Articles | Volume 19, issue 14
https://doi.org/10.5194/bg-19-3445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-3445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benthic silicon cycling in the Arctic Barents Sea: a reaction–transport model study
James P. J. Ward
CORRESPONDING AUTHOR
School of Earth Sciences, University of Bristol, Bristol, BS8 1QE, UK
Katharine R. Hendry
School of Earth Sciences, University of Bristol, Bristol, BS8 1QE, UK
British Antarctic Survey, Cambridge, CB3 0ET, UK
Sandra Arndt
BGeoSys, Department of Geosciences, Université libre de Bruxelles, Brussels, CP160/03 1050, Belgium
Johan C. Faust
MARUM – Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Felipe S. Freitas
School of Earth Sciences, University of Bristol, Bristol, BS8 1QE, UK
BGeoSys, Department of Geosciences, Université libre de Bruxelles, Brussels, CP160/03 1050, Belgium
Sian F. Henley
School of GeoSciences, The University of Edinburgh, Edinburgh, EH9 3FE, UK
Jeffrey W. Krause
Dauphin Island Sea Lab, Dauphin Island, AL, USA
School of Marine and Environmental Sciences, University of South Alabama, Mobile, AL, USA
Christian März
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Institute for Geosciences, University of Bonn, 853115 Bonn, Germany
Allyson C. Tessin
Department of Geology, Kent State University, Kent, OH, USA
Ruth L. Airs
Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
Related authors
No articles found.
Manon Maisonnier, Maoyuan Feng, David Bastviken, Sandra Arndt, Ronny Lauerwald, Aidin Jabbari, Goulven Gildas Laruelle, Murray D. MacKay, Zeli Tan, Wim Thiery, and Pierre Regnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1306, https://doi.org/10.5194/egusphere-2025-1306, 2025
Short summary
Short summary
A new process-based modelling framework, FLaMe v1.0 (Fluxes of Lake Methane version 1.0), is developed to simulate methane (CH4) emissions from lakes at large scales. FLaMe couples the dynamics of organic carbon, oxygen and methane in lakes and rests on an innovative, computationally efficient lake clustering approach for the simulation of CH4 emissions across a large number of lakes. The model evaluation suggests that FLaMe captures the sub-annual and spatial variability of CH4 emissions well.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025, https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change, the Southern Ocean will be warmer, more acidic and more productive and will have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters. We propose ways of reducing this uncertainty.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
Aaron A. Naidoo-Bagwell, Fanny M. Monteiro, Katharine R. Hendry, Scott Burgan, Jamie D. Wilson, Ben A. Ward, Andy Ridgwell, and Daniel J. Conley
Geosci. Model Dev., 17, 1729–1748, https://doi.org/10.5194/gmd-17-1729-2024, https://doi.org/10.5194/gmd-17-1729-2024, 2024
Short summary
Short summary
As an extension to the EcoGEnIE 1.0 Earth system model that features a diverse plankton community, EcoGEnIE 1.1 includes siliceous plankton diatoms and also considers their impact on biogeochemical cycles. With updates to existing nutrient cycles and the introduction of the silicon cycle, we see improved model performance relative to observational data. Through a more functionally diverse plankton community, the new model enables more comprehensive future study of ocean ecology.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Anna Belcher, Sian F. Henley, Katharine Hendry, Marianne Wootton, Lisa Friberg, Ursula Dallman, Tong Wang, Christopher Coath, and Clara Manno
Biogeosciences, 20, 3573–3591, https://doi.org/10.5194/bg-20-3573-2023, https://doi.org/10.5194/bg-20-3573-2023, 2023
Short summary
Short summary
The oceans play a crucial role in the uptake of atmospheric carbon dioxide, particularly the Southern Ocean. The biological pumping of carbon from the surface to the deep ocean is key to this. Using sediment trap samples from the Scotia Sea, we examine biogeochemical fluxes of carbon, nitrogen, and biogenic silica and their stable isotope compositions. We find phytoplankton community structure and physically mediated processes are important controls on particulate fluxes to the deep ocean.
Sinan Xu, Bo Liu, Sandra Arndt, Sabine Kasten, and Zijun Wu
Biogeosciences, 20, 2251–2263, https://doi.org/10.5194/bg-20-2251-2023, https://doi.org/10.5194/bg-20-2251-2023, 2023
Short summary
Short summary
We use a reactive continuum model based on a lognormal distribution (l-RCM) to inversely determine model parameters μ and σ at 123 sites across the global ocean. Our results show organic matter (OM) reactivity is more than 3 orders of magnitude higher in shelf than in abyssal regions. In addition, OM reactivity is higher than predicted in some specific regions, yet the l-RCM can still capture OM reactivity features in these regions.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Philip Pika, Dominik Hülse, and Sandra Arndt
Geosci. Model Dev., 14, 7155–7174, https://doi.org/10.5194/gmd-14-7155-2021, https://doi.org/10.5194/gmd-14-7155-2021, 2021
Short summary
Short summary
OMEN-SED is a model for early diagenesis in marine sediments simulating organic matter (OM) degradation and nutrient dynamics. We replaced the original description with a more realistic one accounting for the widely observed decrease in OM reactivity. The new model reproduces pore water profiles and sediment–water interface fluxes across different environments. This functionality extends the model’s applicability to a broad range of environments and timescales while requiring fewer parameters.
Felipe S. Freitas, Philip A. Pika, Sabine Kasten, Bo B. Jørgensen, Jens Rassmann, Christophe Rabouille, Shaun Thomas, Henrik Sass, Richard D. Pancost, and Sandra Arndt
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, https://doi.org/10.5194/bg-18-4651-2021, 2021
Short summary
Short summary
It remains challenging to fully understand what controls carbon burial in marine sediments globally. Thus, we use a model–data approach to identify patterns of organic matter reactivity at the seafloor across distinct environmental conditions. Our findings support the notion that organic matter reactivity is a dynamic ecosystem property and strongly influences biogeochemical cycling and exchange. Our results are essential to improve predictions of future changes in carbon cycling and climate.
Ben J. Fisher, Johan C. Faust, Oliver W. Moore, Caroline L. Peacock, and Christian März
Biogeosciences, 18, 3409–3419, https://doi.org/10.5194/bg-18-3409-2021, https://doi.org/10.5194/bg-18-3409-2021, 2021
Short summary
Short summary
Organic carbon can be protected from microbial degradation in marine sediments through association with iron minerals on 1000-year timescales. Despite the importance of this carbon sink, our spatial and temporal understanding of iron-bound organic carbon interactions globally is poor. Here we show that caution must be applied when comparing quantification of iron-bound organic carbon extracted by different methods as the extraction strength and method specificity can be highly variable.
Cited articles
Aguilera, D. R., Jourabchi, P., Spiteri, C., and Regnier, P.: A
knowledge-based reactive transport approach for the simulation of
biogeochemical dynamics in Earth systems, Geochem. Geophy. Geosy., 6,
https://doi.org/10.1029/2004GC000899, 2005. a
Aller, R. C.: 8.11 – Sedimentary Diagenesis, Depositional Environments, and
Benthic Fluxes, Treatise on Geochemistry, 2nd Edn., 8, 293–334,
https://doi.org/10.1016/B978-0-08-095975-7.00611-2, 2014. a, b
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, and Ingvaldsen, R. B.:
Quantifying the influence of atlantic heat on barents sea ice variability
and retreat, J. Clim., 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1,
2012. a, b, c
Backman, J., Jakobsson, M., Løvlie, R., Polyak, L., and Febo, L. A.: Is the
central Arctic Ocean a sediment starved basin?, Quaternary Sci. Rev., 23,
1435–1454, https://doi.org/10.1016/j.quascirev.2003.12.005, 2004. a
Barton, B. I., Lenn, Y. D., and Lique, C.: Observed atlantification of the
Barents Sea causes the Polar Front to limit the expansion of winter sea ice,
J. Phys. Oceanogr., 48, 1849–1866, https://doi.org/10.1175/JPO-D-18-0003.1, 2018. a, b
Berner, R.: Early diagenesis: a theoretical approach, Princeton University
Press, Princeton, NJ, ISBN 9780691082608, 1980. a
Bourgeois, S., Archambault, P., and Witte, U.: Organic matter remineralization
in marine sediments: A Pan-Arctic synthesis, Global Biogeochem. Cy., 31,
190–213, https://doi.org/10.1002/2016GB005378, 2017. a
Boutorh, J., Moriceau, B., Gallinari, M., Ragueneau, O., and Bucciarelli, E.:
Effect of trace metal-limited growth on the postmortem dissolution of the
marine diatom Pseudo-nitzschia delicatissima, Global Biogeochem. Cy., 30,
57–69, https://doi.org/10.1002/2015GB005088, 2016. a
Brzezinski, M. A., Closset, I., Jones, J. L., de Souza, G. F., and Maden, C.:
New Constraints on the Physical and Biological Controls on the Silicon
Isotopic Composition of the Arctic Ocean, Front. Mar. Sci., 8, 699762,
https://doi.org/10.3389/fmars.2021.699762, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r
Cassarino, L., Hendry, K. R., Henley, S. F., MacDonald, E., Arndt, S., Freitas,
F. S., Pike, J., and Firing, Y. L.: Sedimentary Nutrient Supply in
Productive Hot Spots off the West Antarctic Peninsula Revealed by Silicon
Isotopes, Global Biogeochem. Cy., 34, https://doi.org/10.1029/2019GB006486, 2020. a, b, c
Cochrane, S. K., Denisenko, S. G., Renaud, P. E., Emblow, C. S., Ambrose,
W. G., Ellingsen, I. H., and Skardhamar, J.: Benthic macrofauna and
productivity regimes in the Barents Sea – Ecological implications in a
changing Arctic, J. Sea Res., 61, 222–233,
https://doi.org/10.1016/j.seares.2009.01.003, 2009. a
Dale, A. W., Paul, K. M., Clemens, D., Scholz, F., Schroller-Lomnitz, U.,
Wallmann, K., Geilert, S., Hensen, C., Plass, A., Liebetrau, V., Grasse, P.,
and Sommer, S.: Recycling and Burial of Biogenic Silica in an Open Margin
Oxygen Minimum Zone, Global Biogeochem. Cy., 35,
https://doi.org/10.1029/2020GB006583, 2021. a, b
Dalpadado, P., Arrigo, K. R., van Dijken, G. L., Skjoldal, H. R., Bagøien,
E., Dolgov, A. V., Prokopchuk, I. P., and Sperfeld, E.: Climate effects on
temporal and spatial dynamics of phytoplankton and zooplankton in the Barents
Sea, Prog. Oceanogr., 185, 102320, https://doi.org/10.1016/j.pocean.2020.102320, 2020. a, b
De La Rocha, C. L., Brzezinski, M. A., and DeNiro, M. J.: Fractionation of
silicon isotopes by marine diatoms during biogenic silica formation,
Geochim. Cosmochim. Ac., 61, 5051–5056,
https://doi.org/10.1016/S0016-7037(97)00300-1, 1997. a
Degerlund, M. and Eilertsen, H. C.: Main Species Characteristics of
Phytoplankton Spring Blooms in NE Atlantic and Arctic Waters (68–80∘ N),
Estuaries Coast, 33, 242–269, https://doi.org/10.1007/s12237-009-9167-7, 2010. a
Delstanche, S., Opfergelt, S., Cardinal, D., Elsass, F., André, L., and
Delvaux, B.: Silicon isotopic fractionation during adsorption of aqueous
monosilicic acid onto iron oxide, Geochim. Cosmochim. Ac., 73, 923–924,
https://doi.org/10.1016/j.gca.2008.11.014, 2009. a, b
Demarest, M. S., Brzezinski, M. A., and Beucher, C. P.: Fractionation of
silicon isotopes during biogenic silica dissolution, Geochim. Cosmochim.
Ac., 73, 5572–5583, https://doi.org/10.1016/j.gca.2009.06.019, 2009. a
DeMaster, D.: Marine Silica Cycle, in: Encyclopedia of Ocean Sciences,
Academic Press, 1659–1667, https://doi.org/10.1006/rwos.2001.0278, 2001. a, b, c
DeMaster, D. J.: The global marine silica budget: Sources and sinks, in:
Encyclopedia of Ocean Sciences, Elsevier Ltd., 473–483,
https://doi.org/10.1016/B978-0-12-409548-9.10799-7, 2019. a, b
DeMaster, D. J., Ragueneau, O., and Nittrouer, C. A.: Preservation
efficiencies and accumulation rates for biogenic silica and organic C, N, and
P in high-latitude sediments: The Ross Sea, J. Geophys. Res.-Ocean., 101,
18501–18518, https://doi.org/10.1029/96JC01634, 1996. a
Dixit, S., Van Cappellen, P., and Van Bennekom, A. J.: Processes
controlling solubility of biogenic silica and pore water build-up of silicic
acid in marine sediments, Mar. Chem., 73, 333–352,
https://doi.org/10.1016/S0304-4203(00)00118-3, 2001. a
Downes, P. P., Goult, S. J., Woodward, E. M. S., Widdicombe, C. E., Tait, K.,
and Dixon, J. L.: Phosphorus dynamics in the Barents Sea, Limnol.
Oceanogr., 66, S326–S342, https://doi.org/10.1002/lno.11602, 2021. a
Druzhkova, E., Oleinik, A., and Makarevich, P.: Live autochthonous benthic
diatoms on the lower depths of Arctic continental shelf, Preliminary
results, Oceanologia, 60, 97–100, https://doi.org/10.1016/j.oceano.2017.07.001, 2018. a
Dybwad, C., Assmy, P., Olsen, L. M., Peeken, I., Nikolopoulos, A., Krumpen, T.,
Randelhoff, A., Tatarek, A., Wiktor, J. M., and Reigstad, M.: Carbon Export
in the Seasonal Sea Ice Zone North of Svalbard From Winter to Late Summer,
Front. Mar. Sci., 7, 525800. https://doi.org/10.3389/fmars.2020.525800, 2021. a, b
Egan, K. E., Rickaby, R. E., Leng, M. J., Hendry, K. R., Hermoso, M., Sloane,
H. J., Bostock, H., and Halliday, A. N.: Diatom silicon isotopes as a proxy
for silicic acid utilisation: A Southern Ocean core top calibration,
Geochim. Cosmochim. Ac., 96, 174–192, https://doi.org/10.1016/j.gca.2012.08.002,
2012. a
Ehlert, C., Doering, K., Wallmann, K., Scholz, F., Sommer, S., Grasse, P.,
Geilert, S., and Frank, M.: Stable silicon isotope signatures of marine pore
waters – Biogenic opal dissolution versus authigenic clay mineral
formation, Geochim. Cosmochim. Ac., 191, 102–117,
https://doi.org/10.1016/j.gca.2016.07.022, 2016a. a, b, c, d, e, f, g, h, i, j, k, l
Ehlert, C., Reckhardt, A., Greskowiak, J., Liguori, B. T., Böning, P.,
Paffrath, R., Brumsack, H. J., and Pahnke, K.: Transformation of silicon in
a sandy beach ecosystem: Insights from stable silicon isotopes from fresh and
saline groundwaters, Chem. Geol., 440, 207–218,
https://doi.org/10.1016/j.chemgeo.2016.07.015, 2016b. a, b
Fabre, S., Jeandel, C., Zambardi, T., Roustan, M., and Almar, R.: An
Overlooked Silica Source of the Modern Oceans: Are Sandy Beaches the Key?,
Front. Earth Sci., 7, 231, https://doi.org/10.3389/feart.2019.00231, 2019. a, b
Fadeev, E., Rogge, A., Ramondenc, S., Nöthig, E.-M., Wekerle, C.,
Bienhold, C., Salter, I., Waite, A. M., Hehemann, L., Boetius, A., and
Iversen, M. H.: Sea ice presence is linked to higher carbon export and
vertical microbial connectivity in the Eurasian Arctic Ocean, Commun. Biol.,
4, 1255, https://doi.org/10.1038/s42003-021-02776-w, 2021. a, b, c
Fanning, K. A. and Schink, D. R.: Interaction of Marine Sediments with
Dissolved Silica, Limnol. Oceanogr., 14, 59–68,
https://doi.org/10.4319/lo.1969.14.1.0059, 1969. a
Faust, J. C., Stevenson, M., Abbott, G., and Knies, J.: Does Arctic warming
reduce preservation of organic matter in Barents Sea sediments?, Philos.
T. R. Soc. A, 378, 2181, https://doi.org/10.1098/rsta.2019.0364, 2020. a, b
Faust, J. C., Tessin, A., Fisher, B. J., Zindorf, M., Papadaki, S., Hendry,
K. R., Doyle, K. A., and März, C.: Millennial scale persistence of
organic carbon bound to iron in Arctic marine sediments, Nat. Commun., 12, 2181,
https://doi.org/10.1038/s41467-020-20550-0, 2021. a, b, c
Freitas, F. S., Hendry, K. R., Henley, S. F., Faust, J. C., Tessin, A. C.,
Stevenson, M. A., Abbott, G. D., März, C., and Arndt, S.:
Benthic-pelagic coupling in the Barents Sea: an integrated data-model
framework, Philos. T. R. Soc. A, 378, 2181, https://doi.org/10.1098/rsta.2019.0359,
2020. a, b, c, d
Freitas, F. S., Pika, P. A., Kasten, S., Jorgensen, B. B., Rassmann, J.,
Rabouille, C., Thomas, S., Sass, H., Pancost, R. D., and Arndt, S.: New
insights into large-scale trends of apparent organic matter reactivity in
marine sediments and patterns of benthic carbon transformation,
Biogeosciences, 18, 4651–4679, https://doi.org/10.5194/bg-18-4651-2021, 2021. a
Frings, P.: Revisiting the dissolution of biogenic Si in marine sediments: a
key term in the ocean Si budget, Acta Geochim., 36, 429–432,
https://doi.org/10.1007/s11631-017-0183-1, 2017. a, b
Frings, P. J., Clymans, W., Fontorbe, G., De La Rocha, C. L., and Conley,
D. J.: The continental Si cycle and its impact on the ocean Si isotope
budget, Chem. Geol., 425, 12–36, https://doi.org/10.1016/j.chemgeo.2016.01.020, 2016. a
Geilert, S., Grasse, P., Doering, K., Wallmann, K., Ehlert, C., Scholz, F.,
Frank, M., Schmidt, M., and Hensen, C.: Impact of ambient conditions on the
Si isotope fractionation in marine pore fluids during early diagenesis,
Biogeosciences, 17, 1745–1763, https://doi.org/10.5194/bg-17-1745-2020,
2020a. a, b, c, d, e, f, g, h
Geilert, S., Grasse, P., Wallmann, K., Liebetrau, V., and Menzies, C. D.:
Serpentine alteration as source of high dissolved silicon and elevated
δ30Si values to the marine Si cycle, Nat. Commun., 11, 5123,
https://doi.org/10.1038/s41467-020-18804-y, 2020b. a
Gruber, C., Harlavan, Y., Pousty, D., Winkler, D., and Ganor, J.: Enhanced
chemical weathering of albite under seawater conditions and its potential
effect on the Sr ocean budget, Geochim. Cosmochim. Ac., 261, 20–34,
https://doi.org/10.1016/j.gca.2019.06.049, 2019. a
Hátún, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C.,
Mathis, M., Mikolajewicz, U., Coupel, P., Tremblay, J., Hartman, S., Pacariz,
S. V., Salter, I., and Ólafsson, J.: The subpolar gyre regulates
silicate concentrations in the North Atlantic, Sci. Rep., 7, 14576,
https://doi.org/10.1038/s41598-017-14837-4, 2017. a
Hodal, H. and Kristiansen, S.: The importance of small-celled phytoplankton in
spring blooms at the marginal ice zone in the northern Barents Sea, Deep-Sea
Res. Pt. II, 55, 2176–2185, https://doi.org/10.1016/j.dsr2.2008.05.012, 2008. a
Hughes, H. J., Sondag, F., Santos, R. V., André, L., and Cardinal, D.:
The riverine silicon isotope composition of the Amazon Basin, Geochim.
Cosmochim. Ac., 121, 637–651, https://doi.org/10.1016/j.gca.2013.07.040, 2013. a
Hurd, D. C.: Factors affecting solution rate of biogenic opal in seawater,
Earth Planet. Sc. Lett., 15, 411–417, https://doi.org/10.1016/0012-821X(72)90040-4,
1972. a
Hurd, D. C.: Interactions of biogenic opal, sediment and seawater in the
Central Equatorial Pacific, Geochim. Cosmochim. Ac., 37, 2257–2282,
https://doi.org/10.1016/0016-7037(73)90103-8, 1973. a
Hurd, D. C., Fraley, C., and Fugate, J. K.: Silica Apparent Solubilities and
Rates of Dissolution and Precipitation for ca. 25 Common Minerals at
1∘–2 ∘C, pH 7.5–8.5 in Seawater, in: Chemical Modeling in Aqueous Systems,
edited by: Jenne, E., chap. 21, American Chemical Society,
Washington, DC, 413–445, https://doi.org/10.1021/bk-1979-0093.ch021, 1979. a
Ingvaldsen, R. B., Assmann, K. M., Primicerio, R., Fossheim, M., Polyakov,
I. V., and Dolgov, A. V.: Physical manifestations and ecological
implications of Arctic Atlantification, Nat. Rev. Earth Environ., 2,
874–889, 2021. a
Isson, T. T. and Planavsky, N. J.: Reverse weathering as a long-term
stabilizer of marine pH and planetary climate, Nature, 560, 471–475,
https://doi.org/10.1038/s41586-018-0408-4, 2018. a
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman,
B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W.,
Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell,
B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D.,
Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The
International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0,
Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052219, 2012. a
Jeandel, C. and Oelkers, E. H.: The influence of terrigenous particulate
material dissolution on ocean chemistry and global element cycles, Chem.
Geol., 395, 50–66, https://doi.org/10.1016/j.chemgeo.2014.12.001, 2015. a
Jeandel, C., Peucker-Ehrenbrink, B., Jones, M. T., Pearce, C. R., Oelkers,
E. H., Godderis, Y., Lacan, F., Aumont, O., and Arsouze, T.: Ocean margins:
The missing term in oceanic element budgets?, Eos, 92, 217–224,
https://doi.org/10.1029/2011EO260001, 2011. a
Kamatani, A.: Dissolution rates of silica from diatoms decomposing at various
temperatures, Mar. Biol., 68, 91–96, https://doi.org/10.1007/BF00393146, 1982. a
Kamatani, A. and Riley, J. P.: Rate of dissolution of diatom silica walls in
seawater, Mar. Biol., 55, 29–35, https://doi.org/10.1007/BF00391714, 1979. a
Kemp, E., Roseburrough, R., Elliott, E., and Krause, J.: Spatial Variability
of Sediment Amorphous Silica and its Reactivity in a Northern Gulf of Mexico
Estuary and Coastal Zone, Gulf Caribb. Res., 32, SC6–SC11, 2021. a
Krause, J. W., Duarte, C. M., Marquez, I. A., Assmy, P.,
Fernández-Méndez, M., Wiedmann, I., Wassmann, P., Kristiansen,
S., and Agustí, S.: Biogenic silica production and diatom dynamics in
the Svalbard region during spring, Biogeosciences, 15, 6503–6517,
https://doi.org/10.5194/bg-15-6503-2018, 2018. a
Lalande, C., Bauerfeind, E., Nöthig, E. M., and Beszczynska-Möller,
A.: Impact of a warm anomaly on export fluxes of biogenic matter in the
eastern Fram Strait, Prog. Oceanogr., 109, 70–77,
https://doi.org/10.1016/j.pocean.2012.09.006, 2013. a
Lalande, C., Moriceau, B., Leynaert, A., and Morata, N.: Spatial and temporal
variability in export fluxes of biogenic matter in Kongsfjorden, Polar
Biol., 39, 1725–1738, https://doi.org/10.1007/s00300-016-1903-4, 2016. a
Lerman, A., Mackenzie, F. T., and Bricker, O. P.: Rates of dissolution of
aluminosilicates in seawater, Earth Planet. Sci. Lett., 25, 82–88,
https://doi.org/10.1016/0012-821X(75)90213-7, 1975. a, b, c
Lien, V. S., Vikebø, F. B., and Skagseth, O.: One mechanism contributing to
co-variability of the Atlantic inflow branches to the Arctic, Nat. Commun.,
4, 1488, https://doi.org/10.1038/ncomms2505, 2013. a
Liguori, B. T., Ehlert, C., and Pahnke, K.: The Influence of Water Mass Mixing
and Particle Dissolution on the Silicon Cycle in the Central Arctic Ocean,
Front. Earth Sci., 7, 202, https://doi.org/10.3389/fmars.2020.00202, 2020. a, b
Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic warming hotspot in the
northern Barents Sea linked to declining sea-ice import, Nat. Clim.
Change, 8, 634–639, https://doi.org/10.1038/s41558-018-0205-y, 2018. a
Liu, G., Qiu, S., Liu, B., Pu, Y., Gao, Z., Wang, J., Jin, R., and Zhou, J.:
Microbial reduction of Fe(III)-bearing clay minerals in the presence of
humic acids, Sci. Rep., 7, 45354, https://doi.org/10.1038/srep45354, 2017. a
Liu, S. M., Ye, X. W., Zhang, J., and Zhao, Y. F.: Problems with biogenic
silica measurement in marginal seas, Mar. Geol., 192, 383–392,
https://doi.org/10.1016/S0025-3227(02)00531-5, 2002. a
Liu, S. M., Zhang, J., and Li, R. X.: Ecological significance of biogenic
silica in the East China Sea, Mar. Ecol. Prog. Ser., 290, 15–26,
https://doi.org/10.3354/meps290015, 2005. a
Lomas, M. W., Baer, S. E., Acton, S., and Krause, J. W.: Pumped up by the
cold: Elemental quotas and stoichiometry of cold-water diatoms, Front. Mar.
Sci., 6, 286, https://doi.org/10.3389/fmars.2019.00286, 2019. a
Loucaides, S., van Cappellen, P., Roubeix, V., Moriceau, B., and Ragueneau, O.:
Controls on the Recycling and Preservation of Biogenic Silica from
Biomineralization to Burial, Silicon, 4, 7–22,
https://doi.org/10.1007/s12633-011-9092-9, 2012. a
Mackenzie, F. and Garrels, R.: Silicates: Reactivity with Sea Water, Science,
150, 57–58, https://doi.org/10.1126/science.150.3692.57, 1965. a
Mackenzie, F. T., Garrels, R. M., Bricker, O. P., and Bickley, F.: Silica in
sea water: Control by silica minerals, Science, 155, 1404–1405,
https://doi.org/10.1126/science.155.3768.1404, 1967. a
Mackin, J. E. and Aller, R. C.: Dissolved Al in sediments and waters of the
East China Sea: Implications for authigenic mineral formation, Geochim.
Cosmochim. Ac., 48, 281–297, https://doi.org/10.1016/0016-7037(84)90251-5, 1984. a
Makarevich, P. R., Larionov, V. V., Vodopyanova, V. V., Bulavina, A. S.,
Ishkulova, T. G., Venger, M. P., Pastukhov, I. A., and Vashchenko, A. V.:
Phytoplankton of the Barents Sea at the Polar Front in Spring, Oceanology,
61, 930–943, https://doi.org/10.1134/S0001437021060084, 2022. a
März, C., Meinhardt, A. K., Schnetger, B., and Brumsack, H. J.: Silica
diagenesis and benthic fluxes in the Arctic Ocean, Mar. Chem., 171, 1–9,
https://doi.org/10.1016/j.marchem.2015.02.003, 2015. a, b, c, d
McManus, J., Hammond, D. E., Berelson, W. M., Kilgore, T. E., DeMaster, D. J.,
Ragueneau, O. G., and Collier, R. W.: Early diagenesis of biogenic opal:
Dissolution rates, kinetics, and paleoceanographic implications, Deep-Sea Res. Pt.
II, 42, 871–903, https://doi.org/10.1016/0967-0645(95)00035-O, 1995. a, b, c
Michalopoulos, P. and Aller, R. C.: Early diagenesis of biogenic silica in the
Amazon delta: Alteration, authigenic clay formation, and storage, Geochim.
Cosmochim. Ac., 68, 1061–1085, https://doi.org/10.1016/j.gca.2003.07.018, 2004. a
Middelburg, J. J., Soetaert, K., and Herman, P. M.: Empirical relationships
for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344,
https://doi.org/10.1016/S0967-0637(96)00101-X, 1997. a, b
Moriceau, B., Goutx, M., Guigue, C., Lee, C., Armstrong, R., Duflos, M.,
Tamburini, C., Charrière, B., and Ragueneau, O.: Si-C interactions
during degradation of the diatom Skeletonema marinoi, Deep-Sea Res. Pt. II, 56,
1381–1395, https://doi.org/10.1016/j.dsr2.2008.11.026, 2009. a
Morin, G. P., Vigier, N., and Verney-Carron, A.: Enhanced dissolution of
basaltic glass in brackish waters: Impact on biogeochemical cycles, Earth
Planet. Sc. Lett., 417, 1–8, https://doi.org/10.1016/j.epsl.2015.02.005, 2015. a, b
Natori, Y., Haneda, A., and Suzuki, Y.: Vertical and seasonal differences in
biogenic silica dissolution in natural seawater in Suruga Bay, Japan: Effects
of temperature and organic matter, Mar. Chem., 102, 230–241,
https://doi.org/10.1016/j.marchem.2006.04.007, 2006. a
Nelson, D. M. and Brzezinski, M. A.: Diatom growth and productivity in an
oligotropic midocean gyre: A 3-yr record from the Sargasso Sea near Bermuda,
Limnol. Oceanogr., 42, 473–486, https://doi.org/10.4319/lo.1997.42.3.0473, 1997. a, b
Neukermans, G., Oziel, L., and Babin, M.: Increased intrusion of warming
Atlantic water leads to rapid expansion of temperate phytoplankton in the
Arctic, Glob. Change Biol., 24, 2545–2553, https://doi.org/10.1111/gcb.14075, 2018. a, b, c, d
Ng, H. C., Cassarino, L., Pickering, R. A., Woodward, E. M. S., Hammond, S. J.,
and Hendry, K. R.: Sediment efflux of silicon on the Greenland margin and
implications for the marine silicon cycle, Earth Planet. Sc. Lett., 529, 115877,
https://doi.org/10.1016/j.epsl.2019.115877, 2020. a, b, c, d
Olli, K., Wexels Riser, C., Wassmann, P., Ratkova, T., Arashkevich, E., and
Pasternak, A.: Seasonal variation in vertical flux of biogenic matter in the
marginal ice zone and the central Barents Sea, J. Mar. Syst., 38, 189–204, https://doi.org/10.1016/S0924-7963(02)00177-X, 2002. a
Onarheim, I. H. and Årthun, M.: Toward an ice-free Barents Sea, Geophys.
Res. Lett., 44, 8387–8395, https://doi.org/10.1002/2017GL074304, 2017. a
Opfergelt, S., de Bournonville, G., Cardinal, D., André, L., Delstanche,
S., and Delvaux, B.: Impact of soil weathering degree on silicon isotopic
fractionation during adsorption onto iron oxides in basaltic ash soils,
Cameroon, Geochim. Cosmochim. Ac., 73, 7226–7240,
https://doi.org/10.1016/j.gca.2009.09.003, 2009. a
Orkney, A., Platt, T., Narayanaswamy, B. E., Kostakis, I., and Bouman, H. A.:
Bio-optical evidence for increasing Phaeocystis dominance in the Barents
Sea: Increasing Phaeocystis in Barents Sea, Philos. T. R. Soc. A,
378, 2181, https://doi.org/10.1098/rsta.2019.0357, 2020. a, b, c
Orsi, T. H. and Dunn, D. A.: Correlations between sound velocity and related
properties of glacio-marine sediments: Barents sea, Geo-Mar. Lett., 11,
79–83, https://doi.org/10.1007/BF02431033, 1991. a
Oziel, L., Sirven, J., and Gascard, J. C.: The Barents Sea frontal zones and
water masses variability (1980–2011), Ocean Sci., 12, 169–184,
https://doi.org/10.5194/os-12-169-2016, 2016. a, b, c
Oziel, L., Baudena, A., Ardyna, M., Massicotte, P., Randelhoff, A.,
Sallée, J. B., Ingvaldsen, R. B., Devred, E., and Babin, M.: Faster
Atlantic currents drive poleward expansion of temperate phytoplankton in the
Arctic Ocean, Nat. Commun., 11, 1705, https://doi.org/10.1038/s41467-020-15485-5, 2020. a
Pickering, R.: Silica Cycling at the Sediment Water Interface of Coastal
Systems, Ph.D. thesis, The University of South Alabama College of Arts and
Sciences, ISBN 9798662450950, 2020. a
Rabouille, C., Gaillard, J. F., Tréguer, P., and Vincendeau, M. A.:
Biogenic silica recycling in surficial sediments across the Polar Front of
the Southern Ocean (Indian Sector), Deep-Sea Res. Pt. II, 44, 1151–1176,
https://doi.org/10.1016/S0967-0645(96)00108-7, 1997. a, b, c
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R. F., Brzezinski,
M. A., DeMaster, D. J., Dugdale, R. C., Dymond, J., Fischer, G.,
François, R., Heinze, C., Maier-Reimer, E.,
Martin-Jézéquel, V., Nelson, D. M., and Quéguiner, B.: A
review of the Si cycle in the modern ocean: Recent progress and missing gaps
in the application of biogenic opal as a paleoproductivity proxy, Glob.
Planet. Change, 26, 317–365, https://doi.org/10.1016/S0921-8181(00)00052-7, 2000. a, b, c
Ragueneau, O., Gallinari, M., Corrin, L., Grandel, S., Hall, P., Hauvespre, A.,
Lampitt, R. S., Rickert, D., Stahl, H., Tengberg, A., and Witbaard, R.: The
benthic silica cycle in the Northeast Atlantic: Annual mass balance,
seasonality, and importance of non-steady-state processes for the early
diagenesis of biogenic opal in deep-sea sediments, Prog. Oceanogr., 50,
171–200, https://doi.org/10.1016/S0079-6611(01)00053-2, 2001. a, b, c, d
Ragueneau, O., Regaudie-de Gioux, A., Moriceau, B., Gallinari, M.,
Vangriesheim, A., Baurand, F., and Khripounoff, A.: A benthic Si mass
balance on the Congo margin: Origin of the 4000 m DSi anomaly and
implications for the transfer of Si from land to ocean, Deep-Sea Res. Pt. II, 56,
2197–2207, https://doi.org/10.1016/j.dsr2.2009.04.003, 2009. a
Regnier, P., O'Kane, J., Steefel, C., and Vanderborght, J.: Modeling complex
multi-component reactive-transport systems: towards a simulation environment
based on the concept of a Knowledge Base, Appl. Math. Model., 26, 913–927,
https://doi.org/10.1016/S0307-904X(02)00047-1, 2002. a
Regnier, P., Jourabchi, P., and Slomp, C. P.: Reactive-transport modeling as a
technique for understanding coupled biogeochemical processes in surface and
subsurface environments, Neth. J. Geosci., 82, 5–18,
https://doi.org/10.1017/S0016774600022757, 2003. a
Reigstad, M., Wassmann, P., Wexels Riser, C., Øygarden, S., and Rey, F.:
Variations in hydrography, nutrients and chlorophyll a in the marginal
ice-zone and the central Barents Sea, J. Mar. Syst., 38, 9–29,
https://doi.org/10.1016/S0924-7963(02)00167-7, 2002. a
Rey, F.: Declining silicate concentrations in the Norwegian and Barents Seas,
ICES J. Mar. Sci., 69, 208–212, https://doi.org/10.1093/icesjms/fss007, 2012. a
Rickert, D., Schlüter, M., and Wallmann, K.: Dissolution kinetics of
biogenic silica from the water column to the sediments, Geochim. Cosmochim.
Ac., 66, 439–455, https://doi.org/10.1016/S0016-7037(01)00757-8, 2002. a
Rimstidt, J. D. and Barnes, H. L.: The kinetics of silica-water reactions,
Geochim. Cosmochim. Ac., 44, 1683–1699, https://doi.org/10.1016/0016-7037(80)90220-3,
1980. a
Roubeix, V., Becquevort, S., and Lancelot, C.: Influence of bacteria and
salinity on diatom biogenic silica dissolution in estuarine systems,
Biogeochemistry, 88, 47–62, https://doi.org/10.1007/s10533-008-9193-8, 2008. a
Rynearson, T. A., Richardson, K., Lampitt, R. S., Sieracki, M. E., Poulton,
A. J., Lyngsgaard, M. M., and Perry, M. J.: Major contribution of diatom
resting spores to vertical flux in the sub-polar North Atlantic, Deep-Sea Res. Pt.
I, 82, 60–71, https://doi.org/10.1016/j.dsr.2013.07.013, 2013. a
Sakshaug, E.: Biomass and productivity distributions and their variability in
the Barents Sea, ICES J. Mar. Sci., 54, 341–350,
https://doi.org/10.1006/jmsc.1996.0170, 1997. a, b
Schink, D. R., Guinasso, N. L., and Fanning, K. A.: Processes affecting the
concentration of silica at the sediment-water interface of the Atlantic
Ocean, J. Geophys. Res., 80, 3013–3031, https://doi.org/10.1029/jc080i021p03013,
1975. a
Shapiro, I., Colony, R., and Vinje, T.: April sea ice extent in the Barents
Sea, 1850–2001, Polar Res., 22, 5–10,
https://doi.org/10.1111/j.1751-8369.2003.tb00089.x, 2003. a
Siever, R.: Establishment of equilibrium between clays and sea water, Earth
Planet. Sc. Lett., 5, 106–110, https://doi.org/10.1016/s0012-821x(68)80023-8, 1968. a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li,
C., Lien, V. S., Olsen, A., Omar, A. M., Risebrobakken, B., Sandø, A. B.,
Semenov, V. A., and Sorokina, S. A.: The role of the Barents Sea in the
Arctic climate system, Rev. Geophys., 51, 415–449, https://doi.org/10.1002/rog.20017,
2013. a
Solan, M., Ward, E. R., Wood, C. L., Reed, A. J., Grange, L. J., and Godbold,
J. A.: Climate-driven benthic invertebrate activity and biogeochemical
functioning across the Barents Sea polar front: Climate driven benthic
activity, Philos. T. R. Soc. A, 378, 2181, https://doi.org/10.1098/rsta.2019.0365,
2020. a, b
Sun, X., Olofsson, M., Andersson, P. S., Fry, B., Legrand, C., Humborg, C., and
Mörth, C. M.: Effects of growth and dissolution on the fractionation
of silicon isotopes by estuarine diatoms, Geochim. Cosmochim. Ac., 130,
156–166, https://doi.org/10.1016/j.gca.2014.01.024, 2014. a
Sun, X., Mörth, C. M., Porcelli, D., Kutscher, L., Hirst, C., Murphy,
M. J., Maximov, T., Petrov, R. E., Humborg, C., Schmitt, M., and Andersson,
P. S.: Stable silicon isotopic compositions of the Lena River and its
tributaries: Implications for silicon delivery to the Arctic Ocean, Geochim.
Cosmochim. Ac., 241, 120–133, https://doi.org/10.1016/j.gca.2018.08.044, 2018. a
Syvertsen, E. E.: Ice algae in the Barents Sea: types of assemblages, origin,
fate and role in the ice-edge phytoplankton bloom, Polar Res., 10, 277–288,
https://doi.org/10.3402/polar.v10i1.6746, 1991. a
Thullner, M., Dale, A. W., and Regnier, P.: Global-scale quantification of
mineralization pathways in marine sediments: A reaction-transport modeling
approach, Geochem. Geophy. Geosy., 10, https://doi.org/10.1029/2009GC002484,
2009. a
Titov, O.: Seasonal Dynamics of Primary Production in the Barents Sea, in:
ICES CM 1995/Mini, Vol. 16, International'Council for the Exploration of the Sea, 1995. a
Torres-Valdés, S., Tsubouchi, T., Bacon, S., Naveira-Garabato, A. C.,
Sanders, R., McLaughlin, F. A., Petrie, B., Kattner, G., Azetsu-Scott, K.,
and Whitledge, T. E.: Export of nutrients from the Arctic Ocean, J.
Geophys. Res.-Ocean., 118, 1625–1644, https://doi.org/10.1002/jgrc.20063, 2013. a, b
Tréguer, P., Kamatani, A., Gueneley, S., and Quéguiner, B.:
Kinetics of dissolution of Antarctic diatom frustules and the biogeochemical
cycle of silicon in the Southern Ocean, Polar Biol., 9, 397–403,
https://doi.org/10.1007/BF00442531, 1989. a
Tréguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J.,
Leynaert, A., and Quéguiner, B.: The silica balance in the world
ocean: A reestimate, Science, 268, 375–379,
https://doi.org/10.1126/science.268.5209.375, 1995. a, b
Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A., Devries,
T., Dutkiewicz, S., Ehlert, C., Hawkings, J., Leynaert, A., Liu, S. M.,
Monferrer, N. L., López-Acosta, M., Maldonado, M., Rahman, S., Ran, L.,
and Rouxel, O.: Reviews and syntheses: The biogeochemical cycle of silicon
in the modern ocean, Biogeosciences, 18, 1269–1289,
https://doi.org/10.5194/bg-18-1269-2021, 2021. a
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015. a
Van Beusekom, J. E., Van Bennekom, A. J., Tréguer, P., and Morvan,
J.: Aluminium and silicic acid in water and sediments of the Enderby and
Crozet Basins, Deep-Sea Res. Pt. II, 44, 987–1003,
https://doi.org/10.1016/S0967-0645(96)00105-1, 1997. a
Van Cappellen, P. and Qiu, L.: Biogenic silica dissolution in sediments of
the Southern Ocean, I. Solubility, Deep-Sea Res. Pt. II, 44, 1109–1128,
https://doi.org/10.1016/S0967-0645(96)00113-0, 1997a. a
Van Cappellen, P. and Qiu, L.: Biogenic silica dissolution in sediments of
the Southern Ocean. II. Kinetics, Deep-Sea Res. Pt. II, 44, 1129–1149,
https://doi.org/10.1016/S0967-0645(96)00112-9, 1997b. a, b
Van Cappellen, P., Dixit, S., and van Beusekom, J.: Biogenic silica
dissolution in the oceans: Reconciling experimental and field-based
dissolution rates, Global Biogeochem. Cy., 16, 23-1–23-10,
https://doi.org/10.1029/2001gb001431, 2002. a, b
Vandevivere, P., Welch, S. A., Ullman, W. J., and Kirchman, D. L.: Enhanced
dissolution of silicate minerals by bacteria at near-neutral pH, Microb.
Ecol., 27, 241–251, https://doi.org/10.1007/BF00182408, 1994. a
Varkouhi, S. and Wells, J.: The relation between temperature and silica
benthic exchange rates and implications for near-seabed formation of
diagenetic opal, Results Geophys. Sci., 1–4, 100002,
https://doi.org/10.1016/j.ringps.2020.100002, 2020. a
Vernet, M., Matrai, P. A., and Andreassen, I.: Synthesis of particulate and
extracellular carbon by phytoplankton at the marginal ice zone in the Barents
Sea, J. Geophys. Res.-Ocean., 103, 1023–1037, https://doi.org/10.1029/97jc02288,
1998. a
Vogt, C. and Knies, J.: Sediment pathways in the western Barents Sea inferred
from clay mineral assemblages in surface sediments, Nor. J. Geol., 89,
41–55, 2009. a
Vorhies, J. S. and Gaines, R. R.: Microbial dissolution of clay minerals as a
source of iron and silica in marine sediments, Nat. Geosci., 2, 221–225,
https://doi.org/10.1038/ngeo441, 2009. a
Wang, W., Wei, H. Z., Jiang, S. Y., Liu, X., Lei, F., Lin, Y. B., and Zhao, Y.:
Silicon isotope geochemistry: Fractionation linked to silicon complexations
and its geological applications, Molecules, 24, 1415,
https://doi.org/10.3390/molecules24071415, 2019. a
Ward, J., Hendry, K., Arndt, S., and Freitas, F. S.:
Biogeochemical Reaction Network Simulator (BRNS) for the Barents Sea benthic silica cycle, Zenodo [code], https://doi.org/10.5281/zenodo.6023767, 2021a. a
Ward, J., Freitas, F. S., Henley, S. F., and Faust, J. C.: Benthic silica flux magnitudes and silicon isotopic composition of marine sediment pore waters and solid phase leachates for the Barents Sea (summer 2017–2019), Polar Data Centre [dataset], https://doi.org/10.5285/8933af23-e051-4166-b63e-2155330a21d8, 2021b. a
Ward, J., Hendry, K., Arndt, S., Faust, J., Freitas, F., Henley, S. F., Krause,
J., Maerz, C., Ng, H. C., and Pickering, R.: Stable Silicon Isotopes Uncover
a Mineralogical Control on the Benthic Silicon Cycle in the Arctic Barents
Sea, Geochim. Cosmochim. Ac., 329, 206–230,
https://doi.org/10.1016/j.gca.2022.05.005, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag, ah
Wassmann, P. and Olli, K.: Central Barents Sea and Northern Spitsbergen, in:
The Organic Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and
Macdonald, R. W., Springer, Berlin, 112–114,
https://doi.org/10.1007/978-3-642-18912-8_5, 2004.
a, b
Wassmann, P. and Reigstad, M.: Future Arctic Ocean seasonal ice zones and
implications for pelagic-benthic coupling, Oceanography, 24, 220–231,
https://doi.org/10.5670/oceanog.2011.74, 2011. a
Wassmann, P., Ratkova, T., Andreassen, I., Vernet, M., Pedersen, G., and Rey,
F.: Spring bloom development in the marginal ice zone and the central
Barents Sea, Mar. Ecol., 20, 321–346,
https://doi.org/10.1046/j.1439-0485.1999.2034081.x, 1999. a, b, c, d
Wassmann, P., Slagstad, D., Riser, C. W., and Reigstad, M.: Modelling the
ecosystem dynamics of the Barents Sea including the marginal ice zone: II.
Carbon flux and interannual variability, J. Mar. Syst., 59, 1–24,
https://doi.org/10.1016/j.jmarsys.2005.05.006, 2006. a
Westacott, S., Planavsky, N. J., Zhao, M. Y., and Hull, P. M.: Revisiting the
sedimentary record of the rise of diatoms, P. Natl. Acad. Sci. USA, 118,
https://doi.org/10.1073/pnas.2103517118, 2021. a
Wetzel, F., de Souza, G. F., and Reynolds, B. C.: What controls silicon
isotope fractionation during dissolution of diatom opal?, Geochim.
Cosmochim. Ac., 131, 128–137, https://doi.org/10.1016/j.gca.2014.01.028, 2014. a
Wiedmann, I., Ershova, E., Bluhm, B. A., Nöthig, E. M., Gradinger, R. R.,
Kosobokova, K., and Boetius, A.: What Feeds the Benthos in the Arctic
Basins? Assembling a Carbon Budget for the Deep Arctic Ocean, Front. Mar.
Sci., 7, https://doi.org/10.3389/fmars.2020.00224, 2020. a
Wu, B., Lu, C., and Liu, S. M.: Dynamics of biogenic silica dissolution in
Jiaozhou Bay, western Yellow Sea, Mar. Chem., 174, 58–66,
https://doi.org/10.1016/j.marchem.2015.05.004, 2015. a
Zaborska, A., Carroll, J. L., Papucci, C., Torricelli, L., Carroll, M. L.,
Walkusz-Miotk, J., and Pempkowiak, J.: Recent sediment accumulation rates
for the Western margin of the Barents Sea, Deep-Sea Res. Pt. II, 55, 2352–2360,
https://doi.org/10.1016/j.dsr2.2008.05.026, 2008. a, b, c
Zheng, X. Y., Beard, B. L., Reddy, T. R., Roden, E. E., and Johnson, C. M.:
Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si
gel in simulated Archean seawater: Implications for Si isotope records in
Precambrian sedimentary rocks, Geochim. Cosmochim. Ac., 187, 102–122,
https://doi.org/10.1016/j.gca.2016.05.012, 2016. a
Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F.: Natural
variations of δ30Si ratios during progressive basalt weathering,
Hawaiian Islands, Geochim. Cosmochim. Ac., 69, 4597–4610,
https://doi.org/10.1016/j.gca.2005.05.008, 2005a. a
Ziegler, K., Chadwick, O. A., White, A. F., and Brzezinski, M. A.:
δ30Si systematics in a granitic saprolite, Puerto Rico, Geology, 33,
817–820, https://doi.org/10.1130/G21707.1, 2005b. a
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that...
Altmetrics
Final-revised paper
Preprint