Articles | Volume 19, issue 11
https://doi.org/10.5194/bg-19-2779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-2779-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Response of vegetation and carbon fluxes to brown lemming herbivory in northern Alaska
Jessica Plein
CORRESPONDING AUTHOR
Department of Biology, San Diego State University, 5500 Campanile Dr.,
San Diego, CA 92182, USA
Rulon W. Clark
Department of Biology, San Diego State University, 5500 Campanile Dr.,
San Diego, CA 92182, USA
Kyle A. Arndt
Department of Biology, San Diego State University, 5500 Campanile Dr.,
San Diego, CA 92182, USA
Woodwell Climate Research Center, 149 Woods Hole Rd., Falmouth, MA
02540-1644, USA
Walter C. Oechel
Department of Biology, San Diego State University, 5500 Campanile Dr.,
San Diego, CA 92182, USA
Department of Geography, College of Life and Environmental Sciences,
University of Exeter, Exeter EX4 4RJ, UK
Douglas Stow
Department of Geography, San Diego State University, 5500 Campanile
Dr., San Diego, CA 92182, USA
Donatella Zona
Department of Biology, San Diego State University, 5500 Campanile Dr.,
San Diego, CA 92182, USA
School of Biosciences, University of Sheffield, Western Bank,
Sheffield S10 2TN, UK
Related authors
No articles found.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025, https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Kevin J. Gonzalez Martinez, Donatella Zona, Trent Biggs, Kristine Bernabe, Danielle Sirivat, Francia Tenorio, and Walter Oechel
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-117, https://doi.org/10.5194/bg-2023-117, 2023
Revised manuscript not accepted
Short summary
Short summary
Permafrost soils contain twice the amount of carbon than the atmosphere, and its release could majorly affect global temperatures. This study found that a thicker moss layer resulted in cooler temperatures deeper in the soil, despite warmer surface temperatures. The top green living moss layer was the most important in regulating the soil temperatures and should be considered when predicting the response of permafrost thaw to climate change.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Melissa A. Ward, Tessa M. Hill, Chelsey Souza, Tessa Filipczyk, Aurora M. Ricart, Sarah Merolla, Lena R. Capece, Brady C O'Donnell, Kristen Elsmore, Walter C. Oechel, and Kathryn M. Beheshti
Biogeosciences, 18, 4717–4732, https://doi.org/10.5194/bg-18-4717-2021, https://doi.org/10.5194/bg-18-4717-2021, 2021
Short summary
Short summary
Salt marshes and seagrass meadows ("blue carbon" habitats) can sequester and store high levels of organic carbon (OC), helping to mitigate climate change. In California blue carbon sediments, we quantified OC storage and exchange between these habitats. We find that (1) these salt marshes store about twice as much OC as seagrass meadows do and (2), while OC from seagrass meadows is deposited into neighboring salt marshes, little of this material is sequestered as "long-term" carbon.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021, https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Short summary
The high-latitude landscape or Arctic–boreal zone has been warming rapidly, impacting the carbon balance both regionally and globally. Given the possible global effects of climate change, it is important to have accurate climate model simulations. We assess the simulation of the Arctic–boreal carbon cycle in the Community Land Model (CLM 5.0). We find biases in both the timing and magnitude photosynthesis. We then use observational data to improve the simulation of the carbon cycle.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Cited articles
Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A., and
McGregor, I. S.: The effects of predator odors in mammalian prey species: a
review of field and laboratory studies, Neurosci. Biobehav. R., 29,
1123–1144, https://doi.org/10.1016/j.neubiorev.2005.05.005, 2005.
Batzli, G. O. and Henttonen, H.: Demography and resource use by microtine
rodents near Toolik Lake, Alaska, USA, Arctic Alpine Res., 22, 51–64,
https://doi.org/10.2307/1551720, 1990.
Batzli, G. O. and Jung, H. J. G.: Nutritional ecology of microtine rodents:
resource utilization near Atkasook, Alaska, Arctic Alpine Res., 12, 483–499,
https://doi.org/10.2307/1550496, 1980.
Batzli, G. O., White, R. G., MacLean, S. F., Pitelka, F. A., and Collier, B.
D.: The herbivore-based trophic system, In: Brown, J., Miller, P. C.,
Tieszen, L. L., and Bunnell, F. L.: An Arctic ecosystem: the coastal tundra
at Barrow, Alaska, Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA,
335–410, https://doi.org/10.1575/1912/222, 1980.
Batzli, G. O., Pitelka, F. A., and Cameron, G. N.: Habitat use by lemmings
near Barrow, Alaska, Ecography, 6, 255–262,
https://doi.org/10.1111/j.1600-0587.1983.tb01089.x, 1983.
Bhullar, G. S., Edwards, P. J., and Venterink, H. O.: Influence of different
plant species on methane emissions from soil in a restored Swiss wetland,
PLoS ONE, 9, e89588, https://doi.org/10.1371/journal.pone.0089588, 2014.
Billings, W. D. and Peterson, K. M.: Vegetational change and ice-wedge
polygons through the thaw lake cycle in Arctic Alaska, Arctic Alpine
Res., 12, 413–432, https://doi.org/10.2307/1550492, 1980.
Boon, A., Robinson, J. S., Chadwick, D. R., and Cardenas, L. M.: Effect of
cattle urine addition on the surface emissions and subsurface concentrations
of greenhouse gases in a UK peat grassland, Agr. Ecosyst. Environ., 186,
23–32, https://doi.org/10.1016/j.agee.2014.01.008, 2014.
Borowski, Z.: Influence of predator odour on the feeding behaviour of the
root vole (Microtus oeconomus Pallas, 1776), Can. J. Zool., 76, 1791–1794,
https://doi.org/10.1139/z98-094, 1998.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: biogeochemical, microbial, and modeling
perspectives from local to global scales, Glob. Change Biol., 19,
1325–1346, https://doi.org/10.1111/gcb.12131, 2013.
Chapin III, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B.,
Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D.
S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L.,
Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D.,
Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L.,
Ryan, M. G., Running, S. W., Sala, O. E., Schlesinger, W. H., and Schulze,
E.-D.: Reconciling carbon-cycle concepts, terminology, and methods,
Ecosystems, 9, 1041–1050, https://doi.org/10.1007/s10021-005-0105-7, 2006.
Davidson, S. J., Sloan, V. L., Phoenix, G. K., Wagner, R., Fisher, J. P.,
Oechel, W. C., and Zona, D.: Vegetation type dominates the spatial
variability in CH4 emissions across multiple Arctic tundra
landscapes, Ecosystems, 19, 1116–1132,
https://doi.org/10.1007/s10021-016-9991-0, 2016.
Dias, A. T. C., Hoorens, B., Van Logtestijn, R. S. P., Vermaat, J. E., and
Aerts, R.: Plant species composition can be used as a proxy to predict
methane emissions in peatland ecosystems after land-use changes, Ecosystems,
13, 526–538, https://doi.org/10.1007/s10021-010-9338-1, 2010.
Ericson, L.: The influence of voles and lemmings on the vegetation in a
coniferous forest during a 4-year period in northern Sweden, PhD
dissertation, Umeå University, Umeå, Sweden, Larsson & Co., ISBN 91-85410-02-0, 1977.
Erlinge, S., Hasselquist, D., Högstedt, G., Seldal, T., Frodin, P., and
Svensson, M.: Lemming-food plant interactions, density effects, and cyclic
dynamics on the Siberian Tundra, Arctic, 64, 421–428,
https://doi.org/10.14430/arctic4141, 2011.
Eskelinen, A. and Virtanen, R.: Local and regional processes in
low-productive mountain plant communities: the roles of seed and microsite
limitation in relation to grazing, Oikos, 110, 360–368,
https://doi.org/10.1111/j.0030-1299.2005.13579.x, 2005.
EPPO (European Plant Protection Organization): Decision-making scheme for
the environmental risk assessment of plant protection products, EPPO Bull.,
24, 37–87, https://doi.org/10.1111/j.1365-2338.1994.tb01051.x, 1994.
Fauteux, D., Gauthier, G., and Berteaux, D.: Seasonal demography of a cyclic
lemming population in the Canadian Arctic, J. Anim. Ecol., 84, 1412–1422,
https://doi.org/10.1111/1365-2656.12385, 2015.
Fauteux, D., Gauthier, G., Berteaux, D., Palme, R., and Boonstra, R.: High
Arctic lemmings remain reproductively active under predator-induced elevated
stress, Oecologia, 187, 657–666, https://doi.org/10.1007/s00442-018-4140-4,
2018a.
Fauteux, D., Gauthier, G., Slevan-Tremblay, G., and Berteaux, D.: Life in
the fast lane: learning from the rare multiyear recaptures of brown lemmings
in the High Arctic, Arct. Sci., 4, 146–151,
https://doi.org/10.1139/as-2017-0017, 2018b.
Goodrich, J. P., Oechel, W. C., Gioli, B., Moreaux, V., Murphy, P. C.,
Burba, G., and Zona, D.: Impact of different eddy covariance sensors, site
set-up, and maintenance on the annual balance of CO2 and CH4 in
the harsh Arctic environment, Agr. Forest Meteorol., 228, 239–251,
https://doi.org/10.1016/j.agrformet.2016.07.008, 2016.
Goswami, S., Gamon, J., Vargas, S., and Tweedie, C.: Relationships of NDVI,
Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow,
Alaska, PeerJ PrePrints, 3, e913v1,
https://doi.org/10.7287/peerj.preprints.913v1, 2015.
Gough, C. M.: Terrestrial primary production: Fuel for life, Nat. Educ.
Knowl., 3, p. 28,
2011.
Hawlena, D. and Schmitz, O. J.: Herbivore physiological response to
predation risk and implications for ecosystem nutrient dynamics, P. Natl.
Acad. Sci. USA, 107, 15503–15507, https://doi.org/10.1073/pnas.1009300107,
2010.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G.,
Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag,
J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with
quantified uncertainty ranges and identified data gaps, Biogeosciences, 11,
6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Ims, R. A. and Fuglei, E.: Trophic interaction cycles in tundra ecosystems
and the impact of climate change, BioScience, 55, 311–322,
https://doi.org/10.1641/0006-3568(2005)055[0311:TICITE]2.0.CO;2, 2005.
IPCC (Intergovernmental Panel on Climate Change): Climate change 2021: the
physical science basis, Working group I contribution to the sixth assessment
report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, New York, NY, https://doi.org/10.1017/9781009157896, 2021.
Johnson, D. R., Lara, M. J., Shaver, G. R., Batzli, G. O., Shaw, J. D., and
Tweedie, C. E.: Exclusion of brown lemmings reduces vascular plant cover and
biomass in Arctic coastal tundra: resampling of a 50+ year herbivore
exclosure experiment near Barrow, Alaska, Environ. Res. Lett., 6, 045507,
https://doi.org/10.1088/1748-9326/6/4/045507, 2011.
Kelker, D. and Chanton, J.: The effect of clipping on methane emissions from
Carex, Biogeochemistry, 39, 37–44, https://doi.org/10.1023/A:1005866403120,
1997.
Krebs, C. J.: Of lemmings and snowshoe hares: the ecology of northern
Canada, P. R. Soc. Lond. B., 278, 481–489,
https://doi.org/10.1098/rspb.2010.1992, 2011.
Krebs, C. J., Reid, D., Kenney, A. J., and Gilbert, S.: Fluctuations in
lemming populations in north Yukon, Canada, 2007–2010, Can. J. Zool., 89,
297–306, https://doi.org/10.1139/z11-004, 2011.
Kwon, M. J., Jung, J. Y., Tripathi, B. M., Göckede, M., Lee, Y. K., and
Kim, M.: Dynamics of microbial communities and CO2 and CH4 fluxes
in the tundra ecosystems of the changing Arctic, J. Microbiol., 57, 325–336,
https://doi.org/10.1007/s12275-019-8661-2, 2019.
Lai, D. Y. F.: Methane dynamics in northern peatlands: a review, Pedosphere,
19, 409–421, https://doi.org/10.1016/S1002-0160(09)00003-4, 2009.
Lara, M. J., Johnson, D. R., Andresen, C., Hollister, R. D., and Tweedie, C.
E.: Peak season carbon exchange shifts from a sink to a source following
50+ years of herbivore exclusion in an Arctic tundra ecosystem, J.
Ecol., 105, 122–131, https://doi.org/10.1111/1365-2745.12654, 2017.
Le Vaillant, M., Erlandsson, R., Elmhagen, B., Hörnfeldt, B., Eide, N.
E., and Angerbjörn, A.: Spatial distribution in Norwegian lemming Lemmus
lemmus in relation to the phase of the cycle, Polar Biol., 41, 1391–1403,
https://doi.org/10.1007/s00300-018-2293-6, 2018.
Lenth, R., Singmann, H., Love, J., Buerkner, P., and Herve, M.: R Core Team
(2019), Emmeans: estimated marginal means, R package version 1.3.3, The Comprehensive R Archive Network (CRAN), https://CRAN.R-project.org/package=emmeans (last access: 2 May 2020), 2019.
Lin, X., Wang, S., Ma, X., Xu, G., Luo, C., Li, Y., Jiang, G., and Xie, Z.:
Fluxes of CO2, CH4, and N2O in an alpine meadow affected by
yak excreta on the Qinghai-Tibetan plateau during summer grazing periods,
Soil Biol. Biochem., 41, 718–725,
https://doi.org/10.1016/j.soilbio.2009.01.007, 2009.
Lindén, E., Gough, L., and Olofsson, J.: Large and small herbivores have
strong effects on tundra vegetation in Scandinavia and Alaska, Ecol. Evol.,
11, 12141–12152, https://doi.org/10.1002/ece3.7977, 2021.
McEwing, K. R., Fisher, J. P., and Zona, D.: Environmental and vegetation
controls on the spatial variability of CH4 emission from wet-sedge and
tussock tundra ecosystems in the Arctic, Plant Soil, 388, 37–52,
https://doi.org/10.1007/s11104-014-2377-1, 2015.
McGuire, A. D., Anderson, L. G., Christensen, T. R., Dallimore, S., Guo, L.,
Hayes, D. J., Heimann, M., Lorenson, T. D., Macdonald, R. W., and Roulet,
N.: Sensitivity of the carbon cycle in the Arctic to climate change, Ecol.
Monogr., 79, 523–555, https://doi.org/10.1890/08-2025.1, 2009.
McKendrick, J. D., Batzli, G. O., Everett, K. R., and Swanson, J. C.: Some
effects of mammalian herbivores and fertilization on tundra soils and
vegetation, Arctic Alpine Res., 12, 565–578,
https://doi.org/10.2307/1550501, 1980.
Metcalfe, D. B. and Olofsson, J.: Distinct impacts of different mammalian
herbivore assemblages on Arctic tundra CO2 exchange during the peak of
the growing season, Oikos, 124, 1632–1638,
https://doi.org/10.1111/oik.02085, 2015.
Min, E., Wilcots, M. E., Shahid, N., Gough, L., McLaren, J. R., Rowe, R. J.,
Rastetter, E. B., Boelman, N. T., and Griffin, K. L.: Herbivore absence can
shift dry heath tundra from carbon source to sink during peak growing
season, Environ. Res. Lett., 16, 024027,
https://doi.org/10.1088/1748-9326/abd3d0, 2021.
Morris, D. W., Davidson, D. L., and Krebs, C. J.: Measuring the ghost of
competition: insights from density-dependent habitat selection on the
coexistence and dynamics of lemmings, Evol. Ecol. Res., 2, 41–67, 2000.
NOAA GML: National Oceanic and Atmospheric Administration (NOAA) Global Monitoring
Laboratory (GML): Carbon Cycle Greenhouse Gases, https://gml.noaa.gov/ccgg/trends/, last access: 21 March
2022.
Oechel, W. C., Laskowski, C. A., Burba, G., Gioli, B., and Kalhori, A. A.:
Annual patterns and budget of CO2 flux in an Arctic tussock tundra
ecosystem, J. Geophys. Res.-Biogeo., 119, 323–339,
https://doi.org/10.1002/2013JG002431, 2014.
Olofsson, J., Tommervik, H., and Callaghan, T. V.: Vole and lemming activity
observed from space, Nat. Clim. Change, 2, 880–883,
https://doi.org/10.1038/nclimate1537, 2012.
Olofsson, J., Oksanen, L., Oksanen, T., Tuomi, M., Hoset, K. S., Virtanen,
R., and Kyrö, K.: Long-term experiments reveal strong interactions
between lemmings and plants in the Fennoscandian Highland tundra,
Ecosystems, 17, 606–615, https://doi.org/10.1007/s10021-013-9740-6, 2014.
Ott, K. E. and Currier, K. D.: Monitoring lemming abundance and distribution
near Barrow, Alaska, 2012, in: Technical report to U.S. Fish and Wildlife
Service, Fairbanks Fish and Wildlife Field Office, edited by: Ott, K. E. and Currier, K. D., Fairbanks, AK, U.S. Fish & Wildlife Service, 2012.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.: R Core Team (2019),
Nlme: linear and nonlinear mixed effects models, R package version 3.1-137, The Comprehensive R Archive Network (CRAN), https://CRAN.R-project.org/package=nlme (last access: 2 May 2020),
2018.
Plein, J., Zona, D., Clark, R., Arndt, K., Oechel, W., and Stow, D.: Brown Lemming Herbivory Experiment Data, Alaskan Arctic (summers 2018, 2019), Arctic Data Center [data set], https://doi.org/10.18739/A2S17ST8F, 2022.
R Core Team: R: a language and environment for statistical computing, Vienna, Austria, R Foundation for Statistical Computing, https://www.r-project.org/ (last access: 2 May 2020), 2019.
Reid, D. G., Krebs, C. J., and Kenney, A.: Limitation of collared lemming
population growth at low densities by predation mortality, Oikos, 73,
387–398, https://doi.org/10.2307/3545963, 1995.
Ripple, W. J. and Beschta, R. L.: Wolf reintroduction, predation risk, and
cottonwood recovery in Yellowstone National Park, Forest Ecol. Manag., 184,
299–313, https://doi.org/10.1016/S0378-1127(03)00154-3, 2003.
Roy, A., Suchocki, M., Gough, L., and McLaren, J. R.: Above- and belowground
responses to long-term herbivore exclusion, Arct. Antarct. Alp. Res., 52,
109–119, https://doi.org/10.1080/15230430.2020.1733891, 2020.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V.E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
permafrost carbon to climate change: implications for the global carbon
cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Soininen, E. M., Zinger, L., Gielly, L., Yoccoz, N. G., Henden, J. A., and
Ims, R. A.: Not only mosses: lemming winter diets as described by DNA
metabarcoding, Polar Biol., 40, 2097–2103,
https://doi.org/10.1007/s00300-017-2114-3, 2017.
Stenseth, N. C.: Population cycles in voles and lemmings: density dependence
and phase dependence in a stochastic world, Oikos, 87, 427–461,
https://doi.org/10.2307/3546809, 1999.
Stenseth, N. C. and Ims, R. A.: The biology of lemmings, London: Published
for the Linnean Society of London, Academic Press, ISBN 0126660204, 1993.
Ström, L., Ekberg, A., Mastepanov, M., and Christensen, T. R.: The
effect of vascular plants on carbon turnover and methane emissions from a
tundra wetland, Glob. Change Biol., 9, 1185–1192,
https://doi.org/10.1046/j.1365-2486.2003.00655.x, 2003.
Sturtevant, C. S., Oechel, W. C., Zona, D., Kim, Y., and Emerson, C. E.:
Soil moisture control over autumn season methane flux, Arctic Coastal Plain
of Alaska, Biogeosciences, 9, 1423–1440,
https://doi.org/10.5194/bg-9-1423-2012, 2012.
Tan, Z., Zhuang, Q., and Anthony, K. W.: Modeling methane emissions from
arctic lakes: model development and site-level study, J. Adv. Model. Earth
Sy., 7, 459–483, https://doi.org/10.1002/2014MS000344, 2015.
von Fischer, J. C., Ames, G., Rhew, R., and Oechel, W. C.: Methane emission
rates from the Arctic coastal tundra at Barrow: temporal and spatial
variability and response to an experimental carbon addition, 10–14 Dec 2007,
San Francisco, California, USA,
American Geophysical Union Fall Meeting 2007, EOS Trans. AGU,
Fall Meet. Suppl., Abstract # B51C-0609, https://abstractsearch.agu.org/meetings/2007/FM/B51C-0609.html (last access: 15 May 2022),
2007.
Whiting, G. J. and Chanton, J. P.: Primary production control of methane
emission from wetlands, Nature, 364, 794–795,
https://doi.org/10.1038/364794a0, 1993.
Zona, D., Oechel, W. C., Kochendorfer, J., Paw U, K. T., Salyuk, A. N.,
Olivas, P. C., Oberbauer, S. F., and Lipson, D. A.: Methane fluxes during
the initiation of a large-scale water table manipulation experiment in the
Alaskan Arctic tundra, Global Biogeochem. Cy., 23, GB2013,
https://doi.org/10.1029/2009GB003487, 2009.
Zona, D., Oechel, W. C., Peterson, K. M., Clements, R. J., PAW U, K. T., and
Ustin, S. L.: Characterization of the carbon fluxes of a vegetated drained
lake basin chronosequence on the Alaskan Arctic Coastal Plain, Glob. Change
Biol., 16, 1870–1882, https://doi.org/10.1111/j.1365-2486.2009.02107.x,
2010.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M.:
Mixed effects models and extensions in ecology with R, Springer Science+Business Media, LLC, New York, NY, https://doi.org/10.1007/978-0-387-87458-6, 2009.
Short summary
Tundra vegetation and the carbon balance of Arctic ecosystems can be substantially impacted by herbivory. We tested how herbivory by brown lemmings in individual enclosure plots have impacted carbon exchange of tundra ecosystems via altering carbon dioxide (CO2) and methane (CH4) fluxes. Lemmings significantly decreased net CO2 uptake while not affecting CH4 emissions. There was no significant difference in the subsequent growing season due to recovery of the vegetation.
Tundra vegetation and the carbon balance of Arctic ecosystems can be substantially impacted by...
Altmetrics
Final-revised paper
Preprint