuya, K., Hashihama, F., Kanda, J., Karl, D. M.,
Kodama, T., Li, Q. P., Ma, J., Moutin, T., Woodward, E. M. S., and Moore, J.
K.: Biogeochemical controls of surface ocean phosphate, Sci. Adv., 5,
eaax0341, https://doi.org/10.1126/sciadv.aax0341, 2019.
McGillicuddy Jr., D. J., Anderson, L. A., Bates, N. R., Bibby, T.,
Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G.,
Goldthwait, S. A., Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V.
K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.:
Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms,
Science, 316, 1021–1026, 2007.
Michaels, A. F., Bates, N. R., Buesseler, K. O., Carlson, C. A., and Knap,
A. H.: Carbon-cycle imbalances in the Sargasso Sea, Nature, 372, 537–540,
1994.
Miller, J. C. and Miller, J. N.: Statistics for Analytical Chemistry, 2nd
edn, Ellis Horwood, New York, 1993.
Moore, C. M., Mills, M. M., Langlois, R., Milne, A., Achterberg, E. P.,
LaRoche, J., and Geider, R. J.: Relative influence of nitrogen and
phosphorus availability on phytoplankton physiology and productivity in the
oligotrophic sub-tropical North Atlantic Ocean, Limnol. Oceanogr., 53,
291–305, 2008.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd,
P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells,
T. D., Roche, J. L., Lenton, T. M., Mahowald, N. M., Marañón, E.,
Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A.,
Thingstad, T. F., Tsuda, A., and Ulloa, O.: Processes and patterns of
oceanic nutrient limitation, Nat. Geosci., 6, 701–710, 2013.
Moreno, A. R. and Martiny, A. C.: Ecological Stoichiometry of Ocean Plankton, Annu. Rev. Mar. Sci., 10, 43–69, 2018.
Nishioka, J., Nakatsuka, T., Watanabe, Y. W., Yasuda, I., Kuma, K., Ogawa,
H., Ebuchi, N., Scherbinin, A., Volkov, Y. N., Shiraiwa, T., and Wakatsuchi,
M.: Intensive mixing along an island chain controls oceanic biogeochemical
cycles, Global Biogeochem. Cy., 27, 920–929, 2013.
Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., Takeda,
S., and Yasuda, I.: Subpolar marginal seas fuel the North Pacific through
the intermediate water at the termination of the global ocean circulation,
P. Natl. Acad. Sci. USA, 117, 12665–12673, 2020.
Paulmier, A. and Ruiz-Pino, D.: Oxygen minimum zones (OMZs) in the modern
ocean, Prog. Oceanogr., 80, 113–128, 2009.
Redfield, A. C.: The biological control of chemical factors in the
environment, Am. Sci., 46, 205–221, 1958.
Rii, Y. M., Bidigare, R. R., and Church, M. J.: Differential responses of
eukaryotic phytoplankton to nitrogenous nutrients in the North Pacific
Subtropical Gyre, Front. Mar. Sci., 5, 92, https://doi.org/10.3389/fmars.2018.00092, 2018.
Robidart, J. C., Magasin, J. D., Shilova, I. N., Turk-Kubo, K. A., Wilson,
S. T., Karl, D. M., Scholin, C. A., and Zehr, J. P.: Effects of nutrient
enrichment on surface microbial community gene expression in the
oligotrophic North Pacific Subtropical Gyre, The ISME journal, 13, 374–387,
2019.
Saito, H.: The Kuroshio: its recognition, scientific activities and emerging
issues, in: Kuroshio Current, edited by: Nagai, T., Saito, H., Suzuki, K.,
and Takahashi, M., AGU-Wiley Geophysical Monograph, 243, 3–11, 2019.
Sarmiento, J. L. and Gruber, N.: Organic matter production, in: Ocean
Biogeochemical Dynamics, Princeton University Press, Princeton, 102–172,
2006.
Sato, M. and Hashihama, F.: Assessment of potential phagotrophy by pico-
and nanophytoplankton in the North Pacific Ocean using flow cytometry,
Aquat. Microb. Ecol., 82, 275–288, 2019.
Sato, M., Hashihama, F., Kitajima, S., Takeda, S., and Furuya, K.: Distribution of nano-sized Cyanobacteria in the western and central Pacific Ocean, Aquat. Microb. Ecol., 59, 273–282, 2010.
Sato, M., Sakuraba, R., and Hashihama, F.: Phosphate monoesterase and diesterase activities in the North and South Pacific Ocean, Biogeosciences, 10, 7677–7688, https://doi.org/10.5194/bg-10-7677-2013, 2013.
Sato, M., Kodama, T., Hashihama, F., and Furuya, K.: The effects of diel
cycles and temperature on size distributions of pico- and nanophytoplankton
in the subtropical and tropical Pacific Ocean, Plankton Benthos Res., 10,
26–33, 2015.
Sato, M., Shiozaki, T., and Hashihama, F.: Distribution of mixotrophic
nanoflagellates along the latitudinal transect of the central North Pacific,
J. Oceanogr., 73, 159–168, 2016.
Shilova, I. N., Mills, M. M., Robidart, J. C., Turk-Kubo, K. A.,
Björkman, K. M., Kolber, Z., Rapp, I., van Dijken, G. L., Church, M. J.,
Arrigo, K. R., Achterberg, E. P., and Zehr, J. P.: Differential effects of
nitrate, ammonium, and urea as N sources for microbial communities in the
North Pacific Ocean, Limnol. Oceanogr., 62, 2550–2574, 2017.
Shiozaki, T., Furuya, K., Kodama, T., and Takeda, S.: Contribution of
N2 fixation to new production in the western North Pacific Ocean along 155∘ E, Mar. Ecol. Prog. Ser., 377, 19–32, 2009.
Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura,
T., and Kanda, J.: New estimation of N2 fixation in the western and
central Pacific Ocean and its marginal seas, Global Biogeochem. Cy., 24,
GB1015, https://doi.org/10.1029/2009GB003620, 2010.
Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island
mass effect through nitrogen fixation in the western South Pacific Ocean,
Geophys. Res. Lett., 41, 2907–2913, 2014.
Shiozaki, T., Ijichi, M., Isobe, K., Hashihama, F., Nakamura, K., Ehama, M.,
Hayashizaki, K., Takahashi, K., Hamasaki, K., and Furuya, K.: Nitrification
and its influence on biogeochemical cycles from the equatorial Pacific to
the Arctic Ocean, The ISME journal, 10, 2184–2197, 2016.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of
active diazotrophs and nitrogen fixation in the North Pacific, from the
tropics to the subarctic Bering Sea, Global Biogeochem. Cy., 31, 996–1009, 2017.
Shiozaki, T., Bombar, D., Riemann, L., Sato, M., Hashihama, F., Kodama, T.,
Tanita, I., Takeda, S., Saito, H., Hamasaki, K., and Furuya, K.: Linkage
between dinitrogen fixation and primary production in the oligotrophic South
Pacific Ocean, Global Biogeochem. Cy., 32, 1028–1044, 2018.
Sipler, R. E. and Bronk, D. A.: Dynamics of dissolved organic nitrogen, in:
Biogeochemistry of Marine Dissolved Organic Matter, edited by: Hansell, D.
A. and Carlson, C. A., Academic Press, Burlington, 127–232, 2015.
Suzuki, R. and Ishimaru, T.: An improved method for the determination of
phytoplankton chlorophyll using N,N-Dimethylformamide, Journal of the Oceanographical Society of Japan, 46, 190–194, 1990.
Takeda, S.: Influence of iron availability on nutrient consumption ratio of
diatoms in oceanic waters, Nature, 393, 774–777, 1998.
Takeda, S. and Obata, H.: Response of equatorial Pacific phytoplankton to
subnanomolar Fe enrichment, Mar. Chem. 50, 219–227, 1995.
Toyoda, T. and Okamoto, S.: Physical forcing of late summer chlorophyll a
blooms in the oligotrophic eastern North Pacific, J. Geophys. Res.-Oceans,
122, 1849–1861, 2017.
Utermöhl, H.: Zur Vervollkommung der quantitativen
Phytolankton-Methodik, Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 9, 1–39, 1958.
Villareal, T. A., Brown, C. G., Brzezinski, M. A., Krause, J. W., and
Wilson, C.: Summer diatom blooms in the North Pacific Subtropical Gyre:
2008–2009, PLoS ONE, 7, e33109, https://doi.org/10.1371/journal.pone.0033109, 2012.
Wagener, T., Guieu, C., Losno, R., Bonnet, S., and Mahowald, N.: Revisiting
atmospheric dust export to the Southern Hemisphere ocean: Biogeochemical
implications, Global Biogeochem. Cy., 22, GB2006,
https://doi.org/10.1029/2007GB002984, 2008.
Waterbury, J. B., Watson, S. W., Guillard, R. R. L., and Brand, L. E.:
Widespread occurrence of a unicellular, marine planktonic, cyanobacterium,
Nature, 277, 293–294, 1979.
Wilson, C.: Chlorophyll anomalies along the critical latitude at
30∘ N in the NE Pacific, Geophys. Res. Lett., 38, L15603,
https://doi.org/10.1029/2011gl048210, 2011.
Wilson, C. and Qiu, X.: Global distribution of summer chlorophyll blooms in
the oligotrophic gyres, Prog. Oceanogr., 78, 107–134, 2008.
Wilson, C., Villareal, T. A., Brzezinski, M. A., Krause, J. W., and
Shcherbina, A. Y.: Chlorophyll bloom development and the subtropical front
in the North Pacific, J. Geophys. Res.-Oceans, 118, 1473–1488, 2013.
Woodward, E. M. S.: Nanomolar detection for phosphate and nitrate using
liquid waveguide technology, Eos T. Am. Geophys. Un., Vo. 83, 2002.
Yamaguchi, T., Sato, M., Hashihama, F., Ehama, M., Shiozaki, T., Takahashi,
K., and Furuya, K.: Basin-scale variations in labile dissolved phosphoric
monoesters and diesters in the central North Pacific Ocean, J. Geophys.
Res.-Oceans, 124, 3058–3072, 2019.
Yamaguchi, T., Sato, M., Hashihama, F., Kato, H., Sugiyama, T., Ogawa, H.,
Takahashi, K., and Furuya, K.: Longitudinal and vertical variations of
dissolved labile phosphoric monoesters and diesters in the subtropical North
Pacific, Front. Microbiol., 11, 570081, https://doi.org/10.3389/fmicb.2020.570081, 2021.
Yasui, S., Kanda, J., Usui, T., and Ogawa, H.: Seasonal variations of
dissolved organic matter and nutrients in sediment pore water in the inner
part of Tokyo Bay, J. Oceanogr., 72, 851–866, 2016.
Yasui-Tamura, S., Hashihama, F., Ogawa, H., Nishimura, T., and Kanda, J.:
Automated simultaneous determination of total dissolved nitrogen and
phosphorus in seawater by persulfate oxidation method, Talanta Open, 2,
100016, https://doi.org/10.1016/j.talo.2020.100016, 2020.
Yokokawa, T., Yang, Y., Motegi, C., and Nagata, T.: Large-scale geographical
variation in prokaryotic abundance and production in meso- and bathypelagic
zones of the central Pacific and Southern Ocean, Limnol. Oceanogr., 58,
61–73, 2013.
Zapata, M., Rodríguez, F., and Garrido, J. L.: Separation of
chlorophylls and carotenoids from marine phytoplankton: a new HPLC method
using a reversed phase C8 column and pyridine-containing mobile phases, Mar. Ecol. Prog. Ser., 195, 29–45, 2000.
Zubkov, M. V., Tarran, G. A., and Fuchs, B. M.: Depth related amino acid
uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre, FEMS Microbiol. Ecol., 50, 153–161, 2004.
Short summary
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton blooms across the subtropical North and South Pacific Ocean. Nutrient drawdown ratios of dissolved inorganic nitrogen to phosphate were anomalously low in the western North Pacific, likely due to the high phosphate uptake capability of low-phosphate-adapted phytoplankton. The anomalous phosphate uptake might influence the maintenance of chronic phosphate depletion in the western North Pacific.
We investigated the nutrient assimilation characteristics of deep-water-induced phytoplankton...
Altmetrics
Final-revised paper
Preprint