Articles | Volume 19, issue 22
https://doi.org/10.5194/bg-19-5237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/bg-19-5237-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The response of diazotrophs to nutrient amendment in the South China Sea and western North Pacific
Zuozhu Wen
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean
Research Kiel, Kiel, Germany
Thomas J. Browning
Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean
Research Kiel, Kiel, Germany
Rongbo Dai
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Wenwei Wu
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Weiying Li
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
present address: Key Laboratory of Marine Ecosystem Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou,
Zhejiang, PR China
Xiaohua Hu
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Wenfang Lin
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Lifang Wang
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Zhimian Cao
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Haizheng Hong
CORRESPONDING AUTHOR
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Dalin Shi
CORRESPONDING AUTHOR
State Key Laboratory of Marine Environmental Science, Xiamen
University, Xiamen, Fujian, PR China
Related authors
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Chuanjun Du, Naiwen Zheng, Shuh-Ji Kao, Minhan Dai, Zhimian Cao, Dalin Shi, Qiancheng Li, Hao Wang, and Xiaolin Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-654, https://doi.org/10.5194/essd-2025-654, 2025
Preprint under review for ESSD
Short summary
Short summary
Nutrient levels govern oceanic primary production, but measuring them is labor-intensive and costly. To address this, we used machine learning models to learn the hidden relationships between easy-to-measure ocean properties (like temperature and salinity) and nutrient levels. Applying this model, we created ~ 470 million nutrient data points across the North Pacific from 1895 to 2024. This data will help to understand nutrient and marine ecosystem variability under climate change.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Zuozhu Wen, Ruotong Jiang, Tianli He, Thomas Browning, Haizheng Hong, and Dalin Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-775, https://doi.org/10.5194/egusphere-2024-775, 2024
Preprint withdrawn
Short summary
Short summary
The isotope effect of biological N2 fixation is a key parameter for understanding the nitrogen cycle, however, little is known about its regulatory mechanisms. Here we show for the first time that CO2 exerts important controls on the N isotopic composition in diazotrophic cyanobacteria Trichodesmium and Crocosphaera, through the controls on nitrogenase enzyme efficiency. This study provides insights into understanding the fluctuations of δ15N records, and thus the past nitrogen cycle.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Neil J. Wyatt, Angela Milne, Eric P. Achterberg, Thomas J. Browning, Heather A. Bouman, E. Malcolm S. Woodward, and Maeve C. Lohan
Biogeosciences, 18, 4265–4280, https://doi.org/10.5194/bg-18-4265-2021, https://doi.org/10.5194/bg-18-4265-2021, 2021
Short summary
Short summary
Using data collected during two expeditions to the South Atlantic Ocean, we investigated how the interaction between external sources and biological activity influenced the availability of the trace metals zinc and cobalt. This is important as both metals play essential roles in the metabolism and growth of phytoplankton and thus influence primary productivity of the oceans. We found seasonal changes in both processes that helped explain upper-ocean trace metal cycling.
Maximiliano J. Vergara-Jara, Mark J. Hopwood, Thomas J. Browning, Insa Rapp, Rodrigo Torres, Brian Reid, Eric P. Achterberg, and José Luis Iriarte
Ocean Sci., 17, 561–578, https://doi.org/10.5194/os-17-561-2021, https://doi.org/10.5194/os-17-561-2021, 2021
Short summary
Short summary
Ash from the Calbuco 2015 eruption spread across northern Patagonia, the SE Pacific and the SW Atlantic. In the Pacific, a phytoplankton bloom corresponded closely to the volcanic ash plume, suggesting that ash fertilized this region of the ocean. No such fertilization was found in the Atlantic where nutrients plausibly supplied by ash were likely already in excess of phytoplankton demand. In Patagonia, the May bloom was more intense than usual, but the mechanistic link to ash was less clear.
Cited articles
Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature,
437, 349–355, https://doi.org/10.1038/nature04158, 2005.
Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M., and Falkowski,
P.: Iron availability, cellular iron quotas, and nitrogen fixation in
Trichodesmium, Limnol. Oceanogr., 46, 1249–1260, https://doi.org/10.4319/lo.2001.46.6.1249, 2001.
Bonnet, S., Baklouti, M., Gimenez, A., Berthelot, H., and Berman-Frank, I.: Biogeochemical and biological impacts of diazotroph blooms in a low-nutrient, low-chlorophyll ecosystem: synthesis from the VAHINE mesocosm experiment (New Caledonia), Biogeosciences, 13, 4461–4479, https://doi.org/10.5194/bg-13-4461-2016, 2016.
Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M., Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N2 fixation (OUTPACE cruise), Biogeosciences, 15, 4215–4232, https://doi.org/10.5194/bg-15-4215-2018, 2018.
Böttjer, D., Dore, J. E., Karl, D. M., Letelier, R. M., Mahaffey, C.,
Wilson, S. T., Zehr, J. P., and Church, M. J.: Temporal variability of
nitrogen fixation and particulate nitrogen export at Station ALOHA, Limnol.
Oceanogr., 62, 200–216, https://doi.org/10.1002/lno.10386, 2016.
Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C.,
Engel, A., and Moore, C. M.: Iron limitation of microbial phosphorus
acquisition in the tropical North Atlantic, Limnol. Oceanogr. Lett., 8,
15465, https://doi.org/10.1038/ncomms15465, 2017.
Cerdan-Garcia, E., Baylay, A., Polyviou, D., Woodward, E. M. S., Wrightson,
L., Mahaffey, C., Lohan, M. C., Moore, C. M., Bibby, T. S., and Robidart, J.
C.: Transcriptional responses of Trichodesmium to natural inverse gradients of Fe and P
availability, ISME J., 16, 1055–1064, https://doi.org/10.1038/s41396-021-01151-1, 2022.
Chen, M., Lu, Y., Jiao, N., Tian, J., Kao, S. J., and Zhang, Y.:
Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol.
Oceanogr., 64, 1403–1421, https://doi.org/10.1002/lno.11123, 2019.
Chen, Y. L. L., Chen, H. Y., and Lin, Y. H.: Distribution and downward flux
of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio
Current, Mar. Ecol.-Prog. Ser., 259, 47–57, https://doi.org/10.3354/meps259047, 2003.
Chen, Y. L. L., Chen, H. Y., Tuo, S. H., and Ohki, K.: Seasonal dynamics of
new production from Trichodesmium N2 fixation and nitrate uptake in the upstream
Kuroshio and South China Sea basin, Limnol. Oceanogr., 53, 1705–1721,
https://doi.org/10.4319/lo.2008.53.5.1705, 2008.
Chen, Y. L. L., Chen, H. Y., Lin, Y. H., Yong, T. C., Taniuchi, Y., and Tuo,
S. H.: The relative contributions of unicellular and filamentous diazotrophs
to N2 fixation in the South China Sea and the upstream Kuroshio, Deep-Sea Res. Pt. I, 85, 56–71, https://doi.org/10.1016/j.dsr.2013.11.006, 2014.
Church, M. J., Jenkins, B. D., Karl, D. M., and Zehr, J. P.: Vertical
distributions of nitrogen fixing phylotypes at Stn ALOHA in the oligotrophic
North Pacific Ocean, Aquat. Microb. Ecol., 38, 3–14, https://doi.org/10.3354/ame038003
2005a.
Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M., and Zehr, J. P.:
Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic
North Pacific Ocean, Appl. Environ. Microb., 71, 5362–5370,
https://doi.org/10.1128/AEM.71.9.5362-5370.2005, 2005b.
Church, M. J., Björkman, K., and Karl, D.: Regional distributions of
nitrogen-fixing bacteria in the Pacific Ocean, Limnol. Oceanogr., 53, 63–77,
2008.
Dekaezemacker, J., Bonnet, S., Grosso, O., Moutin, T., Bressac, M., and
Capone, D. G.: Evidence of active dinitrogen fixation in surface waters of
the eastern tropical South Pacific during El Niño and La Niña events
and evaluation of its potential nutrient controls, Global Biogeochem.
Cy., 27, 768–779, https://doi.org/10.1002/gbc.20063, 2013.
Du, C., Liu, Z., Dai, M., Kao, S.-J., Cao, Z., Zhang, Y., Huang, T., Wang, L., and Li, Y.: Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model, Biogeosciences, 10, 6419–6432, https://doi.org/10.5194/bg-10-6419-2013, 2013.
Duce, R. A., Liss, P. S., Merrill, J. T., Atlas, E. L., Buat-Menard, P.,
Hicks, B. B., Miller, J. M., Prospero, J. M., Arimoto, R., Church, T. M.,
Ellis, W., Galloway, J. N., Hansen, L., Jickells, T. D., Knap, A. H.,
Reinhardt, K. H., Schneider, B., Soudine, A., Tokos, J. J., Tsunogai, S.,
Wollast, R., and Zhou, M.: The atmospheric input of trace species to the
world ocean, Global Biogeochem. Cy., 5, 193–259, https://doi.org/10.1029/91gb01778, 1991.
Dutkiewicz, S., Ward, B. A., Scott, J. R., and Follows, M. J.: Understanding predicted shifts in diazotroph biogeography using resource competition theory, Biogeosciences, 11, 5445–5461, https://doi.org/10.5194/bg-11-5445-2014, 2014.
Farnelid, H., Turk-Kubo, K., Muñoz-Marín, M. C., and Zehr, J. P.:
New insights into the ecology of the globally significant uncultured
nitrogen-fixing symbiont UCYN-A, Aquat. Microb. Ecol., 77, 125–138,
https://doi.org/10.3354/ame01794, 2016.
Göran, E. and Cooper, S. D.: Scale effects and extrapolation in
ecological experiments, Adv. Ecol. Res., 33, 161–213,
https://doi.org/10.1016/S0065-2504(03)33011-9, 2003.
Grabowski, M. N. W., Church, M. J., and Karl, D. M.: Nitrogen fixation rates
and controls at Stn ALOHA, Aquat. Microb. Ecol., 52, 175–183,
https://doi.org/10.3354/ame01209, 2008.
Gruber, N.: Warming up, turning sour, losing breath: ocean biogeochemistry
under global change, Philos. T. R. Soc. A, 369, 1980–1996,
https://doi.org/10.1098/rsta.2011.0003, 2011.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global
nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Guo, L., Xiu, P., Chai, F., Xue, H. J., Wang, D. X., and Sun, J.: Enhanced
chlorophyll concentrations induced by Kuroshio intrusion fronts in the
northern South China Sea, Geophys. Res. Lett., 44, 11565–11572,
https://doi.org/10.1002/2017GL075336, 2017.
Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A.,
and Ichimura, S.: Measurement of photosynthetic production of a marine
phytoplankton population using a stable 13C isotope, Mar. Biol., 73,
31–36, https://doi.org/10.1007/BF00396282, 1983.
Hashihama, F., Furuya, K., Kitajima, S., Takeda, S., Takemura, T., and
Kanda, J.: Macro-scale exhaustion of surface phosphate by dinitrogen
fixation in the western North Pacific, Geophys. Res. Lett., 36, L03610,
https://doi.org/10.1029/2008gl036866, 2009.
Huang, Y., Laws, E. A., Chen, B., and Huang, B.: Stimulation of
heterotrophic and autotrophic metabolism in the mixing zone of the Kuroshio
Current and northern South China Sea: Implications for export production, J.
Geophys. Res.-Biogeo., 124, 2645–2661, https://doi.org/10.1029/2018jg004833, 2019.
Hudson, R. J. M. and Morel, F. M. M.: Iron transport in marine-phytoplankton
– kinetics of cellular and medium coordination reactions, Limnol. Oceanogr.,
35, 1002–1020, https://doi.org/10.4319/lo.1990.35.5.1002, 1990.
Hutchins, D. A. and Fu, F.: Microorganisms and ocean global change, Nat.
Microbiol., 2, 17058, https://doi.org/10.1038/nmicrobiol.2017.58, 2017.
Jacq, V., Ridame, C., L'Helguen, S., Kaczmar, F., and Saliot, A.: Response
of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii to iron limitation, PLoS One,
9, e86749, https://doi.org/10.1371/journal.pone.0086749, 2014.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G.,
Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata,
H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M.,
Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between
desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Karlusich, J. J. P., Pelletier, E., Lombard, F., Carsique, M., Dvorak, E.,
Colin, S., Picheral, M., Cornejo-Castillo, F. M., Acinas, S. G., Pepperkok,
R., Karsenti, E., de Vargas, C., Wincker, P., Bowler, C., Foster, R. A.:
Global distribution patterns of marine nitrogen-fixers by imaging and
molecular methods, Nat. Commun., 12, 4160, https://doi.org/10.1038/s41467-021-24299-y, 2021.
Krupke, A., Mohr, W., LaRoche, J., Fuchs, B. M., Amann, R. I., and Kuypers,
M. M.: The effect of nutrients on carbon and nitrogen fixation by the
UCYN-A-haptophyte symbiosis, ISME J., 9, 1635–1647, https://doi.org/10.1038/ismej.2014.253,
2015.
Kustka, A., Sañudo-Wilhelmy, S., Carpenter, E. J., Capone, D. G., and
Raven, J. A.: A revised estimate of the iron use efficiency of nitrogen
fixation, with special reference to the marine cyanobacterium
Trichodesmium spp. (cyanophyta), J. Phycol., 39, 12–25, https://doi.org/10.1046/j.1529-8817.2003.01156.x,
2003.
Kupper, H., Setlik, I., Seibert, S., Prasil, O., Setlikova, E.,
Strittmatter, M., Levitan, O., Lohscheider, J., Adamska, I., and
Berman-Frank, I.: Iron limitation in the marine cyanobacterium
Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen
fixation, New Phytol., 179, 784–798, https://doi.org/10.1111/j.1469-8137.2008.02497.x, 2008.
Landolfi, A., Prowe, A. E. F., Pahlow, M., Somes, C. J., Chien, C. T.,
Schartau, M., Koeve, W., and Oschlies, A.: Can top-down controls expand the
ecological niche of marine N2 fixers?, Front. Microbiol., 12, 690200,
https://doi.org/10.3389/fmicb.2021.690200, 2021.
Langlois, R. J., Hummer, D., and LaRoche, J.: Abundances and distributions
of the dominant nifH phylotypes in the Northern Atlantic Ocean, Appl. Environ.
Microb., 74, 1922–1931, https://doi.org/10.1128/AEM.01720-07, 2008.
Langlois, R. J., Mills, M. M., Ridame, C., Croot, P., and LaRoche, J.:
Diazotrophic bacteria respond to Saharan dust additions, Mar. Ecol.-Prog.
Ser., 470, 1–14, https://doi.org/10.3354/meps10109, 2012.
Le Borgne, R., Barber, R. T., Delcroix, T., Inoue, H. Y., Mackey, D. J., and
Rodier, M.: Pacific warm pool and divergence: Temporal and zonal variations
on the equator and their effects on the biological pump, Deep-Sea Res.
Pt. II, 49, 2471–2512, https://doi.org/10.1016/S0967-0645(02)00045-0, 2002.
Li, W., Sunda, W. G., Lin, W., Hong, H., and Shi, D.: The effect of cell
size on cellular Zn and Cd and Zn-Cd-CO2 colimitation of growth rate
in marine diatoms, Limnol. Oceanogr., 65, 2896–2911, https://doi.org/10.1002/lno.11561,
2020.
Li, X., Wu, K., Gu, S., Jiang, P., Li, H., Liu, Z., and Dai, M.: Enhanced
biodegradation of dissolved organic carbon in the western boundary Kuroshio
Current when intruded to the marginal South China Sea, J. Geophys. Res.-Oceans,
126, e2021JC017585, https://doi.org/10.1029/2021jc017585, 2021.
Lu, Y., Wen, Z., Shi, D., Lin, W., Bonnet, S., Dai, M., and Kao, S. J.:
Biogeography of N2 fixation influenced by the western boundary current
intrusion in the South China Sea, J. Geophys. Res.-Oceans, 124, 6983–6996,
https://doi.org/10.1029/2018jc014781, 2019.
Ma, J., Yuan, D. X., Liang, Y., and Dai, M. H.: A modified analytical method
for the shipboard determination of nanomolar concentrations of
orthophosphate in seawater, J. Oceanogr., 64, 443–449, 2008.
Mills, M., Ridame, C., Davey, M., Roche, J. L., and Geider, R. J.: Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic, Nature, 429, 292–294, https://doi.org/10.1038/nature02550, 2004.
Mohr, W., Großkopf, T., Wallace, D. W., and LaRoche, J.: Methodological
underestimation of oceanic nitrogen fixation rates, PLoS One, 5, e12583,
https://doi.org/10.1371/journal.pone.0012583.g001, 2010.
Moisander, P. H., Beinart, R. A., Voss, M., and Zehr, J. P.: Diversity and
abundance of diazotrophic microorganisms in the South China Sea during
intermonsoon, ISME J., 2, 954–967, https://doi.org/10.1038/ismej.2008.51, 2008.
Moisander, P. H., Zhang, R., Boyle, E. A., Hewson, I., Montoya, J. P., and
Zehr, J. P.: Analogous nutrient limitations in unicellular diazotrophs and
Prochlorococcus in the South Pacific Ocean, ISME J., 6, 733–744, https://doi.org/10.1038/ismej.2011.152,
2012.
Montoya, J. P., Voss, M., Kähler, P., and Capone, D. G.: A simple,
high-precision, high-sensitivity tracer assay for N2 fixation, Appl.
Environ. Microb., 62, 986–993, https://doi.org/10.1128/AEM.62.3.986-993.1996, 1996.
Needoba, J. A., Foster, R. A., Sakamoto, C., Zehr, J. P., and Johnson, K.
S.: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the
temperate oligotrophic North Pacific Ocean, Limnol. Oceanogr., 54,
1317–1327, https://doi.org/10.4319/lo.2007.52.4.1317, 2007.
Rodriguez, F., Lillington, J., Johnson, S., Timmel, C. R., Lea, S. M., and
Berks, B. C.: Crystal structure of the bacillus subtilis phosphodiesterase
PhoD reveals an iron and calcium-containing active site, J. Biol. Chem.,
289, 30889–30899, https://doi.org/10.1074/jbc.M114.604892, 2014.
Rubin, M., Berman-Frank, I., and Shaked, Y.: Dust- and mineral-iron
utilization by the marine dinitrogen-fixer Trichodesmium, Nat. Geosci., 4, 529–534,
https://doi.org/10.1038/ngeo1181, 2011.
Saito, M. A., Goepfert, T. J., and Ritt, J. T.: Some thoughts on the concept
of colimitation: Three definitions and the importance of bioavailability,
Limnol. Oceanogr., 53, 276–290, https://doi.org/10.4319/lo.2008.53.1.0276, 2008.
Saito, M. A., Bertrand, E. M., Dutkiewicz, S., Bulygin, V. V., Moran, D. M.,
Monteiro, F. M., Follows, M. J., Valois, F. W., and Waterbury, J. B.: Iron
conservation by reduction of metalloenzyme inventories in the marine
diazotroph Crocosphaera watsonii, P. Natl. Acad. Sci. USA, 108, 2184–2189,
https://doi.org/10.1073/pnas.1006943108, 2011.
Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A.,
Yang, M., Lwiza, K., Burns, J. A., Capone, D. G., Ravenk, J. A., and
Carpenter, E. J.: Phosphorus limitation of nitrogen fixation by
Trichodesmiun in the central Atlantic Ocean, Nature, 411, 66–69, https://doi.org/10.1038/35075041, 2001.
Sargent, E. C., Hitchcock, A., Johansson, S. A., Langlois, R., Moore, C. M.,
LaRoche, J., Poulton, A. J., and Bibby, T. S.: Evidence for polyploidy in
the globally important diazotroph Trichodesmium, FEMS Microbiol. Lett., 363,
https://doi.org/10.1093/femsle/fnw244, 2016.
Schlosser, C., Klar, J. K., Wake, B. D., Snow, J. T., Honey, D. J.,
Woodward, E. M. S., Lohan, M. C., Achterberg, E. P., and Moore, C. M.:
Seasonal ITCZ migration dynamically controls the location of the
(sub)tropical Atlantic biogeochemical divide, P. Natl. Acad. Sci. USA,
111, 1438–1442, https://doi.org/10.1073/pnas.1318670111, 2014.
Shiozaki, T., Furuya, K., Kodama, T., Kitajima, S., Takeda, S., Takemura,
T., and Kanda, J.: New estimation of N2 fixation in the western and
central Pacific Ocean and its marginal seas, Global Biogeochem. Cy., 24,
GB1015, https://doi.org/10.1029/2009gb003620, 2010.
Shiozaki, T., Kodama, T., and Furuya, K.: Large-scale impact of the island
mass effect through nitrogen fixation in the western South Pacific Ocean,
Geophys. Res. Lett., 41, 2907–2913, https://doi.org/10.1002/2014GL059835, 2014a.
Shiozaki, T., Chen, Y. L. L., Lin, Y. H., Taniuchi, Y., Sheu, D. S., Furuya,
K., and Chen, H. Y.: Seasonal variations of unicellular diazotroph groups A
and B, and Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio
Current, Cont. Shelf Res., 80, 20–31, https://doi.org/10.1016/j.csr.2014.02.015, 2014b.
Shiozaki, T., Nagata, T., Ijichi, M., and Furuya, K.: Nitrogen fixation and the diazotroph community in the temperate coastal region of the northwestern North Pacific, Biogeosciences, 12, 4751–4764, https://doi.org/10.5194/bg-12-4751-2015, 2015a.
Shiozaki, T., Takeda, S., Itoh, S., Kodama, T., Liu, X., Hashihama, F., and Furuya, K.: Why is Trichodesmium abundant in the Kuroshio?, Biogeosciences, 12, 6931–6943, https://doi.org/10.5194/bg-12-6931-2015, 2015b.
Shiozaki, T., Bombar, D., Riemann, L., Hashihama, F., Takeda, S., Yamaguchi,
T., Ehama, M., Hamasaki, K., and Furuya, K.: Basin scale variability of
active diazotrophs and nitrogen fixation in the North Pacific, from the
tropics to the subarctic Bering Sea, Global Biogeochem. Cy., 31, 996–1009,
https://doi.org/10.1002/2017gb005681, 2017.
Snow, J. T., Schlosser, C., Woodward, E. M., Mills, M., Achterberg, E. P.,
Mahaffey, C., Bibby, T. S., and Moore, C. M.: Environmental controls on the
biogeography of diazotrophy and Trichodesmium in the Atlantic Ocean, Global Biogeochem.
Cy., 29, 865–884, https://doi.org/10.1002/2015GB005090, 2015.
Sohm, J. A., Webb, E. A., and Capone, D. G.: Emerging patterns of marine
nitrogen fixation, Nature reviews, Microbiology, 9, 499–508,
https://doi.org/10.1038/nrmicro2594, 2011.
Sperfeld, E., Raubenheimer, D., and Wacker, A.: Bridging factorial and
gradient concepts of resource co-limitation: Towards a general framework
applied to consumers, Ecol. Lett., 19, 201–215, https://doi.org/10.1111/ele.12554, 2016.
Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R. A.: Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific, Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-1559-2018, 2018.
Tanita, I., Shiozaki, T., Kodama, T., Hashihama, F., Sato, M., Takahashi,
K., and Furuya, K.: Regionally variable responses of nitrogen fixation to
iron and phosphorus enrichment in the Pacific Ocean, J. Geophys.
Res.-Biogeo., 126, e2021JG006542, https://doi.org/10.1029/2021jg006542, 2021.
Thompson, A. W., Carter, B. J., Turk-Kubo, K. A., Malfatti, F., Azam, F.,
and Zehr, J. P.: Genetic diversity of the unicellular nitrogen-fixing
cyanobacteria UCYN-A and its prymnesiophyte host, Environ. Microbiol., 16,
3238–3249, https://doi.org/10.1111/1462-2920.12490, 2014.
Turk-Kubo, K. A., Achilles, K. M., Serros, T. R., Ochiai, M., Montoya, J.
P., and Zehr, J. P.: Nitrogenase (nifH) gene expression in diazotrophic
cyanobacteria in the Tropical North Atlantic in response to nutrient
amendments, Front Microbiol., 3, 386, https://doi.org/10.3389/fmicb.2012.00386, 2012.
Wang, W. L., Moore, J. K., Martiny, A. C., and Primeau, F. W.: Convergent
estimates of marine nitrogen fixation, Nature, 566, 205–211,
https://doi.org/10.1038/s41586-019-0911-2, 2019.
Ward, B. A., Dutkiewicz, S., Moore, C. M., and Follows, M. J.: Iron,
phosphorus, and nitrogen supply ratios define the biogeography of nitrogen
fixation, Limnol. Oceanogr., 58, 2059–2075, https://doi.org/10.4319/lo.2013.58.6.2059, 2013.
Watkins-Brandt, K. S., Letelier, R. M., Spitz, Y. H., Church, M. J.,
Böttjer, D., and White, A. E.: Addition of inorganic or organic
phosphorus enhances nitrogen and carbon fixation in the oligotrophic North
Pacific, Mar. Ecol.-Prog. Ser., 432, 17–29, https://doi.org/10.3354/meps09147, 2011.
Welschmeyer, N. A.: Fluorometric analysis of chlorophyll-a in the presence
of chlorophyll-B and pheopigments, Limnol. Oceanogr., 39, 1985–1992, 1994.
Wen, Z., Browning, T. J., Cai, Y., Dai, R., Zhang, R., Du, C., Jiang, R.,
Lin, W., Liu, X., Cao, Z., Hong, H., Dai, M., and Shi, D.: Nutrient
regulation of biological nitrogen fixation across the tropical western North
Pacific, Sci. Adv., 8, eabl7564, https://doi.org/10.1126/sciadv.abl7564, 2022.
White, A. E., Watkins-Brandt, K. S., and Church, M. J.: Temporal variability
of Trichodesmium spp. and diatom-diazotroph assemblages in the North Pacific Subtropical
Gyre, Front. Mar. Sci., 5, 27, https://doi.org/10.3389/fmars.2018.00027, 2018.
Wu, C., Fu, F. X., Sun, J., Thangaraj, S., and Pujari, L.: Nitrogen fixation
by Trichodesmium and unicellular diazotrophs in the northern South China Sea and the
Kuroshio in summer, Sci. Rep.-UK, 8, 2415, https://doi.org/10.1038/s41598-018-20743-0, 2018.
Wu, J., Chung, S. W., Wen, L. S., Liu, K. K., Chen, Y. L. L., Chen, H. Y.,
and Karl, D. M.: Dissolved inorganic phosphorus, dissolved iron, and
Trichodesmium in the oligotrophic South China Sea, Global Biogeochem. Cy., 17, 1008,
https://doi.org/10.1029/2002gb001924, 2003.
Xu, M. N., Zhang, W., Zhu, Y., Liu, L., Zheng, Z., Wan, X. H. S., Qian, W.,
Dai, M., Gan, J., Hutchins, D. A., and Kao, S. J.: Enhanced ammonia
oxidation caused by lateral Kuroshio intrusion in the boundary zone of the
northern South China Sea, Geophys. Res. Lett., 45, 6585–6593,
https://doi.org/10.1029/2018gl077896, 2018.
Yong, S. C., Roversi, P., Lillington, J., Rodriguez, F., Krehenbrink, M.,
Zeldin, O. B., Garman, E. F., Lea, S. M., and Berks, B. C.: A complex
iron-calcium cofactor catalyzing phosphotransfer chemistry, Science, 345,
1170–1173, https://doi.org/10.1126/science.1254237, 2014.
Zehr, J. P. and Capone, D. G.: Changing perspectives in marine nitrogen
fixation, Science, 368, eaay9514, https://doi.org/10.1126/science.aay9514, 2020.
Zhang, J. Z.: Shipboard automated determination of trace concentrations of
nitrite and nitrate in oligotrophic water by gas-segmented continuous flow
analysis with a liquid waveguide capillary flow cell, Deep-Sea Res. Pt.
I, 47, 1157–1171, https://doi.org/10.1016/S0967-0637(99)00085-0, 2000.
Zhang, R., Zhu, X., Yang, C., Ye, L., Zhang, G., Ren, J. L., Wu, Y., Liu, S.
M., Zhang, J., and Zhou, M.: Distribution of dissolved iron in the Pearl
River (Zhujiang) Estuary and the northern continental slope of the South
China Sea, Deep-Sea Res. Pt. II, 167, 14–24,
https://doi.org/10.1016/j.dsr2.2018.12.006, 2019.
Short summary
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing microorganisms. We found lower abundance and activity of N2 fixers in the northern South China Sea than around the western boundary of the North Pacific, and N2 fixation rates switched from Fe–P co-limitation to P limitation. We hypothesize the Fe supply rates and Fe utilization strategies of each N2 fixer are important in regulating spatial variability in community structure across the study area.
Fe and P are key factors controlling the biogeography and activity of marine N2-fixing...
Altmetrics
Final-revised paper
Preprint