Articles | Volume 19, issue 20
https://doi.org/10.5194/bg-19-4929-2022
https://doi.org/10.5194/bg-19-4929-2022
Research article
 | 
25 Oct 2022
Research article |  | 25 Oct 2022

A question of scale: modeling biomass, gain and mortality distributions of a tropical forest

Nikolai Knapp, Sabine Attinger, and Andreas Huth

Related authors

Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Brief Communication: A new drought monitoring network in the state of Brandenburg (Germany) using cosmic-ray neutron sensing
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848,https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
Impact of clouds on vegetation albedo quantified by coupling an atmosphere and a vegetation radiative transfer model
Kevin Wolf, Evelyn Jäkel, André Ehrlich, Michael Schäfer, Hannes Feilhauer, Andreas Huth, Alexandra Weigelt, and Manfred Wendisch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3614,https://doi.org/10.5194/egusphere-2024-3614, 2024
Short summary
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024,https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Distinguishing mature and immature trees allows estimating forest carbon uptake from stand structure
Samuel M. Fischer, Xugao Wang, and Andreas Huth
Biogeosciences, 21, 3305–3319, https://doi.org/10.5194/bg-21-3305-2024,https://doi.org/10.5194/bg-21-3305-2024, 2024
Short summary

Related subject area

Biodiversity and Ecosystem Function: Terrestrial
Water usage of old-growth oak at elevated CO2 in the FACE (Free-Air CO2 Enrichment) of climate change
Susan E. Quick, Giulio Curioni, Nicholas J. Harper, Stefan Krause, and A. Robert MacKenzie
Biogeosciences, 22, 1557–1581, https://doi.org/10.5194/bg-22-1557-2025,https://doi.org/10.5194/bg-22-1557-2025, 2025
Short summary
Elephant megacarcasses increase local nutrient pools in African savanna soils and plants
Courtney G. Reed, Michelle L. Budny, Johan T. du Toit, Ryan Helcoski, Joshua P. Schimel, Izak P. J. Smit, Tercia Strydom, Aimee Tallian, Dave I. Thompson, Helga van Coller, Nathan P. Lemoine, and Deron E. Burkepile
Biogeosciences, 22, 1583–1596, https://doi.org/10.5194/bg-22-1583-2025,https://doi.org/10.5194/bg-22-1583-2025, 2025
Short summary
Narrowing down dune establishment drivers on the beach
Jan-Markus Homberger, Sasja van Rosmalen, Michel Riksen, and Juul Limpens
Biogeosciences, 22, 1301–1320, https://doi.org/10.5194/bg-22-1301-2025,https://doi.org/10.5194/bg-22-1301-2025, 2025
Short summary
Combined effects of topography, soil moisture, and snow cover regimes on growth responses of grasslands in a low- mountain range (Vosges, France)
Pierre-Alexis Herrault, Albin Ullmann, and Damien Ertlen
Biogeosciences, 22, 705–724, https://doi.org/10.5194/bg-22-705-2025,https://doi.org/10.5194/bg-22-705-2025, 2025
Short summary
Soil smoldering in temperate forests: a neglected contributor to fire carbon emissions revealed by atmospheric mixing ratios
Lilian Vallet, Charbel Abdallah, Thomas Lauvaux, Lilian Joly, Michel Ramonet, Philippe Ciais, Morgan Lopez, Irène Xueref-Remy, and Florent Mouillot
Biogeosciences, 22, 213–242, https://doi.org/10.5194/bg-22-213-2025,https://doi.org/10.5194/bg-22-213-2025, 2025
Short summary

Cited articles

Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, R. E., Kennedy-Bowdoin, T., van Breugel, M., Davies, S., Hall, J. S., Muller-Landau, H. C., Potvin, C., Sousa, W., Wright, J., and Bermingham, E.: High-fidelity national carbon mapping for resource management and REDD+, Carbon Balance Manag., 8, 1–14, https://doi.org/10.1186/1750-0680-8-7, 2013. 
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard C., G. A., Bánki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G. A., Camargo, J. L. C., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., da Costa, L., de Oliveira, E. A., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Hérault, B., Higuchi, N., Honorio Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Núñez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Peña-Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter, L., Prieto, A., Quesada, C. A., Ramírez, F., Ramírez-Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomão, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., ter Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., van der Heijden, G. M. F., van der Hout, P., Guimarães Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., and Zagt, R. J.: Long-term decline of the Amazon carbon sink, Nature, 519, 344–348, https://doi.org/10.1038/nature14283, 2015. 
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., and Hubbell, S. P.: Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama, J. Ecol., 91, 240–252, https://doi.org/10.1046/j.1365-2745.2003.00757.x, 2003. 
Chave, J., Andalo, C., Brown, S., and Cairns, M.: Tree allometry and improved estimation of carbon stocks and balance in tropical forests, Oecologia, 145, 87–99, https://doi.org/10.1007/s00442-005-0100-x, 2005. 
Condit, R.: Tropical forest census plots, Springer-Verlag and R. G. Landes Company, Berlin, Germany and George Town, Texas, 211 pp., https://doi.org/10.1007/978-3-662-03664-8, 1998. 
Download
Short summary
The biomass of forests is determined by forest growth and mortality. These quantities can be estimated with different methods such as inventories, remote sensing and modeling. These methods are usually being applied at different spatial scales. The scales influence the obtained frequency distributions of biomass, growth and mortality. This study suggests how to transfer between scales, when using forest models of different complexity for a tropical forest.
Share
Altmetrics
Final-revised paper
Preprint