Articles | Volume 19, issue 18
https://doi.org/10.5194/bg-19-4551-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-4551-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution vertical biogeochemical profiles in the hyporheic zone reveal insights into microbial methane cycling
Tamara Michaelis
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
Anja Wunderlich
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
Ömer K. Coskun
Department of Earth and Environmental Sciences, Palaeontology &
Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich,
Germany
William Orsi
Department of Earth and Environmental Sciences, Palaeontology &
Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich,
Germany
GeoBio-Center, Ludwig-Maximilians-Universität
München, 80333 Munich, Germany
Thomas Baumann
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
Florian Einsiedl
CORRESPONDING AUTHOR
Chair of Hydrogeology, School of Engineering and Design, Technical University of Munich, 80333 Munich, Germany
Related authors
No articles found.
Lea Augustin and Thomas Baumann
EGUsphere, https://doi.org/10.5194/egusphere-2025-740, https://doi.org/10.5194/egusphere-2025-740, 2025
Short summary
Short summary
River water can be used to refill depleted underground reserves impacted by climate change and human use. In this study, we assessed water quality in Bavaria's Günz River by analyzing watershed risks, using continuous monitoring, and conducting laboratory tests for pollutants. High flows showed strong dilution of almost all parameters. The results indicated that the river is a suitable source for groundwater recharge.
Lilly Zacherl and Thomas Baumann
Adv. Geosci., 65, 9–17, https://doi.org/10.5194/adgeo-65-9-2024, https://doi.org/10.5194/adgeo-65-9-2024, 2024
Short summary
Short summary
Scaling, particularly calcium carbonate precipitation in Bavaria, diminishes the efficiency of geothermal systems. To mitigate this issue, modeling for predictive maintenance is required, yet data are scarce. To address this, experimental data of the process were obtained using a new combination that allows qualitative and quantitative investigation in real time. Unfortunately, the stability of the signal degraded in long-term experiments, limiting measurements to durations of up to one day.
Tamara Michaelis, Anja Wunderlich, Thomas Baumann, Juergen Geist, and Florian Einsiedl
Hydrol. Earth Syst. Sci., 27, 3769–3782, https://doi.org/10.5194/hess-27-3769-2023, https://doi.org/10.5194/hess-27-3769-2023, 2023
Short summary
Short summary
Riverbeds are densely populated with microorganisms which catalyze ecologically relevant processes. To study this complex zone, we tested pore-water extraction with microfilter tubes. The method was found to be suitable for the measurement of dissolved solutes but less so for gases. The pumping rate during sample extraction strongly influenced gas analyses in the samples. The combination with an optical oxygen sensor and a temperature monitoring system was found to be highly valuable.
Annette Dietmaier and Thomas Baumann
Adv. Geosci., 58, 189–197, https://doi.org/10.5194/adgeo-58-189-2023, https://doi.org/10.5194/adgeo-58-189-2023, 2023
Short summary
Short summary
Data on geothermal properties are notoriously scarce, both on a good temporal and spatial resolution. We compared two data sets of a geothermal well in Bavaria (one had yearly analyses of a great number of ions, the other one tested the water every five minutes but only on a small number of variables) and found that yearly data systematically neglect seasonal variations taking place in the aquifer. Virtual sensors might help to combine the two data sets when the aquifer is well known.
Florian Einsiedl, Anja Wunderlich, Mathieu Sebilo, Ömer K. Coskun, William D. Orsi, and Bernhard Mayer
Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, https://doi.org/10.5194/bg-17-5149-2020, 2020
Short summary
Short summary
Nitrate pollution of freshwaters and methane emissions into the atmosphere are crucial factors in deteriorating the quality of drinking water and in contributing to global climate change. Here, we report vertical concentration and stable isotope profiles of CH4, NO3-, NO2-, and NH4+ in the water column of Fohnsee (southern Bavaria, Germany) that may indicate linkages between nitrate-dependent anaerobic methane oxidation and the anaerobic oxidation of ammonium.
Cited articles
Arshad, A., Speth, D. R., de Graaf, R. M., Op den Camp, H. J., Jetten, M.
S., and Welte, C. U.: A metagenomics-based metabolic model of
nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like
archaea, Front. Microbiol., 6, 1423, https://doi.org/10.3389/fmicb.2015.01423, 2015.
Auerswald, K. and Geist, J.: Extent and causes of siltation in a headwater
stream bed: catchment soil erosion is less important than internal stream
processes, Land Degrad. Dev., 29, 737–748, 2018.
Bardini, L., Boano, F., Cardenas, M., Revelli, R., and Ridolfi, L.: Nutrient
cycling in bedform induced hyporheic zones, Geochim. Cosmochim. Ac.,
84, 47–61, 2012.
Bardini, L., Boano, F., Cardenas, M., Sawyer, A., Revelli, R., and Ridolfi,
L.: Small-scale permeability heterogeneity has negligible effects on
nutrient cycling in streambeds, Geophys. Res. Lett., 40, 1118–1122, 2013.
Bavarian State Office of the Environment: Gewässerkundlicher Dienst
Bayern, Data and information, https://www.gkd.bayern.de/en/, last access: 19 January 2022.
Beal, E. J., House, C. H., and Orphan, V. J.: Manganese-and iron-dependent
marine methane oxidation, Science, 325, 184–187, 2009.
Bednařík, A., Blaser, M., Matoušů, A., Tušer, M.,
Chaudhary, P. P., Šimek, K., and Rulík, M.: Sediment methane
dynamics along the Elbe River, Limnologica, 79, 125716, https://doi.org/10.1016/j.limno.2019.125716, 2019.
Berg, P., Risgaard-Petersen, N., and Rysgaard, S.: Interpretation of
measured concentration profiles in sediment pore water, Limnol. Oceanogr., 43,
1500–1510, 1998 (software available at: https://berg.evsc.virginia.edu/modeling-and-profile/, last access: 20 September 2022).
Berghuis, B. A., Yu, F. B., Schulz, F., Blainey, P. C., Woyke, T., and
Quake, S. R.: Hydrogenotrophic methanogenesis in archaeal phylum
Verstraetearchaeota reveals the shared ancestry of all methanogens,
P. Natl. Acad. Sci. USA, 116, 5037–5044, 2019.
Beyer, W.: Zur bestimmung der wasserdurchlässigkeit von kiesen und
sanden aus der kornverteilungskurve, WWT, 14, 165–168, 1964.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi,
L., and Wörman, A.: Hyporheic flow and transport processes: Mechanisms,
models, and biogeochemical implications, Rev. Geophys., 52, 603–679,
2014.
Bodmer, P., Wilkinson, J., and Lorke, A.: Sediment properties drive spatial
variability of potential methane production and oxidation in small streams,
J. Geophys. Res.-Biogeo., 125, e2019JG005213, https://doi.org/10.1029/2019JG005213, 2020.
Boudreau, B. P. (Ed.): Diagenetic models and their implementation, Springer,
Berlin, ISBN 975-3-642-64399-6, 1997.
Braun, A., Auerswald, K., and Geist, J.: Drivers and spatio-temporal extent
of hyporheic patch variation: implications for sampling, Plos One, 7, e42046, https://doi.org/10.1371/journal.pone.0042046, 2012.
Canfield, D. E. and Thamdrup, B.: Towards a consistent classification scheme
for geochemical environments, or, why we wish the term “suboxic” would go
away, Geobiology, 7, 385–392, 2009.
Capone, D. G. and Kiene, R. P.: Comparison of microbial dynamics in marine
and freshwater sediments: Contrasts in anaerobic carbon catabolism 1, Limnol.
Oceanogr., 33, 725–749, 1988.
Casagrande, D. J., Siefert, K., Berschinski, C., and Sutton, N.: Sulfur in
peat-forming systems of the Okefenokee Swamp and Florida Everglades: origins
of sulfur in coal, Geochim. Cosmochim. Ac., 41, 161–167, 1977.
Comer-Warner, S. A., Romeijn, P., Gooddy, D. C., Ullah, S., Kettridge, N.,
Marchant, B., Hannah, D. M., and Krause, S.: Thermal sensitivity of CO2 and
CH4 emissions varies with streambed sediment properties, Nat. Commun., 9,
1–9, 2018.
Conrad, R.: Quantification of methanogenic pathways using stable carbon
isotopic signatures: a review and a proposal, Org. Geochem., 36, 739–752,
2005.
Conrad, R.: Importance of hydrogenotrophic, aceticlastic and methylotrophic
methanogenesis for methane production in terrestrial, aquatic and other
anoxic environments: a mini review, Pedosphere, 30, 25–39, 2020.
Coskun, Ö. K., Özen, V., Wankel, S. D., and Orsi, W. D.: Quantifying
population-specific growth in benthic bacterial communities under low oxygen
using H218O, ISME J., 13, 1546–1559, 2019.
Danczak, R. E., Sawyer, A. H., Williams, K. H., Stegen, J. C., Hobson, C.,
and Wilkins, M. J.: Seasonal hyporheic dynamics control coupled microbiology
and geochemistry in Colorado River sediments, J. Geophys.
Res.-Biogeo., 121, 2976–2987, 2016.
DelSontro, T., McGinnis, D. F., Sobek, S., Ostrovsky, I., and Wehrli, B.:
Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution
from Bubbling Sediments, Environ. Sci. Technol., 44, 2419–2425,
https://doi.org/10.1021/es9031369, 2010.
Deppenmeier, U.: The unique biochemistry of methanogenesis, Prog.
Nucleic Acid Re., 71, 223–283, 2002.
Deutzmann, J. S., Stief, P., Brandes, J., and Schink, B.: Anaerobic methane
oxidation coupled to denitrification is the dominant methane sink in a deep
lake, P. Natl. Acad. Sci. USA, 111, 18273–18278,
https://doi.org/10.1073/pnas.1411617111, 2014.
Edgar, R. C.: UPARSE: highly accurate OTU sequences from microbial amplicon
reads, Nat. Meth., 10, 996–998, 2013.
Einsiedl, F., Wunderlich, A., Sebilo, M., Coskun, Ö. K., Orsi, W. D., and Mayer, B.: Biogeochemical evidence of anaerobic methane oxidation and anaerobic ammonium oxidation in a stratified lake using stable isotopes, Biogeosciences, 17, 5149–5161, https://doi.org/10.5194/bg-17-5149-2020, 2020.
EPA: Technical Guidance for the Natural Attenuation Indicators: Methane,
Ethane, and Ethene, United States Environmental Protection Agency (US EPA), https://clu-in.org/download/contaminantfocus/dnapl/Treatment_Technologies/Ethene-ethane-methane-analysis.pdf (last access: 7 September 2022), 2001.
Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S.,
Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., and de Beer, D.:
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature,
464, 543–548, 2010.
European Commission and United States of America: Global Methane Pledge,
Climate and Clean Air Coalition, 2, https://www.ccacoalition.org/en/resources/global-methane-pledge (last access: 7 September 2022), 2021.
Findlay, S.: Importance of surface-subsurface exchange in stream ecosystems:
The hyporheic zone, Limnol. Oceanogr., 40, 159–164, 1995.
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P.,
Yuan, Z., and Tyson, G. W.: Anaerobic oxidation of methane coupled to
nitrate reduction in a novel archaeal lineage, Nature, 500, 567–570,
https://doi.org/10.1038/nature12375, 2013.
Hesslein, R. H.: An in situ sampler for close interval pore water studies 1,
Limnol. Oceanogr., 21, 912–914, 1976.
Hu, B.-L., Shen, L.-D., Lian, X., Zhu, Q., Liu, S., Huang, Q., He, Z.-F.,
Geng, S., Cheng, D.-Q., Lou, L.-P., Xu, X.-Y., Zheng, P., and He, Y.-F.:
Evidence for nitrite-dependent anaerobic methane oxidation as a previously
overlooked microbial methane sink in wetlands, P. Natl.
Acad. Sci. USA, 111, 4495–4500, https://doi.org/10.1073/pnas.1318393111, 2014.
IPCC: The physical science basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Camebridge University Press, Cambridge, United Kingdom and New York,
NY, USA, ISBN 978-1-107-05799-1, 2013.
Iversen, N. and Jørgensen, B. B.: Diffusion coefficients of sulfate and
methane in marine sediments: Influence of porosity, Geochim.
Cosmochim. Ac., 57, 571–578, 1993.
Jørgensen, B. B., Weber, A., and Zopfi, J.: Sulfate reduction and
anaerobic methane oxidation in Black Sea sediments, Deep-Sea Res. Pt.
I, 48, 2097–2120, 2001.
Kampbell, D. H. and Vandegrift, S. A.: Analysis of dissolved methane,
ethane, and ethylene in ground water by a standard gas chromatographic
technique, J. Chromatogr. Sci., 36, 253–256, 1998.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., and
Bruhwiler, L.: Three decades of global methane sources and sinks, Nat.
Geosci., 6, 813–823, 2013.
Kits, K. D., Klotz, M. G., and Stein, L. Y.: Methane oxidation coupled to
nitrate reduction under hypoxia by the G ammaproteobacterium M ethylomonas
denitrificans, sp. nov. type strain FJG1, Environ. Microbiol., 17, 3219–3232,
2015.
Krzycki, J., Kenealy, W., DeNiro, M., and Zeikus, J.: Stable carbon isotope
fractionation by Methanosarcina barkeri during methanogenesis from acetate,
methanol, or carbon dioxide-hydrogen, Appl. Environ. Microb., 53, 2597–2599,
1987.
Ladd, J. and Jackson, R.: Biochemistry of ammonification, Nitrogen in
Agricultural Soils, 22, 173–228, 1982.
Luesken, F. A., Wu, M. L., Op den Camp, H. J., Keltjens, J. T., Stunnenberg,
H., Francoijs, K. J., Strous, M., and Jetten, M. S.: Effect of oxygen on the
anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”: kinetic and
transcriptional analysis, Environ. Microbiol., 14, 1024–1034, 2012.
Mach, V., Blaser, M. B., Claus, P., Chaudhary, P. P., and Rulík, M.:
Methane production potentials, pathways, and communities of methanogens in
vertical sediment profiles of river Sitka, Front. Microbiol., 6, 506, https://doi.org/10.3389/fmicb.2015.00506, 2015.
Marzadri, A., Tonina, D., and Bellin, A.: Morphodynamic controls on redox
conditions and on nitrogen dynamics within the hyporheic zone: Application
to gravel bed rivers with alternate-bar morphology, J. Geophys.
Res.-Biogeo., 117, G00N10, https://doi.org/10.1029/2012JG001966, 2012.
McGinnis, D. F., Bilsley, N., Schmidt, M., Fietzek, P., Bodmer, P., Premke,
K., Lorke, A., and Flury, S.: Deconstructing methane emissions from a small
Northern European river: Hydrodynamics and temperature as key drivers,
Environ. Sci. Technol., 50, 11680–11687, 2016.
Naqvi, S. W. A., Lam, P., Narvenkar, G., Sarkar, A., Naik, H., Pratihary,
A., Shenoy, D. M., Gauns, M., Kurian, S., and Damare, S.: Methane stimulates
massive nitrogen loss from freshwater reservoirs in India, Nat. Commun., 9,
1–10, 2018.
Narrowe, A. B., Borton, M. A., Hoyt, D. W., Smith, G. J., Daly, R. A.,
Angle, J. C., Eder, E. K., Wong, A. R., Wolfe, R. A., and Pappas, A.:
Uncovering the diversity and activity of methylotrophic methanogens in
freshwater wetland soils, Msystems, 4, 6, https://doi.org/10.1128/mSystems.00320-19, 2019.
Nazaries, L., Murrell, J. C., Millard, P., Baggs, L., and Singh, B. K.:
Methane, microbes and models: fundamental understanding of the soil methane
cycle for future predictions, Environ. Microbiol., 15, 2395–2417, 2013.
Ng, G. H. C., Rosenfeld, C. E., Santelli, C. M., Yourd, A. R., Lange, J.,
Duhn, K., and Johnson, N. W.: Microbial and reactive transport modeling
evidence for hyporheic flux-driven cryptic sulfur cycling and anaerobic
methane oxidation in a sulfate-impacted wetland-stream system, J.
Geophys. Res.-Biogeo., 125, e2019JG005185, https://doi.org/10.1029/2019JG005185, 2020.
Nisbet, E. G., Manning, M., Dlugokencky, E., Fisher, R., Lowry, D., Michel,
S., Myhre, C. L., Platt, S. M., Allen, G., and Bousquet, P.: Very strong
atmospheric methane growth in the 4 years 2014–2017: Implications for the
Paris Agreement, Global Biogeochem. Cy., 33, 318–342, 2019.
Norði, K. Á. and Thamdrup, B.: Nitrate-dependent anaerobic methane
oxidation in a freshwater sediment, Geochim. Cosmochim. Ac., 132,
141–150, 2014.
Norði, K. Á., Thamdrup, B., and Schubert, C. J.: Anaerobic oxidation
of methane in an iron-rich Danish freshwater lake sediment, Limnol. Oceanogr.,
58, 546–554, 2013.
Oswald, K., Graf, J. S., Littmann, S., Tienken, D., Brand, A., Wehrli, B.,
Albertsen, M., Daims, H., Wagner, M., and Kuypers, M. M.: Crenothrix are
major methane consumers in stratified lakes, ISME J., 11,
2124–2140, 2017.
Parkhurst, D. L. and Appelo, C. A. J.: Description of input and examples for PHREEQC version 3 – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, Book 6, chap. A43, 497 pp., http://pubs.usgs.gov/tm/06/a43/ (last access: 16 September 2022), 2013.
Peña Sanchez, A., Mayer, B., Wunderlich, A., Rein, A., and Einsiedl, F.:
Analysing seasonal variations of methane oxidation processes coupled with
denitrification in a stratified lake using stable isotopes and numerical
modeling, Geochim. Cosmochim. Ac., 323, 242–257, https://doi.org/10.1016/j.gca.2022.01.022, 2022.
Pichler, M., Coskun, Ö. K., Ortega-Arbulú, A. S., Conci, N.,
Wörheide, G., Vargas, S., and Orsi, W. D.: A 16S rRNA gene sequencing
and analysis protocol for the Illumina MiniSeq platform, Microbiologyopen,
7, e00611, https://doi.org/10.1002/mbo3.611, 2018.
Pulg, U., Barlaup, B. T., Sternecker, K., Trepl, L., and Unfer, G.:
Restoration of spawning habitats of brown trout (Salmo trutta) in a
regulated chalk stream, River Res. Appl., 29, 172–182, 2013.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools, Nucleic Acids
Res., 41, D590–D596, 2012.
Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J.
P., Ettwig, K. F., Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S.,
Op den Camp, H. J. M., Jetten, M. S. M., and Strous, M.: A microbial
consortium couples anaerobic methane oxidation to denitrification, Nature,
440, 918–921, https://doi.org/10.1038/nature04617, 2006.
Romeijn, P., Comer-Warner, S. A., Ullah, S., Hannah, D. M., and Krause, S.:
Streambed organic matter controls on carbon dioxide and methane emissions
from streams, Environ. Sci. Technol., 53, 2364–2374, 2019.
Rutherford, J., Latimer, G., and Smith, R.: Bedform mobility and benthic
oxygen uptake, Water Res., 27, 1545–1558, 1993.
Rutherford, J., Boyle, J., Elliott, A., Hatherell, T., and Chiu, T.:
Modeling benthic oxygen uptake by pumping, J. Environ.
Eng., 121, 84–95, 1995.
Segarra, K., Schubotz, F., Samarkin, V., Yoshinaga, M., Hinrichs, K., and
Joye, S.: High rates of anaerobic methane oxidation in freshwater wetlands
reduce potential atmospheric methane emissions, Nat. Commun., 6, 1–8, 2015.
Shelley, F., Abdullahi, F., Grey, J., and Trimmer, M.: Microbial methane
cycling in the bed of a chalk river: oxidation has the potential to match
methanogenesis enhanced by warming, Freshwater Biol., 60, 150–160, 2015.
Shelley, F., Ings, N., Hildrew, A. G., Trimmer, M., and Grey, J.: Bringing
methanotrophy in rivers out of the shadows, Limnol. Oceanogr., 62, 2345–2359,
2017.
Shen, L.-D., Wu, H.-S., Liu, X., and Li, J.: Cooccurrence and potential role
of nitrite-and nitrate-dependent methanotrophs in freshwater marsh
sediments, Water Res., 123, 162–172, 2017.
Shen, L.-D., Ouyang, L., Zhu, Y., and Trimmer, M.: Active pathways of
anaerobic methane oxidation across contrasting riverbeds, ISME J.,
13, 752–766, 2019.
Silvennoinen, H., Liikanen, A., Rintala, J., and Martikainen, P. J.:
Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in
the Liminganlahti Bay (the Baltic Sea), Biogeochemistry, 90, 193–208, 2008.
Spoelstra, J., Leal, K. A., Senger, N. D., Schiff, S. L., and Post, R.:
Isotopic characterization of sulfate in a shallow aquifer impacted by
agricultural fertilizer, Groundwater, 59, 658–670, 2021.
Spratt Jr., H. G., Morgan, M. D., and Good, R. E.: Sulfate reduction in peat
from a New Jersey pinelands cedar swamp, Appl. Environ. Microb., 53, 1406–1411,
1987.
Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L.
C., and Oliver, S. K.: The ecology of methane in streams and rivers:
patterns, controls, and global significance, Ecol. Monogr., 86,
146–171, https://doi.org/10.1890/15-1027, 2016.
Storey, R., Fulthorpe, R. R., and Williams, D. D.: Perspectives and
predictions on the microbial ecology of the hyporheic zone, Freshwater
Biol., 41, 119–130, 1999.
Sunjidmaa, N., Mendoza-Lera, C., Hille, S., Schmidt, C., Borchardt, D., and
Graeber, D.: Carbon limitation may override fine-sediment induced
alterations of hyporheic nitrogen and phosphorus dynamics, Sci. Total
Environ., 837, 155689, https://doi.org/10.1016/j.scitotenv.2022.155689, 2022.
Takeuchi, M., Ozaki, H., Hiraoka, S., Kamagata, Y., Sakata, S., Yoshioka,
H., and Iwasaki, W.: Possible cross-feeding pathway of facultative
methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph
Methylocaldum marinum S8, PloS one, 14, e0213535, https://doi.org/10.1371/journal.pone.0251538, 2019.
Teasdale, P. R., Batley, G. E., Apte, S. C., and Webster, I. T.: Pore water
sampling with sediment peepers, TrAC-Trend. Anal. Chem., 14,
250–256, 1995.
Trimmer, M., Grey, J., Heppell, C. M., Hildrew, A. G., Lansdown, K., Stahl,
H., and Yvon-Durocher, G.: River bed carbon and nitrogen cycling: state of
play and some new directions, Sci. Total Environ., 434, 143–158, 2012.
Triska, F. J., Duff, J. H., and Avanzino, R. J.: The role of water exchange
between a stream channel and its hyporheic zone in nitrogen cycling at the
terrestrial–aquatic interface, Vol. 82, in: Nutrient dynamics and retention in
land/water ecotones of lowland, temperate lakes and rivers, edited by: Hillbricht-Ilkowska, A. and Pieczyńska, E., Springer, Dordrecht,
167–184, https://doi.org/10.1007/978-94-011-1602-2_20, 1993.
Vaksmaa, A., van Alen, T. A., Ettwig, K. F., Lupotto, E., Valè, G.,
Jetten, M. S., and Lüke, C.: Stratification of diversity and activity of
methanogenic and methanotrophic microorganisms in a nitrogen-fertilized
Italian paddy soil, Front. Microbiol., 8, 2127, https://doi.org/10.3389/fmicb.2017.02127, 2017.
van Grinsven, S., Sinninghe Damsté, J. S., Abdala Asbun, A., Engelmann,
J. C., Harrison, J., and Villanueva, L.: Methane oxidation in anoxic lake
water stimulated by nitrate and sulfate addition, Environ. Microbiol., 22,
766–782, 2020.
Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B.
J., Hugenholtz, P., and Tyson, G. W.: Methylotrophic methanogenesis
discovered in the archaeal phylum Verstraetearchaeota, Nat. Microbiol.,
1, 1–9, 2016.
Vermaat, J. E., Harmsen, J., Hellmann, F. A., van der Geest, H. G., de
Klein, J. J., Kosten, S., Smolders, A. J., Verhoeven, J. T., Mes, R. G., and
Ouboter, M.: Annual sulfate budgets for Dutch lowland peat polders: The soil
is a major sulfate source through peat and pyrite oxidation, J.
Hydrol., 533, 515–522, 2016.
Villa, J. A., Smith, G. J., Ju, Y., Renteria, L., Angle, J. C., Arntzen, E.,
Harding, S. F., Ren, H., Chen, X., and Sawyer, A. H.: Methane and nitrous
oxide porewater concentrations and surface fluxes of a regulated river, Sci.
Total Environ., 715, 136920, https://doi.org/10.1016/j.scitotenv.2020.136920, 2020.
Vuillemin, A., Wankel, S. D., Coskun, Ö. K., Magritsch, T., Vargas, S.,
Estes, E. R., Spivack, A. J., Smith, D. C., Pockalny, R., and Murray, R. W.:
Archaea dominate oxic subseafloor communities over multimillion-year time
scales, Sci. Adv., 5, eaaw4108, https://doi.org/10.1126/sciadv.aaw4108, 2019.
Whiticar, M. J.: Carbon and hydrogen isotope systematics of bacterial
formation and oxidation of methane, Chem. Geol., 161, 291–314, 1999.
Whiticar, M. J., Faber, E., and Schoell, M.: Biogenic methane formation in
marine and freshwater environments: CO2 reduction vs. acetate
fermentation–isotope evidence, Geochim. Cosmochim. Ac., 50,
693–709, 1986.
Winter, T. C., Harvey, J. W., Franke, L. O., and Alley, W. M.: Ground water
and surface water: A single resource, U.S. Geological Survey, Denver,
Colorado, ISBN 0-607-89339-7, 1998.
Wu, G., Zhang, T., Gu, M., Chen, Z., and Yin, Q.: Review of characteristics
of anammox bacteria and strategies for anammox start-up for sustainable
wastewater resource management, Water Sci. Technol., 82, 1742–1757, 2020.
Zehlius-Eckert, W., Schwaiger, H., and Beckmann, A.: Monitoring und
Erfolgskontrolle im Freisinger Moos, edited by: Mallach, N. and Stettmer, C., Bayerische Akademie für Naturschutz und Landschaftspflege (ANL),
ISBN 3-931175-69-3, 2003.
Zhang, M., Luo, Y., Lin, X., Hetharua, B., Zhao, W., Zhou, M., Zhan, Q., Xu,
H., Zheng, T., and Tian, Y.: Molecular and stable isotopic evidence for the
occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the
mangrove sediment of Zhangjiang Estuary, China, Appl. Microbiol.
Biot., 102, 2441–2454, 2018.
Zimmer, M. A. and Lautz, L. K.: Temporal and spatial response of hyporheic
zone geochemistry to a storm event, Hydrol. Process., 28, 2324–2337,
2014.
Short summary
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments produce CH4 when degrading organic matter, but the contribution of rivers to atmospheric CH4 concentrations is uncertain. To better understand riverine CH4 cycling, we measured concentration profiles of CH4 and relevant reactants that might influence the CH4 cycle. We found substantial CH4 production, especially in fine, organic-rich sediments during summer and signs of microbial CH4 consumption.
The greenhouse gas methane (CH4) drives climate change. Microorganisms in river sediments...
Altmetrics
Final-revised paper
Preprint