Articles | Volume 19, issue 8
https://doi.org/10.5194/bg-19-2187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2187-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A Bayesian sequential updating approach to predict phenology of silage maize
Michelle Viswanathan
CORRESPONDING AUTHOR
Institute of Soil Science and Land Evaluation, Biogeophysics,
University of Hohenheim, Stuttgart, Germany
Tobias K. D. Weber
Institute of Soil Science and Land Evaluation, Biogeophysics,
University of Hohenheim, Stuttgart, Germany
Sebastian Gayler
Institute of Soil Science and Land Evaluation, Biogeophysics,
University of Hohenheim, Stuttgart, Germany
Juliane Mai
Department of Civil and Environmental Engineering, University of
Waterloo, Waterloo, Canada
Thilo Streck
Institute of Soil Science and Land Evaluation, Biogeophysics,
University of Hohenheim, Stuttgart, Germany
Related authors
No articles found.
Wolfgang Aumer, Morten Möller, Carolyn-Monika Görres, Christian Eckhardt, Tobias Karl David Weber, Carolina Bilibio, Christian Bruns, Andreas Gattinger, Maria Renate Finckh, and Claudia Kammann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2862, https://doi.org/10.5194/egusphere-2025-2862, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arable soils emit or absorb greenhouse gases such as carbon dioxide, nitrous oxide and methane. This study compared two gas analysis techniques for determining greenhouse gas fluxes under field conditions using the closed chamber method. Fluxes were measured simultaneously using the widely applied gas chromatography (GC) and the emerging mid-infrared laser absorption spectroscopy (LAS) technique. Our results showed that LAS is a reliable alternative to GC, particularly for low flux rates.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Mona Giraud, Ahmet Kürşad Sırcan, Thilo Streck, Daniel Leitner, Guillaume Lobet, Holger Pagel, and Andrea Schnepf
EGUsphere, https://doi.org/10.5194/egusphere-2025-572, https://doi.org/10.5194/egusphere-2025-572, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
We developed a multiscale simulation model that combines 3D plant architecture with carbon cycling in the rhizosphere and soil to understand how dry spells impact carbon and water flows, focusing on the activity of the soil microbes. We found that the microbial communities’ characteristics and dry spells’ start dates significantly affect rhizosphere CO2 emissions and carbon cycling. This model can help understand the effects of climate change on plant growth and soil organic matter dynamics.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69, https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Short summary
A blended model allows multiple hydrologic processes to be represented in a single model, which allows for a model to achieve high performance without the need to modify its structure for different catchments. Here, we improve upon the initial blended version by testing more than 30 blended models in twelve catchments to improve the overall model performance. We validate our proposed, updated blended model version with independent catchments, and make this version available for open use.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Tobias K. D. Weber, Joachim Ingwersen, Petra Högy, Arne Poyda, Hans-Dieter Wizemann, Michael Scott Demyan, Kristina Bohm, Ravshan Eshonkulov, Sebastian Gayler, Pascal Kremer, Moritz Laub, Yvonne Funkiun Nkwain, Christian Troost, Irene Witte, Tim Reichenau, Thomas Berger, Georg Cadisch, Torsten Müller, Andreas Fangmeier, Volker Wulfmeyer, and Thilo Streck
Earth Syst. Sci. Data, 14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, https://doi.org/10.5194/essd-14-1153-2022, 2022
Short summary
Short summary
Presented are measurement results from six agricultural fields operated by local farmers in southwestern Germany over 9 years. Six eddy-covariance stations measuring water, energy, and carbon fluxes between the vegetated soil surface and the atmosphere provided the backbone of the measurement sites and were supplemented by extensive soil and vegetation state monitoring. The dataset is ideal for testing process models characterizing fluxes at the vegetated soil surface and in the atmosphere.
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
Cited articles
Adnan, A. A., Diels, J., Jibrin, J. M., Kamara, A. Y., Shaibu, A. S.,
Craufurd, P., and Menkir, A.: CERES-Maize model for simulating
genotype-by-environment interaction of maize and its stability in the dry
and wet savannas of Nigeria, F. Crop. Res., 253, 107826,
https://doi.org/10.1016/j.fcr.2020.107826, 2020.
Alderman, P. D. and Stanfill, B.: Quantifying model-structure- and
parameter-driven uncertainties in spring wheat phenology prediction with
Bayesian analysis, Eur. J. Agron., 88, 1–9, https://doi.org/10.1016/j.eja.2016.09.016,
2017.
Asseng, S., Cao, W., Zhang, W., and Ludwig, F.: Crop Physiology, Modelling
and Climate Change, Crop Physiol., Elsevier Academic Press, 511–543, ISBN 978-0-12-374431-9, 2009.
Beirlant, J., Dudewicz, E., Györfi, L., and Dénes, I.: Nonparametric
entropy estimation. An overview, Int. J. Math. Stat. Sci., 6, 17–39,
1997.
Borchers, H. W.: pracma: Practical Numerical Math Functions, version 2.2.9, CRAN [code], https://cran.r-project.org/package=pracma, 2020.
Brooks, S. P. and Gelman, A.: General Methods for Monitoring Convergence of
Iterative Simulations, J. Comput. Graph. Stat., 7, 434–455,
https://doi.org/10.1080/10618600.1998.10474787, 1998.
Cao, Z. J., Wang, Y., and Li, D. Q.: Site-specific characterization of soil
properties using multiple measurements from different test procedures at
different locations – A Bayesian sequential updating approach, Eng. Geol.,
211, 150–161, https://doi.org/10.1016/j.enggeo.2016.06.021, 2016.
Ceglar, A., Črepinšek, Z., Kajfež-Bogataj, L., and Pogačar,
T.: The simulation of phenological development in dynamic crop model: The
Bayesian comparison of different methods, Ag. Forest Meteorol., 151,
101–115, https://doi.org/10.1016/j.agrformet.2010.09.007, 2011.
Coelho, A. P., Dalri, A. B., Fischer Filho, J. A., de Faria, R. T., Silva,
L. S., and Gomes, R. P.: Calibration and evaluation of the DSSAT/Canegro
model for sugarcane cultivars under irrigation managements, Rev. Bras. Eng.
Agr. Ambient., 24, 52–58,
https://doi.org/10.1590/1807-1929/agriambi.v24n1p52-58, 2020.
Craufurd, P. Q., Vadez, V., Jagadish, S. V. K., Prasad, P. V. V., and
Zaman-Allah, M.: Crop science experiments designed to inform crop modeling,
Agr. Forest Meteorol., 170, 8–18, https://doi.org/10.1016/j.agrformet.2011.09.003,
2013.
Eshonkulov, R., Poyda, A., Ingwersen, J., Wizemann, H.-D., Weber, T. K. D., Kremer, P., Högy, P., Pulatov, A., and Streck, T.: Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany, Biogeosciences, 16, 521–540, https://doi.org/10.5194/bg-16-521-2019, 2019.
Gao, Y., Wallach, D., Liu, B., Dingkuhn, M., Boote, K. J., Singh, U.,
Asseng, S., Kahveci, T., He, J., Zhang, R., Confalonieri, R., and Hoogenboom,
G.: Comparison of three calibration methods for modeling rice phenology,
Agr. Forest Meteorol., 280, 107785,
https://doi.org/10.1016/j.agrformet.2019.107785, 2020.
Gelman, A. and Rubin, D.: Inference from iterative simulation using multiple
sequences, Stat. Sci., 7, 457–511, 1992.
Gelman, A., Roberts, G. O., and Gilks, R. W.: Efficient Metropolis jumping
rules, in: Bayesian Statistics, Vol. 5, edited by: Bernardo, J. M.,
Berger, J. O., Dawid, A. P., and Smith, A. F. M., Oxford University
Press, 599–608, 1996.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and
Rubin, D. B.: Bayesian Data Analysis (Tests in Statistical Science), 3rd
Edn., edited by: Dominici, F., Faraway, J. J., Tanner, M., and Zidek, J., Chapman
& Hal l/CRC, 675 pp., https://doi.org/10.1201/b16018, 2013.
Hansen, S., Jensen, H. E., Nielsen, N. E., and Svendsen, H.: DAISY-Soil Plant
Atmosphere System Model, Copenhagen, Denmark, ISBN 87-503-8790-1, 1990.
He, D., Wang, E., Wang, J., and Robertson, M. J.: Data requirement for
effective calibration of process-based crop models, Agr. Forest Meteorol.,
234/235, 136–148, https://doi.org/10.1016/j.agrformet.2016.12.015, 2017a.
He, D., Wang, E., Wang, J., Lilley, J., Luo, Z., Pan, X., Pan, Z., and Yang,
N.: Uncertainty in canola phenology modelling induced by cultivar
parameterization and its impact on simulated yield, Agr. Forest Meteorol.,
232, 163–175, https://doi.org/10.1016/j.agrformet.2016.08.013, 2017b.
Heinlein, F., Biernath, C., Klein, C., Thieme, C., and Priesack, E.:
Evaluation of Simulated Transpiration from Maize Plants on Lysimeters,
Vadose Zone J., 16, vzj2016.05.0042, https://doi.org/10.2136/vzj2016.05.0042, 2017.
Huang, X., Huang, G., Yu, C., Ni, S., and Yu, L.: A multiple crop model
ensemble for improving broad-scale yield prediction using Bayesian model
averaging, F. Crop. Res., 211, 114–124,
https://doi.org/10.1016/j.fcr.2017.06.011, 2017.
Hue, C., Tremblay, M., and Wallach, D.: A bayesian approach to crop Model
calibration under unknown error covariance, J. Agric. Biol. Environ. Stat.,
13, 355–365, https://doi.org/10.1198/108571108X335855, 2008.
Iizumi, T., Yokozawa, M., and Nishimori, M.: Parameter estimation and
uncertainty analysis of a large-scale crop model for paddy rice: Application
of a Bayesian approach, Agr. Forest Meteorol., 149, 333–348,
https://doi.org/10.1016/j.agrformet.2008.08.015, 2009.
Ingwersen, J., Högy, P., Wizemann, H. D., Warrach-Sagi, K., and Streck,
T.: Coupling the land surface model Noah-MP with the generic crop growth
model Gecros: Model description, calibration and validation, Agr. Forest Meteorol., 262, 322–339,
https://doi.org/10.1016/j.agrformet.2018.06.023, 2018.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D.,
Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie, J. T.:
The DSSAT cropping system model, Eur. J. Agron., 18, 235–265, https://doi.org/10.1016/S1161-0301(02)00107-7, 2003.
Klein, C., Biernath, C., Heinlein, F., Thieme, C., Gilgen, A. K., Zeeman, M.,
and Priesack, E.: Vegetation Growth Models Improve Surface Layer Flux
Simulations of a Temperate Grassland, Vadose Zone J., 16, 1–19,
https://doi.org/10.2136/vzj2017.03.0052, 2017.
Klein, C., Heinlein, F., Duan, X., Gayler, S., and Priesack, P.: Expert-N version 5.12 [code], https://expert-n.uni-hohenheim.de/fileadmin/einrichtungen/expert-n/Precompiled/expertn5.12.zip, 2019.
Lamboni, M., Makowski, D., Lehuger, S., Gabrielle, B., and Monod, H.:
Multivariate global sensitivity analysis for dynamic crop models, F. Crop.
Res., 113, 312–320, https://doi.org/10.1016/j.fcr.2009.06.007, 2009.
Lamsal, A., Welch, S. M., White, J. W., Thorp, K. R., and Bello, N. M.:
Estimating parametric phenotypes that determine anthesis date in Zea mays:
Challenges in combining ecophysiological models with genetics, PLoS One,
13, 1–23, https://doi.org/10.1371/journal.pone.0195841, 2018.
Locher, R.: IDPmisc: Utilities of Institute of Data Analyses and Process
Design, CRAN [code],
https://cran.r-project.org/package=IDPmisc, 2020.
Makowski, D.: A simple Bayesian method for adjusting ensemble of crop model
outputs to yield observations, Eur. J. Agron., 88, 76–83,
https://doi.org/10.1016/j.eja.2015.12.012, 2017.
Makowski, D., Jeuffroy, M.-H., and Guérif, M.: Bayesian methods for
updating crop-model predictions, applications for predicting biomass and
grain protein content, Frontis, in: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain: Proceedings of the Frontis workshop on Bayesian Statistics and quality modelling in the agro-food production chain, held in Wageningen, The Netherlands, 1–14 May 2003, edited by: van Boekel, M. A. J. S., Stein, A., and van Bruggen, A. H. C., Kluwer Academic Publishers, 57–68, ISBN 9781402019166,
https://www.agralin.nl/ojs/index.php/frontis/article/viewArticle/858, 2004.
Makowski, D., Hillier, J., Wallach, D., Andrieu, B., and Jeuffroy, M. H.:
Parameter Estimation for Crop Models, in: Working with Dynamic Crop Models, edited by: Wallach, D., Makowski, D., and Jones, J.,
Elsevier, ISBN 9780080461939, 2006.
Meier, U.: Growth Stages of Mono- and Dicotyledonous Plants, Fed. Biol. Res.
Cent. for Agric. For., Oxford, UK, Julius Kühn-Institut, Quedlinburg, Germany, https://doi.org/10.5073/20180906-074619, 1997.
Metropolis, N., Rosenbluth, A., Rosenbluth, M., and Teller, A.:
Equation of State Calculations by Fast Computing Machines, J. Chem. Phys.,
21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953.
Microsoft and Westen, S.: doParallel: Foreach Parallel Adaptor for the
“parallel” Package, version 1.0.15, CRAN [code],
https://cran.r-project.org/package=doParallel, 2019.
Microsoft and Weston, S.: foreach: R package version 1.5.0: Provides Foreach Looping Construct, CRAN [code],
https://cran.r-project.org/package=foreach, 2020.
Morris, M. D.: Factorial Sampling Plans for Preliminary Computational
Experiments, Technometrics, 33, 161–174, 1991.
Mualem, Y.: A New Model for Predicting the Hydraulic Conductivity of
Unsaturated Porous Media, Water Resour. Res., 12, 513–522, 1976.
Oravecz, Z., Huentelman, M., and Vandekerchove, J.: 2 Sequential Bayesian
updating for Big Data, in: Big Data in Cognitive Science (Frontiers of
Cognitive Psychology), Vol. 2, edited by: Jones, M. N., 13–33,
Routledge/Taylor & Francis Group, Psychology Press, ISBN 9781315413570, 2017.
Plummer, M., Best, N., Cowles, K., and Vines, K.: CODA: Convergence Diagnosis
and Output Analysis for MCMC, R News, 6, 7–11, 2006.
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M.,
Iqbal, M. M., Lobell, D. B., Travasso, M. I., Aggarwal, P., Hakala, K., and
Jordan, J.: Food Security and Food Production Systems, in: Climate Change
2014 Impacts, Adaptation, and Vulnerability, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., 485–534,
Cambridge University Press, Cambridge, 485–533, https://doi.org/10.1017/CBO9781107415379, 2015.
Priesack, E.: Expert-N Dokumentation der Modellbibliothek FAM – Bericht
60, GSF-Forschungszentrum fuer Umwelt und Gesundheit, Munich, Germany, 2006.
R Core Team: R: A language and environment for statistical computing, version 3.6.3, CRAN [code],
https://www.r-project.org/, 2020.
Rötter, R. P., Carter, T. R., Olesen, J. E., and Porter, J. R.:
Crop–climate models need an overhaul, Nat. Clim. Chang., 1, 175–177,
https://doi.org/10.1038/nclimate1152, 2011.
Schöniger, A., Wöhling, T., and Nowak, W.: A statistical concept to
assess the uncertainty in Bayesian model weights and its impact on model
ranking, Water Resour. Res., 51, 7524–7546, https://doi.org/10.1002/2015WR016918,
2015.
Sexton, J., Everingham, Y., and Inman-Bamber, G.: A theoretical and real
world evaluation of two Bayesian techniques for the calibration of variety
parameters in a sugarcane crop model, Environ. Model. Softw., 83, 126–142,
https://doi.org/10.1016/j.envsoft.2016.05.014, 2016.
Šimůnek, Šejna, J. M. and van Genuchten, M. T.: The HYDRUS-1D
software package for simulating the one-dimensional movement of water, heat,
and multiple solutes in variably-saturated media. Version 1.0., Agric. Res.
Serv. US Dep. Agric., 186, University of California-Riverside, 240 pp., 1998.
Tautenhahn, S., Heilmeier, H., Jung, M., Kahl, A., Kattge, J., Moffat, A.,
and Wirth, C.: Beyond distance-invariant survival in inverse recruitment
modeling: A case study in Siberian Pinus sylvestris forests, Ecol. Modell.,
233, 90–103, https://doi.org/10.1016/j.ecolmodel.2012.03.009, 2012.
Thijssen, B. and Wessels, L. F. A.: Approximating multivariate posterior
distribution functions from Monte Carlo samples for sequential Bayesian
inference, edited by A. D. Hutson, PLoS One, 15, e0230101,
https://doi.org/10.1371/journal.pone.0230101, 2020.
Thompson, C. J., Kodikara, S., Burgman, M. A., Demirhan, H., and Stone, L.:
Bayesian updating to estimate extinction from sequential observation data,
Biol. Conserv., 229, 26–29, https://doi.org/10.1016/j.biocon.2018.11.003,
2019.
van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Wallach, D. and Thorburn, P. J.: Estimating uncertainty in crop model
predictions: Current situation and future prospects, Eur. J. Agron.,
88, A1–A7, https://doi.org/10.1016/j.eja.2017.06.001, 2017.
Wallach, D., Keussayan, N., Brun, F., Lacroix, B., and Bergez, J.-E.:
Assessing the Uncertainty when Using a Model to Compare Irrigation
Strategies, Agron. J., 104, 1274–1283, https://doi.org/10.2134/agronj2012.0038,
2012.
Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., and Asseng, S.:
Lessons from climate modeling on the design and use of ensembles for crop
modeling, Climatic Change, 139, 551–564, https://doi.org/10.1007/s10584-016-1803-1,
2016.
Wallach, D., Nissanka, S. P., Karunaratne, A. S., Weerakoon, W. M. W.,
Thorburn, P. J., Boote, K. J., and Jones, J. W.: Accounting for both
parameter and model structure uncertainty in crop model predictions of
phenology: A case study on rice, Eur. J. Agron., 88, 53–62,
https://doi.org/10.1016/j.eja.2016.05.013, 2017.
Wallach, D., Palosuo, T., Thorburn, P., Gourdain, E., Asseng, S., Basso, B.,
Buis, S., Crout, N., Dibari, C., Dumont, B., Ferrise, R., Gaiser, T.,
Garcia, C., Gayler, S., Ghahramani, A., Hochman, Z., Hoek, S., Horan, H.,
Hoogenboom, G., Huang, M., Jabloun, M., Jing, Q., Justes, E., Kersebaum, K.
C., Klosterhalfen, A., Launay, M., Luo, Q., Maestrini, B., Mielenz, H.,
Moriondo, M., Nariman Zadeh, H., Olesen, J. E., Poyda, A., Priesack, E.,
Pullens, J. W. M., Qian, B., Schütze, N., Shelia, V., Souissi, A.,
Specka, X., Srivastava, A. K., Stella, T., Streck, T., Trombi, G., Wallor,
E., Wang, J., Weber, T., Weihermüller, L., de Wit, A., Wöhling, T.,
Xiao, L., Zhao, C., Zhu, Y., and Seidel, S.: How well do crop modeling groups
predict wheat phenology, given calibration data from the target population?, Eur. J. Agron., 124, 126195,
https://doi.org/10.1016/j.eja.2020.126195, 2021.
Wang, E.: Development of a Generic Process-Oriented Model for Simulation of
Crop Growth, Technischen Universität München, ISBN 978-3896752338, 1997.
Wang, E., Brown, H. E., Rebetzke, G. J., Zhao, Z., Zheng, B. and Chapman, S.
C.: Improving process-based crop models to better capture genotype × environment × management interactions, J. Exp. Bot., 70,
2389–2401, https://doi.org/10.1093/jxb/erz092, 2019.
Weber, T. K. D., Ingwersen, J., Högy, P., Poyda, A., Wizemann, H.-D.,
Demyan, M. S., Bohm, K., Eshonkulov, R., Gayler, S., Kremer, P., Laub, M.,
Nkwain, Y. F., Troost, C., Witte, I., Reichenau, T., Berger, T., Cadisch,
G., Müller, T., Fangmeier, A., Wulfmeyer, V., and Streck, T.: Multi-site,
multi-crop measurements in the soil–vegetation–atmosphere continuum: a
comprehensive dataset from two climatically contrasting regions in
southwestern Germany for the period 2009–2018, Earth Syst. Sci. Data,
14, 1153–1181, https://doi.org/10.5194/essd-14-1153-2022, 2022a.
Weber, T. K. D., Ingwersen, J., Högy, P., Poyda, A., Wizemann, H. D., Demyan, M. S., Bohm, K., Eshonkulov, R., Gayler, S., Kremer, P., Nkwain, Y. F., Troost, C., Witte, I., Cadisch, G., Müller, T., Fangmeier, A., Wullmeyer, V., and Streck, T.: Regional climate change observational data FOR 1695, BonaRes [data set], https://doi.org/10.20387/bonares-a0qc-46jc, 2022b.
Wizemann, H.-D., Ingwersen, J., Högy, P., Warrach-Sagi, K., Streck, T.,
and Wulfmeyer, V.: Three year observations of water vapor and energy fluxes
over agricultural crops in two regional climates of Southwest Germany,
Meteorol. Z., 24, 39–59, https://doi.org/10.1127/metz/2014/0618, 2015.
Wöhling, T., Geiges, A., Nowak, W., Gayler, S., Högy, P., and
Wizemann, H. D.: Towards Optimizing Experiments for Maximum-confidence Model
Selection between Different Soil-plant Models, Procedia Environ. Sci., 19,
514–523, https://doi.org/10.1016/j.proenv.2013.06.058, 2013.
Wöhling, T., Schöniger, A., Gayler, S., and Nowak, W.: Bayesian model
averaging to explore the worth of data for soil-plant model selection and
prediction, Water Resour. Res., 51, 2825–2846, https://doi.org/10.1002/2014WR016292,
2015.
Zhao, M., Peng, C., Xiang, W., Deng, X., Tian, D., Zhou, X., Yu, G., He, H.,
and Zhao, Z.: Plant phenological modeling and its application in global
climate change research: overview and future challenges, Environ. Rev.,
21, 1–14, https://doi.org/10.1139/er-2012-0036, 2013.
Short summary
We analysed the evolution of model parameter uncertainty and prediction error as we updated parameters of a maize phenology model based on yearly observations, by sequentially applying Bayesian calibration. Although parameter uncertainty was reduced, prediction quality deteriorated when calibration and prediction data were from different maize ripening groups or temperature conditions. The study highlights that Bayesian methods should account for model limitations and inherent data structures.
We analysed the evolution of model parameter uncertainty and prediction error as we updated...
Altmetrics
Final-revised paper
Preprint